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MIGRANT STUDENTS’ PERCEPTIONS OF EXPERT SYSTEMS 
IN MATHEMATICS CLASSROOMS IN CANADA 

Yasmine Abtahi1, Heidi Stokmo1, Athar Firouzian2, Richard Barwell2, Christine 
Suurtamm2 , and Ruth Kane2 

1University of South-East Norway, Norway; 2University of Ottawa, Canada 

International migration flows have had a growing impact on mathematics classrooms 
in many parts of the world. Research suggests that many students from immigrant 
backgrounds face challenges in the learning of mathematics. We present findings from 
a study designed to explore how migrant students experience mathematics classrooms 
in Canada. We utilised Bauman’s notion of expert systems to analyse how migrant 
students position themselves with respect to authorities in mathematics classrooms. 
Our findings show students do perceive elements of the expert systems, which hinders 
the feeling of equality and inclusion in the mathematics classroom, resulting in three 
tensions. These tensions allow us to recognise the structural constraints within which 
migrant students operate and the perceived opportunities for multiplicity of  expertise. 

 
Many studies in the field of mathematics education have underscored the difficulties 
that migrant students often face as they try to navigate the practices and interactions of 
mathematics classrooms in their new setting (e.g., Civil & Planas, 2010; Takeuchi, 
2019). These challenges are of increasing significance in the many countries 
experiencing an increase in immigration. In Canada, for example, 30 percent of 
schoolchildren are either immigrants themselves or have at least one parent born 
abroad (Statistics Canada, 2022). Such students all, to a greater or lesser extent, 
experience a change in mathematics teaching and learning. They may bring novel ways 
of doing and understanding mathematics (e.g., algorithms, specific mathematics 
content) and may encounter ways of doing and being taught mathematics with which 
they are unfamiliar. If mathematics teachers are to support migrant students as they 
adapt to a new culture of mathematics teaching and learning, research is needed to 
understand these students’ perspectives and experiences of mathematics classrooms in 
the new context. In this research report, we present research that examined how migrant 
students perceived aspects of the organisation of mathematical authority and expertise. 

LITERATURE AND THEORETICAL FRAMEWORK: EXPERT SYSTEMS, 
MATHEMATICAL AUTHORITY AND INCLUSION 
In his work to understand the social production of dependency, Bauman (1992) 
conceptualised what he called expert systems. Bauman assumes that life in society is 
unimaginable without a set of skills which enables each individual to interact with 
others and gain social affirmation. It follows that in such a society, there will be experts 
who know these skills best. Bauman assumes an expert system to have five 
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characteristics: 1) doing things properly requires particular knowledge; 2) such 
knowledge is distributed unevenly; 3) those who have it ought to be in charge; 4) being 
in charge carries responsibility for how things are done; and 5) for others, personal 
responsibility rests entirely on following the advice of experts. Within an education 
system, we can various experts of various forms, such as, for example, the mathematics 
curriculum, which is a document for others to follow. The characteristics of the expert 
system, comprising the five identified elements, could also be found in mathematics 
teacher education programs, in the way they make assumptions about the role of a 
teacher in mathematics classrooms. Even mathematics itself can be considered as an 
expert system.  
More specifically, we can assume the existence of a requisite set of knowledge and 
skills to function in a mathematics classroom, with certain versions of the five 
characteristics considered valid. These necessary skills include appropriate 
mathematical knowledge, alongside social and behavioural competencies. While the 
conceptualisation of responsibility may pertain primarily to the teacher’s role, it also 
extends to encompass certain skills expected of students. Hence, it might seem obvious 
that expert systems are smoothly intertwined in the activities of mathematics 
classrooms, so much so that one could even ask: why not? Or what else? In this 
research report, our aim is not to re-state the obvious. Instead, our focus is on 
considering the accounts of migrant students regarding their experiences in 
mathematics classrooms, which parallel the five elements of an expert system. Through 
this exploration, we seek to illuminate how the perceived existence of expert systems 
by migrant students may impact notions of equity and inclusivity, particularly for 
migrant students entering a “new” mathematics classroom as they strive to find their 
place within it. 
Theoretically, in an expert system, we see that when the expert (such as a mathematics 
curriculum) performs with languages and features of authority, and when others (such 
as teachers and learners) accept and follow the language of authority, then  uniformity 
might become an attribute of the entirety of the system. That is, on the basis of the five 
characters of an expert system, all elements of the system - the expert, the area of 
expertise, and the learner - act with a sense of conformity (Neyland, 2010). In our 
study, we inquire about the potential impact of a perceived ‘uniformity’ and 
‘conformity’ on the notions of inclusion and equity within the classrooms. 
Acknowledging the hypothetical nature of this question, we posed it based on the 
premise that migrant students’ experiences might reflect the elements of an expert 
system and the possibility that authoritative influences within the system could impact 
the sense of inclusivity. 
The uneven distribution of expertise in mathematics classrooms raises the question of 
where mathematical authority lies. Several researchers refer to the concept of 
mathematical authority (Amit & Fried, 2005; Langer-Osuna, 2017). Amit and Fried 
(2005) suggest that, in classroom interactions, often only a few are seen as having 
mathematical expertise and thus as having mathematical authority within a classroom. 
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Yet, a key component of collaborative mathematics classrooms is that mathematical 
authority in distributed: students do not necessarily see that mathematics knowledge 
and expertise reside solely in the teacher, textbook, or curriculum but see themselves 
as mathematically capable and as possessing mathematical authority (Cobb et al., 
2008; Langer-Osuna, 2017, 2018). However, many factors come into play that may 
limit this distribution of mathematical authority such as the role of power within the 
social setting of a classroom (Langer-Osuna, 2017) which may influence who has a 
voice and consequently who is seen as having mathematical authority.  
Promoting the inclusion of multiple voices in mathematics classroom activities takes 
us to another body of literature. Adopting a broadly resource-oriented perspective, 
mathematics education research includes countless studies that have invited the 
cultures and perspectives of migrant communities into innovative approaches to the 
teaching and learning of mathematics. Theoretical perspectives include culturally 
responsive teaching, funds of knowledge (e.g., González et al., 2009) and 
ethnomathematics (e.g., D’Ambrosio, 2006). If these theories have a common thread, 
it is the importance of more inclusive forms of teaching and learning mathematics, 
through utilising the cultural, historical and linguistic resources of migrant 
students.  Such attention to the potential, capacity and resources of migrant students is 
important, because research studies often have underscored the difficulties that migrant 
students often face as they try to navigate the unfamiliar practices and interactions of 
mathematics classrooms in their new setting (e.g., Planas & Civil, 2010; Takeuchi, 
2019). These theoretical frameworks and research projects share a foundational 
commitment to acknowledging and the novel ways and unique perspectives migrant 
students bring to the learning and understanding of mathematics. Inclusive and 
equitable mathematics classrooms. However, a dilemma arises. On the one hand, the 
mathematics education research strongly advocates for including a multiplicity of ways 
of doing and being in mathematics classrooms, embracing a variety of approaches and 
ways of engaging with mathematics. On the other hand, the potential existence of 
perceived elements of expert systems in the mathematics classroom introduces a 
concern about the emergence of a sense of uniformity and conformity. In this research 
report, we present findings concerning (i) experiences of students of the learning and 
teaching of mathematics in the context of migration; and (ii) migrant students’ 
perceptions  of the system of mathematics education they have to navigate and be 
accountable towards. Our research questions are therefore: 

●  If and how do migrant children experience characters of the expert system in 
mathematics classrooms? 

●  If they do perceive such characters, how do they position themselves/assume 
responsibilities, in relation to these systems? 
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RESEARCH DESIGN AND METHODS 
The work we present in this research report is from a larger study which sought, among 
other things, to give voice to students by locating their knowledge, expertise, and 
experiences at the forefront of the research. The study utilises the voices of the children 
and the teachers, to highlight “unfamiliar” mathematics for teachers and for students.  
We report on the first phase of data collection, in which migrant students in grades 4–
12 were invited to write a hypothetical letter about their experiences in mathematics 
classrooms in Canada. The letter could be addressed to a relative who will soon arrive 
in Canada, or to the teacher who will welcome the relative. We used SurveyMonkey 
to obtain participants’ consent, obtain geographic information, and for participants to 
share their letters. Participants were also invited to take part in a follow-up interview.  
We collected 57 letters and conducted 10 interviews with students who had been living 
in Canada for 1-5 years. Contributing students came to Canada from countries spanning 
the globe including, the Caribbean, China, Czech Republic, Hong Kong, Iran, Jordan, 
Lebanon, Morocco, Nigeria, Saudi Arabia, Turkey, United Kingdom, Vietnam, and 
USA. Other students shared having moved from one region to another within Canada. 
The letters were collected in 2022 and 2023. Through our initial reading of the data, 
we noticed the kind of power the participants attributed to the system and hence to 
expertise and mathematical authority. The letters were analysed using the five 
characteristics of an expert system in order to identity what kinds of expertise were 
apparent in students’ letters, as well as to examine how students positioned themselves 
with respect to these systems. 

RESULTS 
Our results show that participating students do perceive behaviours and interactions in 
their new mathematics classrooms that resemble the five elements of an expert system. 
For example, they perceived that to do mathematics properly, they need to have 
particular knowledge, or they need to know a certain language. Further, they perceived 
that there are different authorities who possess knowledge and therefore who ought to 
be in charge, such as the teachers and the curriculum. Finally, they underscored their 
own responsibility and accountability, as a learner, in the system. In the following, we 
expand on these three points with illustrative extracts from the letters. 
Particular knowledge: The area of expertise 
Perhaps not surprisingly, different elements of mathematics emerge as areas of 
expertise. Some examples are multiplication, addition, and graphs. Letter 9, for 
example, describes the “math concept” as an area of expertise that is universal but some 
concepts come in different grades in Canada compared to China. They state: 

As a student who transferred schools from different countries like you, I believe that math 
concepts are universal. It’s a matter of when the content is taught. For the same content, 
some countries might introduce it at a lower grade while others teach it at a higher grade. 
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This student treated “math concepts” as an area of expertise that is taught in 
mathematics classrooms. The only catch is that “some countries might introduce it at 
a lower grade while others teach it at a higher grade”. Other students mention other 
areas of expertise, including language, word problems, mathematical terminology, and 
formulas. Contrary to mathematical formulas and knowledge, they find language a big 
challenge. Letter 9 continues that their “biggest barrier was language. Being unable to 
understand English, [they] could not comprehend what the word problems asked for.” 
Letter 15 explained: “math in Canada [...] is in English, which is very weird at first but 
you get used to it. Not many of the concepts are different as long as you are able to 
understand it properly”. 
Common among the extracts mentioned above and in almost all letters, students 
perceive mathematics as an area of expertise. At one level, this seems obvious, as they 
are participating in a mathematics classroom to learn mathematics. But what we 
noticed in our analysis is how the students attribute the areas of expertise as being 
defined by the experts, and how mastering these areas is the responsibility of the 
students. They not only perceived these areas of expertise, but also perceived that they 
come with clear expectations with regard to execution and the ‘proper’ way of doing 
things. These expectations are mentioned by students in different parts of their letters. 
We explain more in the next section. 
Uneven distribution and authority: The experts 
In their letters, students allocate the role of expert to actors such as the government, 
teacher, grades, lectures, tests, or the school system. Determining who is the expert at 
a given time is described as a dynamic relationship where the experts’ roles are 
connected to each other and change based on the situation. While the teacher is the 
most knowledgeable person in the class as an expert, their role shifts to a person 
responsible to follow the advice of other experts, such as the curriculum. This dynamic 
relationship comes from the perception that there exists more than one expert system 
in the class or school working interconnectedly. That is, knowledge is not evenly 
distributed between experts as well, so there are different responsibilities (power) in 
different expert systems. Letter 19 mentions mathematics curriculum and the teacher 
as two elements of a mathematics classroom in two different expert systems. The 
author says: 

I would always ask the teacher to rephrase the question [...] I had never heard any of the 
mathematical terms before, yet all of a sudden I have to know them [...] Since the formulas 
and knowledge are the same across the world, it would not be too much difference other 
than the language [...] Particularly, my middle school math teacher provided square and 
rectangle tiles to help students learn about perimeter and area visually. 

Here, two different roles of the teacher in the class are recognised from the student’s 
perspective. One role is as an expert who is knowledgeable and responsible for their 
students and acts independently of the curriculum when the student “ask[s] the teacher 
to rephrase the question”. The second role of the teacher is that of a person who is 
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responsible for what the expert (in this example the content of the curriculum) tells her 
to do, such as providing “square and rectangle tiles to help students learn about 
perimeter and area visually”. 
Responsibility to follow the experts: The non experts 
Students positioned themselves in the expert systems that they have perceived. 
Participating students generally assumed personal responsibility to follow the advice 
of the experts, such as the teacher or the demands of the curriculum. We also noted that 
the way that students position themselves within these expert systems informed their 
reported actions when participating in the mathematics classroom. For example, as part 
of their responsibility, students mentioned “putting in great effort”, “having good time 
management”, “trying hard to understand”, “practicing carefully”, “answering 
correctly”,  “working harder”, and “doing homework”. Letter 9 states: 

All in all, math is a fascinating subject. Do not be afraid of any difficulties, eventually, you 
will overcome all of them with the great effort you put in. 

In letter 15, a student describes their responsibility in “get[ting] used to [English]”, 
“understand[ing] it [mathematical concepts] properly”, and “time management”. They 
explain: 

Not many of the concepts are different as long as you are able to understand it properly. 
The only difference is that you need really good time management here. So as long as you 
can do that, you'll be fine. Good luck in school. 

Doing homework is another responsibility that students assume as a practice asked by 
the experts. The author of letter 5, for example, compares mathematics classrooms in 
China with Canada and explains: 

I think China’s math is more strict than Canada’s. In China we did a lot of exercises in one 
chapter. By doing all the practises the teacher posted and finishing all the homework 
carefully students can get good grades.  

These descriptions emphasise the distinctions between personal  and imposed 
responsibility among students. Their descriptions underscore a personal connection to 
both the expert and the field of expertise, as well as their individual preferences, 
commitment, and efforts. 
Illustratively, in letter 5, a student positioned themselves in relation to the expert 
system which imposes the expectation of obtaining “good grades”. The student 
suggests that by diligently completing “all the practices the teacher posted” and 
finishing “all the homework carefully”, they can achieve the desired outcome of “good 
grades”. These instances serve to delineate when an action is perceived as a personal 
responsibility, stemming from individual choices, preferences, and efforts. In contrast, 
responsibility is also depicted as being guided by external requirements, such as the 
explicit demands of the expert system. 
Our analysis of all the letters reveals a common understanding: when exploring the 
students’ positions, actions are articulated as manifestations of personal responsibility 
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directed towards both the experts and the areas of expertise. This differentiation 
elucidates how students navigate their roles based on intrinsic motivations and choices, 
as well as external expectations imposed by the expert system. 

DISCUSSION 
We have presented the outcome of our exploration of how migrant students experience 
mathematics classrooms, with a focus on the distribution of authority and the existence 
of expert systems. Our findings show that migrant students perceived interactions and 
behaviours that could be characterised as elements of different expert systems within 
the mathematics classroom. That is, they assumed expert knowledge that they need to 
acquire, such as mathematics and the language of instruction. They perceive actors 
such as teachers, curricula and at times the education system to be experts (i.e., the 
entities that have the desired knowledge). They also perceived a certain position within 
these systems within which they assumed responsibilities. For example, they assumed 
that in order to gain the desired knowledge they need to listen to the teacher, ask 
questions, work hard, follow the instruction, learn the language of instruction and so 
on. 
In the context of expert systems, actions are framed and delineated in terms of certain 
authorised procedures. Such framing of action introduces tensions in students’ sense 
of responsibility and accountability towards the system. The first tension is about 
students’ perception of their responsibilities in order to fulfill the demands outlined by 
the expert systems. The demands of mathematical authority within the system have the 
effect of reducing personal responsibility to rule-following and adherence to 
procedures, which goes against any attempt to promote a greater distribution of 
mathematical knowledge. The second tension arises from the expert system’s 
inclination to validate specific knowledge, potentially dismissing multiplicities of 
knowledge and approaches. Our findings showed that almost all students perceived the 
mathematics taught in the classroom as the ‘proper’ knowledge which they are required 
to learn. This is particularly important because learning the requisite knowledge of the 
expert risks the monopolisation of validity as defined by the system. That is, what 
counts as proper knowledge is the knowledge defined by the system and not alternative 
knowledge not defined by the system, such as, potentially, migrant students’ ways of 
knowing mathematics. The third tension involves the level of autonomy and 
independence that students perceive in their actions and interactions. The five 
characteristics of an expert system construct the learners of mathematics as not entirely 
self-sufficient, again fostering a tendency towards conformity. 
We believe that the three tensions described above directly underscore issues of equity 
and inclusion in the mathematics classroom and affect inclusion. The migrant students’ 
letters illustrate how the goal of inclusive and equitable participation of migrant 
students in mathematics classrooms takes place, for the students, in a context in which 
teachers and students must align themselves within expert systems, adhere to 
prescribed requirements, and demonstrate expected skills. Building on these tensions, 
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further research is required to consider their effect on migrant students’ navigation of 
and positioning in the mathematics classroom and to explore the ways in which broader 
spaces could be conceived for the voices of migrant students to be heard and included. 
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PROPOSAL FOR THE STUDY OF MATHEMATICS TEACHERS' 
BELIEFS BASED ON THE ANALYSIS OF THEIR ACTIONS 

Graciela Acevedo and Luis Roberto Pino-Fan 
Universidad de Los Lagos, Chile 

In recent years, research on mathematics teachers’ beliefs has increasingly focused on 
their relationship with the instructional practices of teachers. This article proposes a 
model that enables the study of mathematics teachers’ beliefs through comprehensive 
analysis of their actions in the classroom. The proposal incorporates the notions of 
teachers’ actions, norms and metanorms of the Ontosemiotic Approach as its 
articulating axis. Furthermore, this paper presents an example of a practical 
implementation of these levels of analysis in the study of a prospective teacher’s 
beliefs, showing the viability of this model. 

RATIONALE 
Some of the aspects currently demanded by the research in the relationship between 
beliefs and practices of mathematics teachers are investigating the roots of the observed 
practices; knowing which beliefs affect specific practices; as well as ensuring that the 
research results serve as basis for developing more efficient training programs (Goldin 
et al., 2016). Although there are theoretical and methodological frameworks 
connecting teachers’ beliefs and teachers’ actions (Leatham, 2006; Schoenfeld, 2000), 
the existing literature fails to present frameworks that facilitate the execution of studies 
that combine the following characteristics: begin with an analysis of teachers’ actions; 
enable the examination of enacted and professed beliefs; yield results that offer insight 
into the implications of these beliefs in the actions that teachers carry out in the 
classroom; and enable the identification of lines of action to improve such actions.  
This paper presents a proposal of levels of analysis for a class episode that enables the 
study of mathematics teachers’ beliefs. The goal is to contribute and advance in the 
achievement of the aforementioned points. To do this, we propose to analyse the class 
episodes through the teacher trajectory, and the norms and meta-norms put into play; 
conduct interviews with teachers to reflect on class episodes; and consider as units of 
analysis, the actions that are in accordance, or not, with didactic suitability criteria.  

THEORETICAL FRAMEWORK 
For this proposal we have considered the relationship between beliefs and teaching 
actions proposed by (Schoenfeld, 2008) and (Cobb & Yackel, 1996). In the first case, 
it is said that beliefs give rise to goals that teachers establish. These goals are studied 
by researchers who use this theoretical framework by identifying the actions carried 
out by teachers, seeking to find in them what the teachers propose to the students, 
explicitly or implicitly. Those proposals are directly related to what is known in the 
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OntoSemiotic Approach (OSA) as “teaching actions”.  In such a way that the study of 
teaching actions, resultos an ideal element to investigate the beliefs that give rise to 
them. Furthermore, Cobb and Yackel (1996) identify the relationship between beliefs 
and sociomathematical norms, mentioning that beliefs refer to an individual's 
understanding of normative expectations, while social norms are thought of as shared 
beliefs. In this case, OSA’s normative dimension is useful to study teachers’ beliefs.  
In this way, we consider that OSA is a theoretical framework that can shed light on the 
study of beliefs through the detailed analysis of teaching actions. Below we describe 
each of these notions. 
The Ontosemiotic approach (OSA) 
OSA proposes the analysis of the didactic configurations, which means the study of 
the evolution of the epistemic trajectory proposed by the teacher and the cognitive 
trajectory developed by the students; as well as the interactions between teacher and 
student, given by the web of responsibilities in charge of each of them (teacher and 
student trajectory); in addition to the distribution of the resources used (mediational 
trajectory) and the emotional states in relation to the instructional process (affective 
trajectory).  
Nevertheless, it is essential to recognize that when referring to didactic configurations, 
we are referring to the classroom in its entirety. This implies that the actions of both 
teachers and students, as well as their relationship, are analysed. However, some of the 
trajectories enable us to concentrate more specifically on particular aspects. In 
particular, the “teaching trajectory” enables identification of teaching actions by 
classifying them based on their function (Godino et al., 2006): 
Motivation. Those related to the creation of a climate of affection, respect, and 
encouragement for individual and cooperative work, so that it is involved in the 
instructional process. 
Assignment of tasks. It refers to the practices carried out by the teacher to direct and 
control the process of study, assign times, adapt tasks, orient, and stimulate the 
students’ functions.  
Regulation. It involves practices related to the establishment of rules, the recall and 
interpretation of previous knowledge necessary for the progression of learning and the 
readaptation of the prepared planning.  
Evaluation. Those practices in which the teacher observes and assesses the state of the 
learning achieved at critical moments (initial, final, and during the process) and 
resolution of the individual difficulties observed.  
Since analysing an instructional process requires understanding “the rules of the 
language game in which it takes place” (D’Amore et al., 2007), OSA, through its 
normative dimension, analyses the systems of rules, habits and norms that restrict and 
support didactic and mathematical practices in the processes of studying mathematics.  
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In instructional processes certain norms are negotiated between teachers and students. 
These normative expectations are communicated through their actions, implicitly or 
explicitly. Thus, when teachers offer students a specific problem-solving procedure, 
promote a particular way of working, or encourage the use of a particular type of 
material, they are laying the foundations for a particular mode of engagement within 
that instructional process.  
Since these rules are negotiated within the instructional process, some of them will be 
discarded quickly, others will have a longer negotiation process, and some will remain 
established and will be shared by the participants for a certain time. In this way, the 
“rules” in OSA reflect performance expectations and obligations that each participant 
considers for himself or for the rest (Planas & Iranzo, 2009). However, if the rules 
remain unchanged for a period of time, they are considered metanorms. According to 
the facets of the instructional process, the norms are classified as follows (Godino et 
al., 2009): 
Epistemic Norms. The epistemic norms are those that regulate the teacher's work in 
relation to mathematical knowledge. They contemplate the systems of practices put 
into play in the class, as well as their decomposition into problem-situations, languages, 
properties/propositions, procedures, concepts/definitions and arguments. 
Cognitive norms. They regulate the work of students in relation to mathematical 
knowledge. For the study of the beliefs of teachers of mathematics, beyond being 
interested in what the students' practices are, it is interesting to know which of these 
practices the teacher validates and promotes. 
Interactive norms. These rules refer to the interactions between the teacher and the 
students, as well as between the students themselves. These rules allow us to identify 
what responsibilities each participant is assuming regarding the mathematical practices 
that are carried out in the instructional process. 
Affective norms. Those that regulate the affectivity of the people involved in the 
instructional process.  
Mediational norms. They regulate the use of technological and temporal resources, 
these norms are related to the mediational trajectory, since it is interesting to know the 
rules that the teacher tries to establish regarding the allocation of times and the use of 
materials and resources for the teaching and learning of mathematics. 
Ecological norms. They regulate the relationship with the environment in which the 
instructional process takes place (considering social, political, economic, curriculum 
factors, etc.). 
As mentioned previously, some of the rules will have more relevance in the 
instructional processes since they imply a certain regularity. In OSA the analysis of 
regularities in norms leads to the notion of metanorm, which can be understood as 
norms that apply to other norms or norms that remain unchanged during a certain 
period of time, and that become a part of every set of norms during that period, even if 
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they are not consistently followed or properly executed afterwards. In this regard, the 
OSA proposes a typology for these metanorms, which is outlined below (D’Amore et 
al., 2007): 
Epistemic metanorms. They regulate epistemic norms. They respond to how the 
mathematical objects are put into play in the instructional process. 
Instructional metanorms. Are the metanorms that regulate every norm related to the 
teaching of mathematics. 
Cognitive metanorms. Are the metanorms brought by the students concerning the 
mathematics to be learned (mathematical metacognition) and how they are learned 
(didactical metacognition). 
According to Schoenfeld (2008) and Cobb and Yackel (1996), the actions carried out 
by teachers, the norms and meta-norms derived from these actions, constitute elements 
that allow us to study beliefs of mathematics teachers. 
However, we agree with Speer (2005) regarding the need to study both enacted and 
professed beliefs, so, in addition to this analysis, we propose interviews with teachers 
to analyse video recordings of their own classes, which allow us to have a scenario and 
common language between researcher and teacher.  
In order to improve the instructional processes, researchers might be interested in 
trying to understand in depth those practices that are in accordance with some 
curricular proposal or with a certain teaching model. This is where the beliefs of 
teachers become relevant, since they allow us to understand the reasons that led 
teachers to perform such actions.  
OSA, through the Didactical Suitability tool (Godino et al., 2023) evaluates the 
instructional processes, allowing to distinguish possible improvements in them. This 
tool provides “general principles and criteria based on research-proven results for 
which there is consensus in the corresponding scientific community” (Godino et al., 
2023, p. 114), so we consider that the combined study of the instructional processes, 
based on this tool and the beliefs of mathematics teachers, are a fruitful scenario to 
establish lines of actions that may serve as a basis for efficient teacher development 
programs.   

MODEL FOR THE STUDY OF TEACHERS’ BELIEFS THROUGH THE 
ANALYSIS OF THEIR ACTIONS 
For our proposed study of teachers’ beliefs based on their practices, we propose a video 
recordings analysis model of an instructional process, which is based on the application 
of five stages that are described below: 
Level 1. Study of teaching trajectory 
Level 2. Identification of norms 
Level 3. Identification of metanorms  
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Level 4. Inference of beliefs / Generation of interview script  
Level 5. The study of beliefs through reflection on their actions 
The first three levels are descriptive, they seek to answer what mathematics is 
promoted in the classroom and how its teaching is managed. The first level of analysis 
involves the identification of mathematical practices promoted by the teacher, through 
the epistemic configuration promoted; as well as the identification of the instructional 
interventions that allowed to manage the instructional process, which is possible to 
make through the analysis of the teaching trajectory.  
The second level requires identifying certain regularities in the previous level, as well 
as their relationship with the other facets. Although making conclusions about the 
normative nature of a practice implies the observation of several class episodes, we 
consider that the model can be applied for short episodes, so it can be limited to 
observing the normative intentionality of certain practices (Planas & Iranzo, 2009). 
Starting from the previous level, the third level seeks to identify prevailing norms over 
time or specific characteristics within them, corresponding to the metanorms associated 
with those norms. For example, if certain arguments are normed, the metanorms would 
assist in identifying their characteristics that respond to how those arguments are 
presented.  
The intention of the fourth level is to generate instruments for the reflection that will 
take place at the next level. Once there are episodes within the instructional process in 
which norms and metanorms that are of interest are distinguished, the researchers 
generate video fragments in which these norms and metanorms are evidenced. The 
interview script that is sought to be generated at this level is intended to analyse with 
the teachers the norms and metanorms that they have tried to establish in the classroom. 
In such a way that the questions generated by the researchers revolve around the 
reasons that the teachers have, to promote these norms and metanorms, which will 
constitute the beliefs of the teachers. At this level it is possible to infer certain beliefs, 
which are known in the literature as enacted beliefs. However, these enacted beliefs 
need to be contrasted with the teacher at the next level of analysis. 
Finally, the fifth level serves a dual purpose of contrasting and of expanding. Its goal 
is to reflect with teachers on the norms and metanorms identified in the first levels, 
using video fragments of their instructional process to observe these notions. Through 
this reflective process with the teachers, the researcher aims to contrast the beliefs 
he/she inferred at the previous levels. Additionally, this may bring forth beliefs 
expressed by the teachers which the researcher may have not previously considered. 
Units of analysis for the study of beliefs of mathematics teachers 
En every class we may find class episodes that favour or hinder the instructional 
process as long as they are aligned or goes against the suitability criteria (Godino et al., 
2023), respectively. In this way, we consider that each of these episodes could be 
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considered as a unit of analysis of the instructional process useful for the study of the 
beliefs of mathematics teachers. 

EXAMPLE OF THE APPLICATION OF THE MODEL 
We describe the analysis of an episode in which the levels of analysis described in the 
previous section were implemented. It is an algebra class, which was part of a 
microteaching process. The participants are preservice teachers who are in the last 
semesters of the career for high school Mathematics teachers. The only instruction by 
researchers was to develop the learning goal "Show that they understand the quadratic 
function 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 (𝑎𝑎 ≠ 0)  recognizing the quadratic function in daily 
life situations and other subjects; representing it in tables and graphs manually and/or 
with educational software; determining special points on its graph; selecting it as a 
model of quadratic change situations in other subjects, in particular supply and 
demand" (MINEDUC, 2023, p. 31).  
The unit of analysis was determined considering the component "Propose definitions 
and procedures that are clear, correct and adapted to the educational level to which they 
are addressed" (Godino et al., 2023, p. 18), from the criteria of suitability for the 
epistemic facet. Next, the levels of analysis are applied to the a class episode in which 
it is observed that the teacher makes an error when mentioning that 𝑓𝑓(𝑥𝑥) = (𝑎𝑎𝑎𝑎 +
𝑏𝑏)(𝑐𝑐𝑐𝑐 + 𝑑𝑑) is quadratic, only if it is written into the form 𝑓𝑓(𝑥𝑥 ) = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐. 
Level 1. Study of teaching trajectory 
At first, the teacher asked if 𝑓𝑓(𝑥𝑥) = (2𝑥𝑥 + 3)(𝑥𝑥 + 1) was a quadratic function and 
validated the students' response “if we solve it (referring to developing the product of 
binomials), then it will be a quadratic function.” The same thing happened for 𝑓𝑓(𝑥𝑥) =
(𝑥𝑥 + 2)(3𝑥𝑥 − 1).  
In a second moment, the teacher asks the students to evaluate the function 𝑓𝑓(𝑥𝑥) =
(7𝑥𝑥 − 2)(9𝑥𝑥 − 3) for 𝑥𝑥 = 1 and when the student tries to perform 𝑓𝑓(𝑥𝑥) = (7(1) −
2) (9(1) − 3)  the teacher forbids it, mentioning that he must first transform that 
expression into a quadratic function. 
Level 2. Identification of norms 
The epistemic norms found in these episodes are: 𝑓𝑓(𝑥𝑥) = (2𝑥𝑥 + 3)(𝑥𝑥 + 1) is not a 
quadratic function, but 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 5𝑥𝑥 + 3 is. To transform a factored function into 
a quadratic it is necessary to develop the product of binomials.  
Level 3. Identification of metanorms 
From these norms, we may conclude that a quadratic function must be in the standard 
form and if it is expressed in the factored form, it is not a quadratic function. 
Level 4. Inference of beliefs / Generation of interview script 
Given this, it was inferred that the teacher believed that the factored form and the 
standard form of the quadratic function were different and that only the standard form 
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was valid. We asked her why she had not allowed the student to evaluate 𝑥𝑥 = 1 in the 
factored form.  
Level 5. The study of beliefs through reflection on their actions 
The teacher mentioned that she knows that the factored form represents a quadratic 
function and that, if the student had evaluated in it, it would have given the same answer 
as evaluating in the standard form. However, she does not want to allow students to do 
this, since “right now they are learning the form 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐, so they must 
write it and work with the function that way” and adds “Writing the function as 𝑓𝑓(𝑥𝑥) =
𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 is more useful, because it allows you to identify the coefficients and, 
with it, the behavior of the function.”  

DISCUSION 
Considering this class episode, based on the suitability criteria, allowed us to identify 
the beliefs that lead the teacher to establish characteristics of the quadratic functions 
that are not correct, by establishing that the factored form is not a quadratic function. 
The inferred belief that the teacher considered that only the standard form represented 
the quadratic function was incorrect; however, it allowed us to identify that the belief 
in the usefulness of the standard form of the quadratic equation takes precedence over 
the belief that both forms represent a quadratic function. For her, it is important that 
this is the form that is being learned; furthermore, she believes that this form has 
advantages that other notations do not have. Possibly working with another notation 
might not be convenient or beneficial for students' learning, which leads her to 
restricting its use. 
In this case, we propose that, a teacher development program should modify these 
beliefs, resulting in the teacher showing the usefulness of each representation instead 
of establishing it in the way in which she does it, since it can lead to obstacles in student 
learning. Or, at least, not say that this notation does not represent a quadratic function. 

CONCLUSIONS 
In this paper we have presented an analytical model that can serve as an alternative for 
the detailed study of the beliefs of mathematics teachers through the analyses of their 
actions. Due to space limitations, we have limited ourselves to showing normative 
intentions that were identified in a class episode. While the proposed model also 
enabled the identification of teachers’ beliefs, a larger number of class observations 
would provide greater clarity on the identified norms and metanorms. Thus, although 
it is not a limitation, it is appropriate and advisable to have extended periods of class 
observations.  
This proposal of levels of analyses enables not only the identification of teachers’ 
beliefs but also the implications of those beliefs on the actions that teachers carry out 
in their classrooms, and some basis for efficient teacher development programs.  
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IS IT A FRACTION, OR SHALL I DIVIDE IT? 
Linda Marie Ahl and Ola Helenius 

Gothenburg university, Sweden 

The fraction representation can symbolize different mathematical concepts because the 
symbol a/b is polysemic. Since students’ difficulties in acquiring the different 
conceptual meanings that the fraction representation denotes are well documented in 
research, we examined two commonly used textbook series in Sweden concerning how 
the polysemic aspect is displayed by analyzing how fractions and division are 
introduced and how the first image of the concepts is challenged with other images. 
We found one-sided representations of fractions as part of the whole, division as 
quotients greater than one, and weak support for understanding the polysemic aspect 
of a/b. 

INTRODUCTION 
Consider the following question: Three children are to share a cake. How much cake 
does each child get? To solve the problem, you need to set up the division one divided 
by three, 1/3, which gives the solution one-third, 1/3. A rather strange situation now 
arises. On the left-hand side of the equal sign, 1/3 means the operation division. On the 
right-hand side, we have the answer to the question in fraction form. For clarity, we 
want to point out that division is the inverse operation of multiplication and that a 
fraction is a representation of a number—two different entities of mathematics. 

 
Figure 1: The calculation and the solution 

The two symbolic expressions are precisely the same but have different meanings 
because the fraction notation a/b, where a and b can be any numbers or expressions, 
except b=0, is a polysemic symbol. Polysemy is present whenever mathematical 
patterns identified in different circumstances share the same structure. This structure 
will then typically be subsumed under the same mathematical symbolism, in this case, 
a/b. The representation a/b subsumes, besides the operation division, part-whole, ratio, 
operator, quotient, and measure constructs of fractions, as well as all other expressions 
in quotient constructions. The finesse with the polysemic symbol a/b is that all quotient 
constructions, see Figure 2, follow the same mathematical rules despite having 
different meanings. 
The hurdles of understanding fractions have been thoroughly researched. For example, 
Thompson and Saldanha analyzed how students perceive improper fractions, with 7/3 
as an illustrative example. Under the assumption that students interpret 3/7 as part of a 
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whole, 7/3 will appear highly suspect (Thompson & Saldhana) until students become 
versed in the polysemic nature of fractions (Ahl & Helenius, 2021b). 

  

Figure 2: Examples of fraction representations and rules that apply 
To counteract a one-sided view of fractions as part-whole construction, students need 
to work with different sub-constructs of fractions to differentiate between, for example, 
part-whole, measure, operator, ratio, quotient, and scale value. These different 
interpretations of fractions cannot be introduced simultaneously without causing 
confusion. Still, it is reasonable that improper fractions challenge the part-whole image 
to avoid a one-sided understanding of fractions as something less than one. 
The understanding of improper fractions is hindered when part-whole fractions are 
introduced by the iconic representation of the shaded area of a circle, which only allows 
the experience of fractions as a number less than one. Because how do you represent 
7/3 with a circle? It cannot be done. Students exposed to a long series of circle 
representations may have difficulties accepting that fractions could be greater than one. 
Since the understanding of 7/3 does not fall within the student’s understanding of 
fractions as a part-whole construction, the alternative is to interpret 7/3 as two different 
numbers to be divided, especially if all the divisions so far in the students’ life have 
been constructions where the numerator is greater than the denominator 
The part-whole understanding of fractions may not appear problematic in the first years 
of schooling when the goal is often specifically to understand and operate on part-
whole constructions. However, in line with Thompson and Saldhana (2003), a one-
sided idea of fractions as part-whole representations may create obstacles to extending 
the concept to the polysemic universe that the fraction representation constitutes. 

To reiterate our point, the way students understand an idea can have strong implications 
for how, or whether, they understand other ideas. This observation is important for thinking 
about what students have learned or actually understand and it has implications for how 
instructional and curricular designers think about what they intend that students 
understand. (Thompson and Saldanha, 2003, p. 2) 

Building on ideas to support progress in concept knowledge is the core of mathematics 
education. For progression in concept knowledge, students must learn that symbols can 
have different meanings in different situations, even when the notation is the same. 
Interpreting the meaning of polysemic concepts is necessary for students to undergo 
the epistemological shift required for them to move from creating meaning from 
situations (like equal sharing situations for division) and iconic schematic imagery (like 
part-whole figures for fractions) to creating meaning from symbol system relations 
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(Ahl & Helenius, 2021a; 2021b; 2022). If we want students to progress in concept 
knowledge, progression needs to be manifested in syllabuses, curriculums, and 
curricular resources such as mathematics textbooks. In this paper, we report on an 
investigation of how students are introduced to the polysemic aspect of fractions in two 
commonly used Swedish textbook series focusing on two cases: 
RQ1: When are students introduced to improper fractions and division with numerators 
less than the denominator in two commonly used Swedish textbook series?  
RQ2: How is the polysemic aspect of a/b conveyed? 

THEORETICAL UNDERPINNINGS 
Our theoretical framework will be articulated using the language of conceptual fields. 
Vergnaud (2009) outlines a concept as a triplet comprising three interconnected sets: 
the set of situations wherein the concept holds relevance, the set of operational 
invariants that an individual can utilize to address these situations, and the set of 
representations (symbolic, verbal, graphical, gestural, etc.) that can be employed to 
depict invariants, situations, and procedures. It is important to note that, in this 
definition, situations and invariants are considered psychological categories, 
representing mental constructs, while representations can encompass both mental and 
physical/external manifestations. Given our focus on analyzing progress in general 
mathematical concept knowledge rather than explaining the cognition of specific 
individuals, we will approach situations and invariants from an observer’s standpoint, 
motivated by the fact that, within educational and mathematical contexts, a sufficient 
number of individuals will construct situations and invariants that are similar enough 
to justify discussing them as phenomena in their own right. 
In previous research, we have described three theoretical pillars for progression in 
conceptual knowledge: 1) the origin of concepts, 2) the umbrella effect, and 3) the 
contradiction of invariants. (Ahl & Helenius, 2021b; 2022). Here, we use 1) and 2).  
1). The origin of concepts: Vergnaud’s (2009) conceptual framework posits an 
interconnection between situations, invariants, and representations. However, 
concerning concepts introduced in educational settings, the initial invariant serving as 
the foundation will typically originate from a situation or a representation rather than 
through a definition that explicates the concept through its formal relations to other 
concepts. Integrating this insight with our delineation of two types of representations, 
iconic and non-iconic, yields three fundamental approaches to conceptual generation. 
First, concepts can be associated with the invariants within a set of situations, such as 
when the concept of division is elucidated by specifying a quantity of items to be 
equally divided into a given number of bags. Second, concepts can be linked to iconic 
representations, exemplified by giving meaning to fractions through an image of a 
partially colored circle. Third, concepts can be tied to mathematical relations expressed 
in non-iconic symbol systems, as seen when division is defined by stating that a/b is a 
number c, such that a = b ⋅ c. 
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2). The umbrella effect: Mathematical concepts are regularly subsumed into more 
general concepts. When concepts derived from situations or iconic representations are 
subsumed into more general concepts, certain invariants from the original concept may 
no longer remain invariant under the new overarching concept. For instance, in the 
context of equal sharing used to elucidate division, dividing a by b yields a number c 
that is smaller or equal to a. However, this does not hold for division in a general sense. 
Similarly, when part-whole relationships are represented iconically by circle sectors, 
no fraction can exceed the entirety of the circle. Yet, in the broader scope, a/b can 
assume any size—notably, all three examples in the preceding paragraph share the 
same symbol system, a/b. Although we may continue to distinguish between division 
and fractions in specific instances, from a mathematical standpoint, we can encompass 
both concepts under the broader umbrella of quotient constructions. 

METHOD 
From the theory described above, we singled out two methodological principles for the 
analysis: 1) To identify the origin of the concept of part-whole fractions, improper 
fractions, and division throughout two mathematics textbook series as our unit of 
analysis and to classify representations in terms of situational, iconic and symbol 
system representations; 2) To identify explanations for the umbrella effect, that is that 
a/b subsumes the polysemic concepts part-whole fractions, improper fractions, and 
quotients to divide.  
Investigating two commonly used textbook series for grades 1-9 in Sweden, Favorit 
Matematik (TB 1) and Matte Direkt (TB 2), we first identified introductory instances 
where the textbook, as an agent for the authors, makes mathematical claims, argues for 
propositions or gives meaning to the concepts of part-whole fraction, improper 
fraction, and the operation division. For each such instance, we evaluated the instances 
in relation to points 1 and 2 described above.  

RESULTS 
In Table 1, we summarize the results of when the sub-constructs of fractions part-whole 
and improper fractions, as well as division with quotients larger than one and lesser 
than one are introduced in TB 1 and TB 2. We also identify instances of support and 
hindrance for perceiving the polysemic aspect of a/b. 

Introduction of: TB 1 TB 2 
Part-whole 

fraction 
 

Grade two (ages 7-8) 
Iconic representation of 

partly colored circles of a 
half, a third, and a fourth. 

No symbols 
 

Grade two (ages 7-8) 
An iconic representation 

of colored circles that 
illustrate part-whole 

together with the 
symbolic representations 
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of 1/2, 1/3, and 1/4unit 
fractions  

Improper fraction 
 

Grade five (ages 10-11)     
7/2 = 3 1/2, illustrated with 

three colored circles and 
one half-colored circle 

Grade seven (ages 12-13) 
5/4 = 1 1/4 illustrated 

with one colored circle 
and a quarter of a circle 

Division of whole 
number quotients 

larger than 1 
 

Grade two (ages 7-8) 
Partitive division is 
introduced through 
situations of sharing 

parcels, and quotative 
division is introduced by 

situations of creating equal 
groups of people standing 

in line. The terms 
numerator, denominator, 

and quotient are introduced 
together with mathematical 
symbols. The fraction bar is 

not mentioned 

Grade three (ages 8-9) 
Partitive division is 

introduced through the 
situation of distributing 

an equal number of 
fifteen spiders to three 
ghosts, that is, equal 
sharing. The iconic 

images of the spiders and 
ghosts are presented 

together with the 
symbolic representation 

of 15/3 
 

Division of 
quotients lesser 

than 1 

Grade five (ages 10-11) 
Division with 10, 100, and 

1000 with symbolic 
representations 

Grade seven (ages 12-13) 
Rewriting fractions in 

decimal representations, 
symbolic representations  

Support for 
conveying the 

polysemic aspects 
of a/b 

When improper fractions 
are displayed in grade five 
(ages 10-11), fractions are 
linked to division with a 

reminder as the method to 
change representation to a 

mixed fraction  

It is explicit that fractions 
can be divided when a 

change in representation 
from a part-whole 

fraction to a decimal 
representation is 

introduced in Grade 7 
(ages 12-13) 

Hindrance for 
conveying the 

polysemic aspects 
of a/b 

In grade three (ages 8-9), 
the fraction bar is 

introduced as the sign by 
which you recognize a 

fraction without mentioning 
division. In connection with 
division, the fraction bar is 
not mentioned until grade 

The fraction bar is not 
named in any of the 
books in the series 
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seven (ages 12-13), when it 
is called the division sign. 

In grade seven (ages 12-13), 
the fraction representation 
is incorrectly defined as 

rational numbers written in 
the form a/b where both the 
numerator and denominator 
are integers, omitting that b 

cannot be 0  
Table 1: The origin of the concepts of fractions and division and the umbrella effect of 
the polysemic expression a/b  

DISCUSSION 
Mastering the polysemic aspect of the representation of quotient constructions, a/b, 
gives opportunities to see connections between different mathematical areas. There is 
reason to believe that limiting representations and situations for introducing fractions 
and division hide the polysemic aspect of fractions (Ahl & Helenius, 2021b; 2022). 
Without knowledge of mathematical polysemy, some students may never realize the 
fact that 1/3 can both represent a number and a call to perform the operation division 
of 1 by 3. To investigate when students’ images of fractions as part-whole relationships 
and division as an operation with a nominator larger than the denominator are 
challenged and how the polysemic aspect of a/b is conveyed, we examined two 
commonly used textbook series in Sweden. 
In both textbook series, we found that part-whole fractions are introduced with iconic 
circle representations in grade two. The part-whole conception of fractions dominates 
until grade five in TB 1 and grade seven in TB 2 when improper fractions are 
introduced. Division is introduced through situations representing sharing and 
grouping. In grade two in TB 1 and grade three in TB 2. Although there are some 
differences between TB 1 and TB 2, we see the same pattern. The textbooks give a 
one-sided view of fractions as part of the whole, mainly using iconic circle 
representations. The part-whole understanding is never really challenged, as even when 
mixed fractions are introduced, it is done by extending the part-whole representation 
with additional wholes. Division is preferably expressed as quotients where the 
numerator is greater than the denominator. That division concerns quotients larger than 
one is only challenged when quotients are rewritten to decimal representation in Grade 
Five (TB 1) and Grade Seven (TB 2). 
In relation to the symbol a/b, which we prefer to call the fraction symbol system, in 
none of the book series is there a serious effort made to describe the generality of the 
system and that the same manipulation rules apply regardless of if the symbol is 
interpreted as a division, a fraction or something else. The generality of the system 
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involves that neither a nor b in a/b need to be whole numbers. They can be fractions, 
decimals, or many other mathematical entities. It is only for defining rational numbers 
that it needs to be ensured that a fraction can be written in the form a/b with a and b 
being whole numbers. As remarked by Thompson and Saldahna (2003), confounding 
fractions and rational numbers is a common tendency in textbooks. This confounding 
was present in TB 1. The first time general symbols denote fractions, the incorrect 
definition of fractions as rational numbers is presented. This carelessness can have fatal 
consequences for the students’ image of fraction representation. They are deprived of 
the finesse of using manipulation rules for quotient constructions on any mathematical 
expression. We believe mixing up the definition of rational numbers with the 
description of the fraction symbol system representation is counterproductive for 
students’ understanding of the polysemic aspect of the fraction symbol system. We 
also believe that the choice in TB 2 to exclude formal definitions of fractions entirely 
and not to name the fraction bar hinders students’ understanding of the polysemic 
properties of a/b. Because how could something that doesn’t even have a name contain 
important mathematical ideas?  
We would like to remind the reader that we have only analyzed introductions of 
concepts in instances where the textbook, as an agent for the authors, makes 
mathematical claims, argues for propositions, or gives meaning to the concepts of part-
whole fractions, improper fractions, and operation division. A mathematics textbook 
is full of problems with the potential to create meaning. We do not comment on the 
students’ meaning-making in the work with the textbook. Ultimately, the teacher’s 
organization of the teaching determines the students’ meaning-making. However, since 
teachers may also have weak knowledge of the properties of fractions (e.g., Dreher & 
Kuntze, 2015), the need for adequate mathematical theory in textbooks increases.  
The lack of explicit explanations in the textbooks may be because the authors rely on 
an abductive approach. Students are expected to expand their fraction concept with 
improper fractions just by being presented with it. The same can apply to understanding 
whether the student should regard a symbol a/b as a number or two numbers to be 
divided. Our point is that what is not said explicitly concerning the polysemic 
expression a/b may not be taught. While some students can create mathematical 
connections with little guidance, we firmly believe that clarity and explicitness about 
how mathematical concepts are subsumed under polysemic signs would benefit all 
students’ development. Especially if you believe that progress in concept knowledge 
is to finally reach the epistemological shift where the meaning of concepts goes from 
residing in situations and iconic representations to residing in relationships in symbol 
systems (Ahl & Helenius, 2021a). Given the well-documented problems with 
understanding fractions that students have (Thompson & Saldhana, 2003; Niemi, 
1996), we believe that mathematics education would benefit from explicit presentation 
of the fraction system, where the polysemic properties are at the center if students 
should be given opportunities to master to decide whether 7/3 is a fraction or if they 
should divide it. 
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EXAMINING STUDENT WELLBEING AND PARENTAL 
EDUCATIONAL ATTAINMENT IN A U.S. COLLEGE 

MATHEMATICS COURSE 
Marcelo Almora Rios 

University of California, Los Angeles 

Promoting student wellbeing in mathematics may be one way to tackle long-standing 
equity issues in tertiary mathematics education. To expand our understanding of 
wellbeing in domain-specific settings, this research paper presents findings from a 
pilot study examining the relationship between wellbeing and parental educational 
attainment in 140 predominantly first- and second-year college students in the United 
States taking an introductory statistics course. Findings suggest that first-generation 
college math students experience a greater sense of engagement, meaning, and—most 
notably—accomplishment in their math classes than students from higher educational 
backgrounds. This study frames student wellbeing in mathematics today as an issue 
that is highly relevant for universities and math departments in the long run, offering 
a way to measure the wellbeing of students via a five-dimensional operational model. 

INTRODUCTION 
Examining the intersection of student wellbeing and parental educational attainment in 
college mathematics courses prompts consideration of the link between social class 
and wellbeing. Previous research by Dougall et al. (2021) indicates that students from 
elevated social classes experience higher wellbeing in college compared to their 
counterparts from lower social strata. In the context of lower social classes, 
mathematics curricula often stand out as seemingly "devoid of any particular rationale" 
(Gates, 2019, p. 44). In fact, in the United States, even the majority of parents seem to 
agree that the content of higher mathematics curricula seems devoid of relevance to the 
lives of many students today (Blad, 2023). However, the global significance of math 
education underscores its profound importance (Burdman, 2018; Hill & Seah, 2022). 
In today's landscape, high mathematics performance not only influences college 
admissions decisions (Anderson & Burdman, 2021) it also shapes future earning 
potential (Carnevale et al., 2011). Mathematics thus serves as both a gateway and 
gatekeeper to social mobility. 
For many students, navigating the world of mathematics becomes akin to a pressure 
cooker system, where academic performance acts as both doorways and gatekeepers. 
This intense environment, particularly for students aspiring to upward social mobility, 
can magnify stress, anxiety, and lead to misconceptions about the field by the time they 
enter college. Recognizing this narrative in the context of mathematics education is 
paramount, especially when designing postsecondary mathematics policies (Burdman, 
2018). 
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Recent studies emphasize the intertwined nature of student wellbeing and mathematics 
achievement (Yao et al., 2018). Moreover, social class exhibits a significant correlation 
with students' learning outcomes in mathematics (Gates, 2019). Despite these insights, 
scant research delves into understanding the wellbeing of mathematics students at the 
postsecondary level (c.f., Almora Rios, 2023). Furthermore, the literature lacks 
exploration connecting social class to anti-deficit notions of wellbeing at the domain-
specific level. 
In response to these gaps, this paper presents findings from a pilot study examining the 
relationship between social class and anti-deficit wellbeing in the context of the tertiary 
mathematics classroom. Concepts for wellbeing and social class are briefly discussed, 
as well as the construction of the survey instrument. Univariate ANOVA is used on the 
datum to extrapolate findings from student responses. Finally, further research 
directions are discussed. 

THEORETICAL FRAMEWORK 
Wellbeing 
Founded on Aristotelian ideology, ‘wellbeing’ is defined conceptually as “the 
unfolding of natural, fixed, or innate potentialities….[or] a right, optimal, or perfect 
functioning that is teleologically fixed as the realization of innate patterns of growth” 
(Nafstad, 2015, p. 13). It is a combination of feeling good, functioning well, and 
contributing positively to a community (Chaves, 2021). Operational definitions 
usually include a hedonic (i.e., subjective wellbeing) and eudaemonic component (i.e., 
living in accordance to one’s values). One framework pertinent to educational settings 
is Seligman’s PERMA model (Seligman, 2011). The PERMA model operationalizes 
wellbeing through five dimensions: Positive emotions, Engagement, Relationships, 
Meaning, and Accomplishment. Because recent work has  also localized wellbeing as 
a context-dependent construct (Alexandrova, 2017; Hill et al., 2021) this paper poses 
wellbeing as a domain-specific construct. In short: a student’s experience of wellbeing 
in, say, a math class may be operationally or conceptually different than in the general 
sense (see Hill et al., 2021). Conceptions thus importantly range across settings, 
cultures, populations and time. 
Social Class 
Social class comprises of an economic and social ordering, with one’s social order 
reacting to and being pre-conditioned by their economic order (Weber et al., 2009). 
While social class begets the distribution of status, honor, and prestige, it is “the most 
defining characteristic that influences attainment, achievement, and engagement in 
schooling” (Gates, 2019, p. 42) underscoring—importantly—a plethora of educational 
outcomes. Though inherently difficult to measure, parental educational attainment is 
often used as an estimate for social class when other data (such as income) may be hard 
to come by (Dougall et al., 2021). As such, this paper uses students’ highest parental 
educational attainment levels as a proxy for the complex measure of social class. 
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RESEARCH GOAL 
This project answers the following question: does parental educational attainment (i.e., 
an estimator for social class) affect students’ experience of wellbeing in a first-year 
collegiate math course traditionally for non-math majors? 
Participants 
Participants comprised of 140 students (67 female, 70 male, 3 gender non-conforming) 
from a one-semester introductory course to probability, statistical reasoning, and linear 
models at the University of Montana during the Fall 2022 semester. Around 89% of 
the sampling pool identified as White. Other ethnicities included Asian or Pacific 
Islander (2.7%), Hispanic or Latino (2.7%), Black or African American (1.38%), and 
Native American or American Indian (.69%). Sample included 31 students with both 
parents holding a high school or middle school degree as their highest degree, 59 
students with at least one parent holding a college degree as their highest degree, and 
50 students with both parents holding a graduate degree. Students were majority first- 
and second-year students (105 first-year, 21 second-year, 11 third-year, 3 fourth year 
or higher) majoring in flavors of social and business sciences. 
Methods 
Students were tasked to complete an anonymous 23-item Likert-type survey instrument 
on their course webpage. Extra-credit points were awarded for completing the 
questionnaire in a two-week period during the Fall 2022 semester. The following 
student groups were highlighted in this analysis: students whose parents’ highest 
educational attainment was secondary school (i.e., middle school or high school; a.k.a. 
first-generation college students), students with at least one parent holding a college 
degree, and students with at least one parent holding a graduate degree. Univariate 
ANOVA was used with post-hoc Tukey tests to assess statistically significant effects 
in students’ ratings along each of Seligman’s five PERMA  dimensions of wellbeing, 
and Butler & Kern’s (2016) two additional dimensions of Negative Emotions and 
Health. 
Following similarly the analysis of Butler and Kern (2016), seven “domain scores” 
were created for each student. Domain scores were calculated by averaging students’ 
scores along three scale items corresponding to each of Seligman’s (2011) five 
PERMA dimensions and Butler and Kern’s (2016) two additional dimensions of 
Negative Emotions and Health. For this study, domain score differences greater than 
0.4 on a Likert scale between the three groups of parental educational attainment were 
considered practically significant. 
Tools 
The questionnaire was based on the Workplace PERMA Profiler, a 23-item 
psychological scale measuring an individual’s ‘wellbeing score’ along dimensions of 
positive emotions, engagement, positive relationships, meaning, accomplishment, 
negative emotions, health, loneliness, and happiness within the context of a workplace 
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environment (Kern, 2014). The Workplace PERMA Profiler is a free-to-use, open-
access instrument accessible on the author’s website. The instrument was adapted in 
this study to fit the context of the workplace that is the collegiate math class. The 
adapted Profiler adds context-specific phrases to questions from the Workplace 
PERMA Profiler to measure the wellbeing of students in a collegiate math course along 
the five PERMA dimensions and the two dimensions of Negative Emotions and Health 
listed above. For example: How often do you feel you are making progress towards 
accomplishing your work-related goals? from the Workplace PERMA Profiler (Kern, 
2014) becomes How often do you feel you are making progress towards accomplishing 
your work-related goals as a student in a math classroom? on the adapted Profiler. 
Cronbach’s alpha showed acceptable internal consistency (alpha = .782) for the seven 
domains measured. 

FINDINGS 
Mean ratings for the PERMA, Negative Emotions, and Health dimensions can be seen 

in Figure 1. 

Figure 1: Mean wellbeing scores across parental educational levels. Statistically 
significant effects in experience of Accomplishment (F(2, 137) = 3.1, p < .04). 

Students with parents holding graduate degrees (green; see Figure 1) experience higher 
levels of positive emotions and positive relationships than do first-generation college 
students (blue), as well as lower levels of negative emotions. The higher scores in the 
health domain by the graduate degree and college degree-attaining group also mirrors 
work on socioeconomic conditions to signs of physical health concerns (Herd et al., 
2007).  Univariate ANOVA also reveals parental educational level as having a 
statistically significant effect on students’ experiences of accomplishment in college 
math classes F(2, 137) = 3.1, p < .04. Tukey post-hoc tests place this difference 
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between the ‘College’ (orange) group and the ‘Secondary School’ (blue) group (t = 
2.513, p < 0.0346). Interestingly, other domains did not show signs of significant 
differences at this time, an effect most likely due to limited access to larger sample 
sizes of first-generation college students in the study.   
Emergent ‘staircase patterns’ within the Profiler domains may also suggest 
relationships between parental educational attainment and student wellbeing. For 
instance, in the Relationships domain, parents’ educational levels may play a helping 
role in influencing students’ experience of feeling valued by others and connected to 
others in their math classes, as seen in the rising Relationships scores alongside the 
rising parental educational levels. 

DISCUSSION AND CONCLUSION 
This pilot study aims to assess the wellbeing of students in higher mathematics 
education and introduces measurement instrumentation for this purpose. The findings 
reveal that students from higher educational backgrounds feel more connected to their 
math peers and instructors, potentially experience less negative emotions from their 
math work (e.g., frustration, anxiety), and report greater physical health overall 
(affecting sleep, stress, and retention) than first-generation students. On the other hand, 
first-generation students feel greater engagement in their math coursework, a greater 
sense of meaning, and—most notably—a significant sense of accomplishment in their 
work, compared to students with parents holding a college degree. Social class, 
measured via parental educational attainment, emerges as a pivotal factor influencing 
students' perceptions of accomplishment in college math classes. 
While some argue that the distinct experiences of first-generation college students 
underscore the need for targeted interventions and support mechanisms tailored to their 
unique challenges within the mathematics education landscape, an anti-deficit 
perspective suggests that the responsibility for addressing these challenges should lie 
with the institutions that are supposed to nurture these students. 
To thoroughly understand the underlying reasons for the differences in mean domain 
scores (see Figure 1), a more qualitatively oriented project involving interviews with 
students from each group may be necessary. Acknowledging the limitations of this 
study, particularly the restricted sample size of first-generation college students, is  also 
essential. Greater sampling methods, perhaps across university systems, may 
contribute to statistically significant differences in other domains. Future research 
should also prioritize including a more racially diverse student sample to provide a 
more comprehensive understanding of the experiences and challenges of college 
students in a first-year math course, as well as include grades or measures of retention 
to help reify the wellbeing construct. 
Mathematics is a discipline whose practice is fully capable of promoting a flourishing 
life in learners (Su & Jackson, 2020). This aspect of mathematics practice—just as 
much as the opportunity it inspires—is deserving of equitable distribution across 
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student populations. This study serves as a starting point for further research—
especially for mixed methods analyses—encouraging exploration to a more nuanced 
picture of students’ wellbeing and its connection to social class in college mathematics 
education. Given the limited use of the PERMA Profiler on student populations outside 
of Australia (c.f., Hill et al., 2022; Hill & Seah, 2022; Almora Rios, 2023), introducing 
wellbeing measurement to the international mathematics community will contribute to 
fostering a perceived lifelong learning culture in mathematics. The current lack of 
research on student wellbeing in mathematics classes, especially in the U.S., highlights 
the necessity of structuring systems (such as mathematics departments) to promote the 
wellbeing of students. As such, this project aims to improve educational equity in 
STEM fields—an area that requires much further attention, especially at the 
postsecondary level.  
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STUDENTS’ CONCEPTIONS ABOUT MATHEMATICS FOR 
CLIMATE CHANGE AND RELATED ISSUES 

Chiara Andrà1 and Domenico Brunetto2 
1Università del Piemonte Orientale, Italy; 2Politecnico di Milano, Italy 

In recent PME and ICMI conferences, a need for curriculum innovation that takes into 
account the role of mathematics in understanding and contrasting climate change and 
related issues has been stressed by prominent scholars, taking a rather cognitive stand. 
In this paper, we focus on the affective side of the phenomenon, arguing that the 
students’ conceptions both about mathematics and about climate change and related 
issues need to be taken into consideration in order to make such an innovation 
effective. Hence, we report and analyse the narratives that a small sample of students 
enrolled in an Environmental Sciences program produced during the activity of writing 
a letter to a fictitious class of students living in the future describing how mathematics 
has helped humans to survive in the next 200 years. 

INTRODUCTION AND THEORETICAL BACKGROUND 
Mathematics, according to Coles (2023), plays a central role in dealing with, yet 
responding to, issues like climate change, population growth, pollution, resource 
scarcity and wastefulness, but the mathematics that is taught at school is scarcely (if 
not at all) connected to these ideas (Coles, 2023). Coles (2023) shows examples of 
curriculum innovation for mathematics more connected to these socio-ecological 
issues that emerge in the new climatic regime. He proposes changes of the content that 
students should learn in mathematics classes. In this paper, we propose to add 
reflections on the role of students’ conceptions, both about mathematics and about 
socio-ecological issues, being the latter a relevant yet unexplored element that 
influences the learning of mathematics (Coles, 2023). According to many studies (e.g., 
Sumpter, 2013), the ways students engage with mathematics depend on their different 
affective disposition. A variety of researches focused on how mathematics is perceived 
and dealt with, such as the different motivation students’ express (Nyman & Sumpter, 
2019), or how different expectations function as a mediator for various choices students 
make when solving mathematical tasks (Sumpter, 2013). Among all the mentioned 
affective dimensions, beliefs received special attention in research. According to 
Furinghetti and Pehkonen (2002), beliefs are the conclusions that an individual draws 
from their perceptions and experiences in the world around them. Beliefs can 
be understood as subjective knowledge: they are propositions about a certain topic that 
are regarded as true (Philipp, 2007). Being continuously subject to new experiences, 
beliefs can change and new beliefs can be adopted (Furinghetti & Pehkonen, 2002). 
When a new belief emerges, it never comes in isolation from other beliefs, but becomes 
part of, what has been called, an individual’s belief system. According to Green (1971), 
in fact, beliefs tend to form clusters, as they “come always in sets or groups, never in 
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complete independence of one another” (Green, 1971, p. 41). These clusters form a 
system, which is organised according to the quasi-logical relations between the beliefs 
and the psychological strengths with which each belief is held (Green, 1971). Belief 
clusters are, thus, almost coherent families of beliefs across multiple contexts: for 
example, beliefs about the nature of mathematics and about its learning tend to cluster 
in a quite coherent way, for a student. This has probably led Furinghetti and Pehkonen 
(2002) to conclude that “an individual’s conception of mathematics [is] a set of certain 
beliefs” (p. 41), namely to understand conceptions as clusters of beliefs. Liljedahl 
(2018) further prompts the research field to consider beliefs not as operating as singular 
entities, but in synergy with emotions and attitudes, to form what he called an affective 
system. Several researchers stress how motivation, emotions, and beliefs are 
intertwined, with each other (e.g., Liljedahl, 2018) or internally such as different types 
of motivation being combined in one statement (Nyman & Sumpter, 2019), or such as 
attitudes being conceived as an amalgam of emotional disposition, perceived 
competence and view of mathematics (Di Martino & Zan, 2011). For this reason, in 
this paper we decided to use the construct “conceptions”, which is meant as an umbrella 
concept, namely: “a general notion or mental structure encompassing beliefs, 
meanings, concepts, propositions, rules, mental images, and preferences” (Philipp, 
2007, p.259). Hence, conceptions may have both affective and cognitive dimensions 
and serve the purpose of capturing students’ ideas and dispositions (Philipp, 2007).  
The aim of the paper is to showcase a pilot, small-scale study on students’ conceptions 
about mathematics and about climate change and related issues. To that end, an activity 
consisting of writing a letter to fictitious future students living 200 years ahead to show 
how sciences and mathematics contribute to the survival of life has been carried out. 
This kind of activity is called speculative storytelling (Helliwell & Ng, 2022): the arts 
and humanities can provide opportunities to engage with socio-ecological issues and 
to alter attitudes and behaviours in ways that formal scientific approaches on their own 
do not. It has been argued (Helliwell & Ng, 2022) that teaching and learning 
approaches involving a variety of art forms and aesthetic elements have qualities that 
could develop education, especially with respect to climate change. This kind of issues 
is commonly perceived as distant and abstract, but arts and humanities can contribute 
to make it closer and concrete for students (Helliwell & Ng, 2022). Issues like climate 
change are also overwhelming and difficult to grasp, but arts and humanities can help 
express negative emotions (Helliwell & Ng, 2022). Helliwell and Ng (2022) further 
maintain that to work in this way entails drawing on multiple forms of knowing (i.e. 
cognitive, sensible, somatic, affective). Specific to speculative storytelling, Helliwell 
and Ng (2022) utilised it as a curriculum innovation. The researchers used speculative 
storytelling primarily as a way of engaging the participants in sharing their ideas and 
collaborating around the topic of sustainable futures in the mathematics classroom. The 
researchers also recognised a potential for speculative fiction as a pedagogical tool for 
prompting students’ imagination, deemed as a way to conceptualise alternatives to 
what is taking place and, thus to realise that certain facts are contingencies and not 
necessities. According to Helliwell and Ng (2022), it is this kind of imagination that 
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enables a suspending and letting go of taken-for-granted ways of being to contemplate 
more just and equitable futures.  
In our research, we apply these ideas to engage students in speculative storytelling 
about how mathematics can help surviving for the next 200 years. This activity has a 
double goal: it allows conceptions about mathematics, brought from school, to emerge, 
and it prompts students to imagine other roles of the discipline beyond the boundaries 
of what was taught to them during the school years. Thus, the research question we 
aim at answering is: can the conceptions that emerge in an activity of this sort 
contribute to understand how students approach not only mathematics, but also the 
mathematical activities centred on socio-ecological issues?  

METHODS 
The participants to the study are 32 students enrolled in the first year of an 
undergraduate program in Environmental Sciences, in an Italian University. They are 
10 females and 22 males aged 20 years, with an exception of two students who are 28 
years old. At the time of data collection, they were attending the first lecture of the 
mathematics course, led by the author. The sample represents 70% of all the students 
enrolled (other 12 students usually did not show up during the classes).  
With respect to data collection, it is well acknowledged that much of the studies on 
affective aspects have been conducted through narratives such as essays, diaries, 
questionnaires with open questions and interviews (e.g., Kaasila, 2007; Di Martino & 
Zan, 2011). In line with the method of narrative data collection (Kaasila, 2007), the 
students of our sample were asked to answer an open prompt, that is:  

We got a letter from the future: the people who live on Earth in 200 years wrote to us. They 
say that on Earth there is life, it is possible to breathe fresh air, to drink water and there are 
the conditions for thinking about the future. They ask us, however, to tell them how we 
made it possible and which was the role played by mathematics (and sciences). Answer to 
them, individually. 

The students were given 20 minutes to reply, and data were collected anonymously. 
Each student had been assigned a label, like S1 for student 1. The goal of the narrative 
approach is to get the respondents to tell stories about things that are important to them, 
feeling free to express their conceptions, reporting the aspects that they consider central 
in their own experience (Kaasila, 2007; Di Martino & Zan, 2011). Moreover, with open 
prompts, respondents are not forced to align their opinion on a ready-made list chosen 
by the researcher (Di Martino & Zan, 2011). 
The collected narratives were analysed according to holistic and categorical 
approaches (Lieblich, Tuval-Mashiach & Zilber, 1998). In a holistic approach, the 
narrative is analysed as a whole, and the focus is on the overarching themes that emerge 
from whole responses, instead of focusing on specific terms or concepts that are 
expressed in a specific text. For example, the narratives with respect to one’s 
relationship with mathematics can refer to themes which span from the positive 
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feelings during primary school days to the anxiety before the exams. These themes, 
emerged from the data and not created in advance by the researcher, are considered for 
holistic analysis and grouping. In a categorical approach, in each narrative, sections or 
even single words are taken into account (Lieblich et al., 1998) and then classified by 
the researcher through semantically identifying expressions that refer to a same 
category (also categories emerge from the data). Elaborating on the previous example, 
some students may mention the pleasure of working with geometrical figures, thus their 
narratives (sections or words) are grouped by the researcher in a specific category (e.g., 
“GF”), others may recall counting games, contributing to a different category 
(e.g.,“CG”), and so on. In this way, the overarching theme of positive feelings with 
respect to mathematics at primary level is specified in categories “GF”, “CG” and so 
on. A narrative from a single student can contain expressions that belong to different 
themes and categories, and some categories might not belong to a unique theme. 
Moreover, some categories, which emerge from sections and words, might not be 
associated to any theme. The combination of a holistic and a categorical approach, 
allows for a deeper and differentiated understanding of the narratives (Kaasila, 2007) 
firstly focusing on the general, overarching themes that emerge across the narratives, 
then going into details focusing on the categories. Accordingly, it is appropriate to 
apply the classification made by Lieblich et al. (1998) as “an analytical bridge: the 
ultimate purpose can be to integrate the approaches into a whole” (Kaasila, 2007, p.5). 
This method catches and operationalizes, in our view, the idea developed in our 
theoretical framework that conceptions form a system (Philipp, 2007; Liljedahl, 2018). 

DATA ANALYSIS 
The holistic approach allows to identify two general themes that emerge from the 
narratives and that are recurrent across several narratives: progress and role(s) of 
mathematics.  The first theme emerges in 17 narratives: the students use expressions 
like: progress, development, increase. They mention technological progress, progress 
of knowledge and culture, scientific progress, as means that would make life possible 
on Earth in 200 years. In students’ narratives, there is a trust in the progress as a way 
to mitigate and contrast the existing trend. The second holistic theme, which can be 
found in 15 narratives, concerns the roles of mathematics. In this case, mathematics is 
not only mentioned, nut the possibilities offered by the discipline to save the world are 
specified. The roles of mathematics that mostly emerge from the narratives are: 
computation; data analysis to get the sense of the extent of pollution, hanger, resource 
use, energy, wastefulness; problem solving; estimation of risk; modeling. Taking on a 
systematic stance on students' conceptions, the holistic analysis allows us to infer that 
these two main themes span across students' narratives. 
Categories 
Afterwards, with the categorical approach we identify words in the narratives possibly 
related to the two holistic themes. With respect to the progress theme, we labelled the 
words and statements used by the participants in 4 categories, while to the holistic 
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theme of roles of mathematics other 5 categories have been attached. Furthermore, we 
identify other 3 categories that do not relate to any holistic theme. We also note that, 
with respect to gender, we observed no particular difference in the ways females and 
males express their ideas, nor a predominance of certain themes or categories in either 
gender group. 
The holistic theme “progress” is associate to 4 categories: technological progress (T, 
9 students), mathematics as key for progress (K, 8 students), discovery (D, 6 students) 
and acquisition of new knowledge (A, 4 students). Examples are: 

New technologies have been implemented and they have improved our lifestyle, reducing 
the risk of floods and earthquakes and limiting their gravity and flow (S12, category T). 
As regards the aspect of planetary conservation, through the discovery of new chemical 
elements and the improvement of existing ones, new substances have been created capable 
of neutralising all the polluting effects of materials, such as plastic, to encourage growth 
and ecosystem development. In the context of other disciplines, it has been possible to 
solve world hunger by creating fast and efficient means of transport that reach all points of 
the Earth, powered by solar energy. Through the in-depth study of space launches on the 
Moon, it was possible to reach Mars and make the most of its resources (S6, T). 
Everything is related to knowledge that has increased constantly. The fact that in 200 years 
life is possible on Earth prompts me to think that this trend did not decrease but it has 
increased (S1, A). 
A slow improvement to the social, economical and political situation has taken place 
thanks to an incessant development of science and mathematics (S5, A). 
Mathematics and science have been the keys of the progress since ancient times, and 
continue to be (S2, K). 
Mathematics and science are essential to a progress that is aimed at safeguarding the well-
being of life and that of the planet (S23, K). 
Also in the past, Pitagora, Euclid, Gauss, Newton, Einstein, Galilei are among the 
mathematicians and scientists who changed the world (S2, D). 
Mathematics has developed and has been able to find answers as long as the questions 
become more complicated (S26, D). 

The first two excerpts focus on technological progress in general (S12) and on specific 
technological innovations in particular (S6) and have been identified within the 
category T. The third and the fourth excerpts focus on the progress of knowledge. 
Student S23's statement has been related to category K, while the last two statements 
are examples for category D, which includes also change. One can notice that the word 
“progress” is either explicitly mentioned in these excerpts, or it is evoked by 
expressions that relate to it, while mathematics is not always mentioned explicitly. In 
the other 19 statements (of the 27 in total) that are not reported here, only 6 explicitly 
mention mathematics, and this is interpreted as if the students are not always aware of 
the importance of the discipline for technological progress. We stress that those who 
mention mathematics under this theme, they mention it in a general way, detached from 
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possible practical implications and uses of the discipline towards progress and 
innovation (see in the last four examples reported): a specific role for mathematics is 
not described, nor how it contributed concretely to progress). 
Within holistic theme of the roles of mathematics we found five categories: solving 
problems (S, 8 students), analysing data (DA, 8 students), estimating probability of 
impact (P, 5 students), explaining (E, 2 students), modelling (M, 3 students). Examples 
are: 

Mathematics has provided us with solutions to many problems (S28, S). 
I give you an example: we know that global warming is one of the most important problems 
nowadays and thanks to mathematics we have been able to locate the problem, search for 
a solution, apply the solution and monitor if this solution works (S4, S). 
Thanks to countless surveys, studies and research done on man and regarding his habits 
and vices, and on nature, we have managed, albeit slowly, to change the fate of our planet 
(S5, DA). 
Researchers and data analysts collect data about all the issues (S18, DA). 
Without data analysis, without a tool to control the data, we would not be aware of the 
gravity of certain situations and, thus, we would not do enough to improve (S14, DA). 
Mathematics and science have contributed to give an explanation to all phenomena that 
were inexplicable (S2, E). 
Through precise and complex mathematical computations we will be able to optimise the 
resources and to use them in various contexts (S23, M). 
Mathematics has allowed to create models that favour the social system, which was 
precarious in the beginning (S6, M). 

In these example, mathematics’s roles are detailed, as well as in the other narratives 
not reported. Mathematics is associated mostly to computations and handling of data, 
and more rarely to modeling and predicting. 
Other three categories not related to a specific holistic theme emerged: collaboration 
among disciplines (C, 8 students); the relationship between theory and practice (TP, 5 
students); the role of education (ED, 4 students).  

The interaction among disciplines has led to enormous steps forward (S1, C). 
Mathematics allows for the solution of real problems through a theoretical approach, 
science is a discipline that that has numerous applications and concerns the pragmatic side 
of phenomena, giving explanations through observations and experiments (S7, TP). 
Thanks to people like us, we will be able to educate people to a more sustainable way of 
living (S18, ED). 

One can notice that also in these examples, mathematics is mentioned in limited cases, 
but when it emerges (e.g., in S7), it is compared to sciences and a specific role is 
recognised to the discipline. Finally, one student admits that he never thought about 
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the role of mathematics in tackling these issues and has no idea (S22). No category has 
been assigned to it. 
Figure 1 summaries our holistic-categorical approach analysis: the two holistic themes 
(green circles) are progress and roles of mathematics and are linked with categories 
(orange circle), while the others are disconnected. For our purpose, the two identified 
holistic themes can be seen as a first classification of conceptions about the topic under 
analysis, while the categories represent a specification on those conceptions. Of course, 
these themes are not surprising, because it is well acknowledged the importance of 
progress to mitigate the effects of climate change and to adapt to the new regime, and 
because the task explicitly asked about mathematics. In a sense, it is not surprising for 
us that students’ conceptions can be grouped under these themes, as conceptions 
encompass beliefs, meanings, concepts, propositions, rules, mental images, and 
preferences (Philipp, 2007) about climate change and related issues in our study. 
Moreover, the four conceptions linked to progress, for example, allow us to better 
specify the conceptions students have on progress, which focus on technology, 
development of knowledge, discovery and on mathematics as a basis for it. With 
respect to mathematics, we can conclude that students’ conceptions of the discipline as 
a tool to solve problems and deal with data are prevalent.  

 

Figure 1: The holistic themes (green) and the categories (orange) that emerge from 
the data analysis. A line for categories that can be connected to a theme is drawn. 

DISCUSSION AND CONCLUSION 
We explored conceptions about role of mathematics in contributing to contrast and 
mitigate issues like climate change and to make life possible in the next 200 years. We 
identified two holistic themes and found 12 categories for conceptions. We noticed that 
the students do not always mention mathematics explicitly when talking about progress 
and the role of education. In our interpretation, and according to the theoretical 
framework, this could be due to the fact that mathematics at school is taught without 
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application to the world (Coles, 2023): this means that even in activities that leave the 
imagination free and that are specifically designed to prompt such an imagination 
(Helliwell & Ng, 2022), students seem unable to see a role for mathematics. In other 
words, in this research possible futures are imagined by the students (Helliwell & Ng, 
2022), leaving the mathematics relatively aside, or with a very vague role. In the 
conceptions associated with the roles that mathematics takes on, the discipline is 
central but emerges often as calculations on data, rarely as modeling or a tool for 
making predictions. This reflects, in our interpretation, the kind of mathematics that 
students learn and do at school, namely rote exercises, computation and algorithms. As 
a conclusion, we argue that in innovating mathematical curriculum, it is necessary to 
monitor also if and how the students’ conceptions change to make it possible for them 
to consider new ways of seeing mathematics, especially as a discipline that contributes 
concretely to progress. 
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MATHEMATICS TEACHER EDUCATORS’ EXPERTISE BASED 
ON PEDAGOGICAL COMMUNICATION 

Jonei Cerqueira Barbosa and Olive Chapman 
 Federal University of Bahia (Brazil)  University of Calgary (Canada) 

This study aimed to understand features of expertise of Mathematics Teacher 
Educators (MTEs) based on their pedagogical communication in the form of academic 
booklets to support preservice teachers’ learning. The booklets, authored by 
experienced Brazilian MTEs, were analysed using grounded theory methods. The 
findings offer insights of MTEs' expertise in terms of three pedagogical contexts 
(mathematics, teaching mathematics, and academic research) and bridge-building 
skills linking these contexts. The study offers a basis to enhance our understanding and 
conduct future research on MTEs' expertise. 

INTRODUCTION 
Research on the Mathematics Teacher Educator (MTE) is in its infancy (Beswick & 
Goos, 2018) compared to research on mathematics teachers that have had significant 
attention over the last few decades. The need to research Mathematics Teacher 
Educators (MTEs) is essential to understand how they could most effectively prepare 
and further develop mathematics teachers for a rapidly changing world (Chapman et 
al., 2022). Recent studies on MTEs have focused on those formally responsible for the 
professional development of mathematics teachers (Chapman, 2021; Coura & Passos, 
2021; Martignone et al., 2022; Masingila et al., 2018). These studies provide insights 
into MTEs’ mathematical knowledge and practice, but as Chapman (2021) argued, 
there needs to be consideration of alternative or expanded ways of researching and 
understanding the MTE in relation to their work with educating teachers. In this paper, 
we offer a possible way of doing this through a study that investigated MTEs’ 
expertise, which is interpreted broadly as an amalgam of knowledge, social 
participation, and communication to teach mathematics teachers. This study 
specifically focused on university-based MTEs and their expertise in preparing 
preservice teachers through direct mathematics-related teacher education courses or 
strategies. The aim was to identify key features of their expertise based on their 
pedagogical communication to future teachers and new MTEs to further understand 
their expertise. Following, we present related literature and theoretical perspectives, 
the methodology, the results, and discussion of the findings. 

RELATED LITERATURE AND THEORETICAL PERSPECTIVES 
Research on MTEs suggests specific ways of conceptualizing or understanding their 
knowledge, practice, learning, and development (Beswick & Chapman, 2020; Goos & 
Beswick, 2021). These ways tend to build on those used in research on mathematics 
teachers. For example, research on MTEs often compares the specific mathematics 
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knowledge of MTEs with that of mathematics teachers. Acknowledging that teachers 
possess distinct mathematical knowledge, research has similarly recognized that MTEs 
have a specific knowledge base (Chapman, 2021). This has implied efforts to expand 
theoretical frameworks initially developed for teachers’ mathematical knowledge to 
better understand MTEs' knowledge (Chapman, 2021). 
Efforts to conceptualize MTE knowledge have led to the development of frameworks 
like Mathematical Knowledge for Teaching Teachers (MKTT), inspired by the 
Mathematical Knowledge for Teachers models. Researchers like Masingila et 
al.(2018) and Superfine et al. (2020) have attempted to describe MKTT in various 
domains. Martignone et al. (2022) expanded the Mathematics Teachers' Specialised 
Knowledge (MTSK) model to create the Mathematics Teacher Educators' Specialised 
Knowledge (MTESK) framework, which includes knowledge of teaching and learning 
mathematics for students and teachers, as well as research knowledge in mathematics 
education. 
Beswick and Chapman (2015) raised the question of the distinctiveness of MTE 
knowledge, suggesting it might be a form of meta-knowledge. Subsequent studies (e.g., 
Beswick & Goos, 2018) have recognised this meta-knowledge as part of MTE 
knowledge. Beswick and Goos (2018) emphasised that MTE knowledge includes 
understanding how teachers learn and develop competence. However, as Chapman 
(2021) noted, the field still engages with diverse theoretical models and their 
adaptations for MTEs from models used for mathematics teachers. Moreover, the 
traditional focus on "knowledge" within the teacher thinking paradigm faces 
challenges from social, situated, and communicational perspectives. Thus, there is an 
ongoing need to explore beyond existing models. Helliwell and Chorney (2022) 
suggest a focus on MTEs’ expertise as encompassing more than individual knowledge, 
incorporating material and social factors. Accordingly, our study examines MTEs 
through the lenses of expertise and pedagogical communication. 
MTEs’ expertise is interpreted broadly in relation to practice, competence, skill, and 
knowledge to teach mathematics teachers. We conceptualise MTEs’ expertise as an 
amalgam of knowledge, social participation, and communication, reflecting the 
specific know-how of MTEs in their role as educators. It encompasses how MTEs 
anticipate, communicate, and facilitate pedagogical interactions with teachers. Thus, 
similar to Helliwell and Chorney’s (2022) position, we view MTEs' expertise not as a 
separate entity from how they pedagogically carry out and communicate their work. 
Their expertise includes how they organise and carry out oral and written pedagogical 
communication with prospective or in-service teachers to support their learning.  
The construct of pedagogical communication can be seen in terms of the relationship 
between the educator and the learner, which occurs through verbal, written, visual, or 
gestural forms, with the purpose of constituting the message considered legitimate 
(Bernstein, 2000). From this perspective, communication, which is pedagogical 
because it has an educational purpose, involves the specialization, selection, 
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sequencing, pacing, and criteria regarding the legitimate knowledge to be taught 
(Bernstein, 2020). In this exploratory study of MTEs’ expertise, we adapted these 
notions for researching experienced MTEs who developed written materials to support 
preservice teachers' learning of mathematics for teaching and new/inexperienced 
MTEs' learning to teach preservice teachers (PTs). This form of communication 
represents the MTEs’ expertise that they are sharing with PTs and new MTEs. Thus, it 
offers a means for us to explore the expertise of the MTEs. This combination of MTEs’ 
expertise and written pedagogical communication is also a unique way of researching 
and understanding the work of MTEs.  

METHODOLOGY 
We used a grounded theory methodology (Charmaz, 2014) in this exploratory study to 
derive theoretical insights from qualitative data, without using pre-established 
theoretical models. This approach is consistent with Chapman's (2021) position that 
research on MTEs should extend beyond adapting pre-established models based on 
models of mathematics teachers’ knowledge. 
Data sources consisted of pedagogical mathematics booklets created by ten Brazilian 
MTEs, with experience ranging from seven to 30 years. Most of them, active in various 
national universities, hold PhDs in Mathematics Education and contribute to research 
in the field. The others, with PhDs in Mathematics, maintain a strong relationship with 
Mathematics Education. These experienced MTEs (referred to as MTEs) created 20 
booklets in their role as advisors for a preservice mathematics teacher program at the 
newly established University of Federal District, Brazil, launched in the second 
semester of 2023. The booklets were intended for use in preparing PTs through direct 
mathematics-related teacher education courses or strategies and to support the 
new/Inexperienced MTEs (IMTEs) that would be hired by the university for the new 
education program. Thus, we viewed these booklets as encapsulating the MTEs’ 
expertise, which this study sought to understand. 
The booklets, situated in a mathematics-content education context, covered 
mathematics topics such as Numbers, Algebra, Geometry, Statistics, Probability, and 
Measurement. Each booklet consisted of separate information directed to the PTs and 
the IMTEs. For PTs, the information focused on tasks to develop their learning. For 
the IMTEs, the information expanded on the PTs’ version to include guidance for them 
to use it in the teacher education program. These booklets demonstrate how the 
experienced MTEs who authored them articulated their pedagogical communication to 
PTs and IMTEs at the university. Thus, as qualitative data for this study, they provided 
insightful windows into the expertise of the MTEs. 
Analysis of the data involved an emergent thematic approach through coding and axial 
categorisation (Charmaz, 2014). The focus was on identifying features of expertise 
among MTEs. Our analysis of the booklets resulted in identifying three principal 
categories associated with three different pedagogical contexts: mathematics, teaching 
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mathematics and academic research. Each was characterized by its distinct purpose 
regarding the pedagogical content communicated in the booklets. Connections made 
among the categories were also identified within the booklets. These links emerged in 
the information directed at the IMTEs as a “bridge-building” feature of the expertise 
needed to engage the PTs in the mathematical activities/tasks. The three categories and 
the links formed four themes (three pedagogical contexts and bridge-building) that 
represent key features of the expertise for this group of MTEs, collectively, important 
to meaningfully prepare PTs in a mathematics-content education context.    

FINDINGS 
The findings are presented in terms of the four themes that represent key features of 
the expertise of the experienced MTEs related to preparing PTs through direct 
mathematics-related teacher education courses. These themes are framed in three 
pedagogical contexts and a process (bridge-building) that connects them.  
MTEs’ expertise as pedagogical context of mathematics. The pedagogical context of 
mathematics refers to tasks chosen by MTEs to broaden or deepen PTs' mathematical 
understanding. This context emphasises the selection or creation of tasks and their 
application in teacher education. Figure 1 exemplifies this pedagogical context. 

Figure 1: Excerpts translated to English from an Algebra booklet. 
In Figure 1, the MTE presents a task requiring the PTs to use Geogebra for exploring 
the interplay between the parameters of a linear function's mathematical law and its 
graphical representation. Figure 1 also depicts a subsequent dialogue box for IMTEs, 
where the MTEs discuss potential responses, anticipate possible occurrences, and 
discuss interventions. This exemplifies the MTEs’ expertise as pedagogical context of 
mathematics, which extends beyond task selection or design to include foreseeing the 
PTs’ responses and planning pedagogical interventions. In general, the MTEs’ written 
pedagogical communication indicated that their pedagogical-based mathematics 
content expertise includes a combination of knowledge of appropriate tasks to explore 
a mathematics concept, PTs’ thinking in relation to the task, and intervention strategies 
to support the PTs’ thinking about and learning of the concept.   
MTEs’ expertise as pedagogical context of teaching mathematics. The pedagogical 
context of teaching mathematics refers to the MTEs’ selection of tasks to enhance PTs' 
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experiential knowledge, focusing on aspects of teaching mathematics practice. This 
context involves engaging PTs in analysing curricular materials, student solutions, 
teacher narratives, and classroom observations, always contextualised within school 
practices. Figure 2 exemplifies this pedagogical context. 

Figure 2: Excerpts translated to English from a Numbers booklet. 
In Figure 2, the MTE introduces two narratives detailing fifth graders' approaches to a 
mathematical problem, prompting PTs to analyse the students’ reasoning. The Figure 
2 also shows how the MTE extends this initial task by suggesting tasks like applying 
the problem with students or family members and linking algorithmic challenges to 
operational understanding. This activity exemplifies a pedagogical context where 
school-based mathematical solutions are central. In general, the MTEs’ pedagogical 
communication indicated that their pedagogical-based mathematics-teaching expertise 
includes designing tasks that concretely illustrate and allow PTs to engage in 
mathematics teaching from the school perspective, using real or hypothetical examples. 
MTEs’ expertise as pedagogical context of academic research. The pedagogical 
context of academic research refers to MTEs’ communication of research findings 
directly with the PTs. This use of research goes beyond informing MTEs’ teaching 
practices but involves explicitly integrating research outcomes into educational tasks 
with PTs, as depicted in the two examples in Figures 3. 

 

 

 

 

 

Figure 3: Excerpts translated to English from booklets on Algebra and Numbers. 
On the left of Figure 3, research presentation is integrated, as an argument, into a text 
written to be used in the PTs’ learning. On the right of Figure 3, it is an activity for PTs 
to engage with three academic articles, synthesising and discussing their insights with 
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peers. This approach aims to encourage PTs to distil findings and recommendations to 
their professional practice. In general, the MTEs’ written pedagogical communication 
indicated that their pedagogical-based academic research expertise includes selecting 
pertinent mathematics education research for inclusion in teacher education, which can 
be done in various ways, ranging from citing research studies to engaging PTs directly 
with academic research. 
MTEs’ expertise as bridge-building. The bridge-building metaphor refers to MTEs 
explicitly making connections among the preceding mathematics, teaching 
mathematics, and academic research pedagogical contexts. For instance, in Figure 4, 
the MTE's pedagogical communication about linear equations involves introducing a 
two-pan balance model, which aligns with the mathematics pedagogical context. 
Although the situation is found in teaching practice, it was presented without this 
reference on this extract. However, a subsequent reference to a scholarly article 
critiquing the balance model's limitations matches with the academic research context. 
The MTE then points out how these limitations might be addressed in classroom, which 
now matches with the teaching mathematics context. 

Figure 4: Excerpts translated to English from a booklet on Algebra. 
Throughout the corpus occur other instances where the pedagogical contexts are 
interconnected in many of the booklets, mostly how topics are sequenced. Another 
example comes from one booklet which states that the IMTE should apply a 
mathematical task with PTs to enhance their mathematical understanding. This is 
followed by presenting school students’ solutions for the same task, prompting teachers 
to discuss the students' reasoning and compare it to their own. This sequence, linking 
both the mathematics and the teaching mathematics contexts, illustrates a bridge 
between the two, prompting for relationships between teachers’ mathematical solutions 
and student solutions. In general, the MTEs’ written pedagogical communication 
indicated that their expertise includes a bridge-building process that involves inter-
linking of ideas from the three different pedagogical contexts (between any two or 
among all three) to help PTs to understand the ideas in a connected way from different 
perspectives or contexts. 
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DISCUSSION AND CONCLUSIONS 
This study contributes to the current call by researchers (Beswick & Chapman, 2015; 
Chapman, 2021; Helliwell & Chorney, 2022) to broaden the way we explore and 
understand MTEs’ professional knowledge and practice. It demonstrates how a broader 
conception of MTEs’ expertise that encompasses a fusion of consolidated experience, 
knowledge, and modes of participation, and MTEs’ pedagogical communication to 
support PTs’ learning could lead to understanding new features of MTEs’ expertise. 
The findings suggest four of these features associated with three pedagogical contexts 
(mathematics, teaching mathematics, academic research) and a bridge-building skill.  
The three contexts are based on how the MTEs structured their pedagogical 
communication, each serving a specific educational purpose. In the context of 
mathematics, the MTEs’ expertise involved selecting, designing, and using 
mathematical tasks to enhance PTs' mathematical understanding, without direct 
reference to teaching practices. In the context of teaching mathematics, the MTEs’ 
expertise involved choosing activities that directly address school teaching practices 
(real or hypothetical situations). In the context of academic research, the MTEs’ 
expertise involved dissemination of findings from research for the purpose of 
informing teaching practice, ranging from informative texts to structured activities with 
research reports. 
The MTEs also demonstrated an important bridge-building skill of making meaningful 
connections within and across the three contexts, based on their pedagogical 
communication. This bridge-building feature of their expertise indicated the ways in 
which they bridged the contexts to provide a meaningful basis for the PTs to engage 
with and develop deep understanding of them.   
In conclusion, the study suggests that MTEs’ expertise in preparing PTs through direct 
mathematics-related teacher education courses/strategies includes features associated 
with three pedagogical contexts. This study also suggests that MTEs’ expertise 
includes a bridge-building feature used to integrate and navigate among multiple 
pedagogical contexts. This bridge-building approach represents the dynamic interplay 
between the different pedagogical contexts and the complexity of their professional 
knowledge. Thus, it provides a basis to address the complexity of MTEs’ knowledge, 
which, as Chapman (2021) noted, requires more attention.  
While this exploratory study has limitations in terms of the sample of MTEs and 
booklets used, it offers a basis to support future studies. For example, there needs to be 
further exploration of the four aspects of expertise with other MTEs and to include 
classroom observations of MTEs to understand these aspects from a lived perspective, 
particularly the bridge-building approach. Exploring this bridge-building approach is 
important to understand whether it exists in action, when and how it is used, and the 
nature and treatment of possible tensions that likely exist among the three different 
pedagogical contexts in trying to bridge them. 
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TEACHER NOTICING OF PRE-SERVICE AND IN-SERVICE 
SECONDARY MATHEMATICS TEACHERS –  

INSIGHTS INTO STRUCTURE, DEVELOPMENT, AND 
INFLUENCING FACTORS 

Anton Bastian1, Johannes König2, and Gabriele Kaiser1 
1University of Hamburg, 2University of Cologne 

Teacher noticing is a crucial component of teachers’ professional competence and has 
become a focus of educational research. However, evidence based on large-scale 
quantitative studies of the construct’s structure, development, and influencing factors 
is scarce. Thus, in this paper, we briefly present the results of three recent studies that 
address these research gaps, summarize and discuss the findings, and formulate 
implications for future research. In the studies, we assessed noticing skills of pre-
service and in-service teachers cross-sectionally and in a pre-post design, respectively, 
using an established standardised video-based instrument. Results shed light on the 
facet structure of teacher noticing, its development with increasing teaching 
experience, and the impact of learning opportunities in initial teacher education. 

INTRODUCTION AND THEORETICAL BACKGROUND 
To facilitate effective learning, it is essential for teachers to create rich learning 
environments characterized by high-quality instruction, effective classroom 
management, cognitive activation, and individualized support (Schlesinger & Jentsch, 
2016). To achieve this, teachers must manage complex teaching situations 
characterized by sensory overload. They need to selectively perceive, comprehend, and 
respond to relevant instructional situations, which requires situation-specific skills 
commonly referred to as teacher noticing (Dindyal et al., 2021; Sherin et al., 2011). 
Over the past two decades, research on teacher noticing skills has steadily increased, 
particularly in mathematics education, as current literature reviews have shown (König 
et al., 2022). For example, researchers have investigated the characteristics of the 
construct (e.g. Mason, 2002; Sherin et al., 2011) and how to foster teacher noticing 
(e.g., Sherin, 2007). However, most studies are qualitative in nature, investigate only 
pre-service teachers, or treat small sample sizes (Amador et al., 2021; König et al., 
2022). Moreover, standardised measurement of teacher noticing remains a challenge 
for the field, with few high-quality instruments available (Weyers et al., 2023). Thus, 
insight into the structure, development, and determinants of teacher noticing based on 
large-scale studies using standardised measures and quantitative analyses is lacking. 
Conceptualisation of teacher noticing 
Teacher noticing, sometimes referred to as professional vision, can be understood as a 
professionalized way of noticing that is characteristic of teachers in the classroom 
(Dindyal et al., 2021; Mason, 2002). Research on noticing is based on different 
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theoretical perspectives, including a cognitive-psychological, socio-cultural, expert-
related, and discipline-specific perspective; the cognitive-psychological approach, 
which distinguishes cognitive processes that teachers engage in while noticing 
classroom events, is currently the most widely adopted perspective (König et al., 2022). 
Some recent studies also refer to the emergent embodied-ecological approach 
(Scheiner, 2021). Although some studies investigate noticing at a holistic level (Mason, 
2002), most research has differentiated the construct into several facets that describe 
processes of observing, interpreting, and responding to classroom events important for 
teaching (Dindyal et al., 2021; Sherin et al., 2011).  
In the Teacher Education and Development Study (TEDS) research program, we define 
teacher noticing as consisting of three facets: perceiving important classroom events, 
interpreting these events, and making decisions how to act (Kaiser et al., 2015). Thus, 
we include a decision-oriented facet in our framework to emphasise that noticing is 
strongly oriented toward classroom performance. We further understand teacher 
noticing as a situation-specific part of teacher competence. We conceptualise noticing 
as encompassing a general pedagogical and a mathematics pedagogical perspective, 
and include in our understanding a wide range of events relevant to quality 
mathematics education, such as students’ thinking, classroom management or 
cognitive activation (Kaiser et al., 2015; Schlesinger & Jentsch, 2016).  
Structure, development, and influencing factor of teacher noticing 
Although many studies have distinguished facets of teacher noticing in their analyses, 
few have investigated the fit of their hypothesized construct structure. Seidel and 
Stürmer (2014) focused reasoning as an interpretation-related facet and demonstrated 
its distinguishability into description, explanation, and prediction. Yang et al. (2018) 
reported a good fit for a two-dimensional model that distinguished the general 
pedagogical and the mathematics pedagogical perspectives of teacher noticing. 
However, the empirical separability of the noticing facets perception, interpretation, 
and decision-making remains a research gap. Concerning the development of teacher 
noticing, longitudinal investigations are scarce. One exception is the study by Jong et 
al. (2021), who reported significant growth in perception and interpretation skills, but 
not in decision-making, over the course of a video-based university course for primary 
school teachers. In addition, a few studies have conducted cross-sectional comparisons 
of teachers with different levels of expertise or years of experience, which provides 
some initial evidence for the development of teacher noticing. For example, Jacobs et 
al. (2010) reported significant increases in perception and interpretation skills with 
increasing teaching experience and in the context of professional development, and for 
decision-making only from professional development.  Overall, teaching experiences 
appear to facilitate the development of teacher noticing, although evidence on the 
extent and quality is lacking, and the current evidence is somewhat inconclusive 
(König et al., 2022). In addition, specific opportunities to learn (OTL) that may 
promote teacher noticing, particularly in the context of teaching experiences, have 
virtually not been investigated.  
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RESEARCH AIM AND QUESTIONS 
In the light of the current discourse and the identified research gaps, in this paper we 
aim to investigate the structure and development of teacher noticing and the factors 
influencing it using standardised testing and cross-sectional as well as longitudinal 
analyses. Specifically, we address the following research questions: (Q1) What are the 
facets of teacher noticing and how are they related? (Q2) How do teacher noticing skills 
develop with increasing teaching experience? (Q3) Which OTL influence the 
development of teacher noticing? These three research questions have been addressed 
in three studies, described in the next section, as part of the TEDS research program. 

METHODOLOGICAL APPROACH 
To investigate the noticing skills of pre-service and in-service secondary mathematics 
teachers, we applied an established video-based instrument developed in the TEDS-
Follow-Up study called TEDS-FU Video (Kaiser et al., 2015). The instrument 
consisted of three scripted (i.e., staged) video-vignettes (2.25 to 3.5 minutes in length) 
depicting lessons from the 9th and 10th grade. For each video-vignette, participants 
were given context information about the displayed lesson, then were allowed to watch 
the video-vignette once, and were asked to answer rating-scale and open-response 
items regarding their perception, interpretation, and decision-making from a general 
pedagogical or mathematics pedagogical perspective. The test consisted of 77 items 
(perception: n = 24, interpretation: n = 41, decision-making: n = 11). Figure 1 shows 
an example item.  

 
Figure 1: Open-response example item for the interpretation facet from a 

mathematics pedagogical perspective 
Participants’ responses were scored using extensive coding manuals, which had 
undergone an extensive expert review (Kaiser et al., 2015). Intercoder reliability for 
the open response items was satisfactory. We then estimated ability scores for all 
noticing facets using Rasch models. Reliability of the weighted likelihood estimates 
was good, except for somewhat low reliability for decision-making due to the small 
number of items and the complexity of the construct. 
Study I 
In the first study (Bastian et al., 2022), the sample consisted of 110 master’s students 
(MS), 193 early career teachers (ECT), and 154 experienced teachers (ET) from 
Germany, who participated in studies of the TEDS research program (see descriptive 
statistics in Table 1). We investigated the empirical separability of the three noticing 
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facets by contrasting the three-dimensional model of perception, interpretation, and 
decision-making with a one-factor model corresponding to a holistic understanding of 
noticing using Rasch models and structural equation modelling. In addition, we 
compared the three groups in their noticing skills using post hoc tests.  
Variable Master’s 

students 
Early career 

teachers 
Experienced 

teachers 
Sample size 110 193 154 
Gender (% female) 66.4 58.3 54.5 
School type (% academic track) 40.0 52.3 45.5 
Teaching experience in years (M (SD)) 0.0 (0.0) 4.6 (0.5) 19.6 (10.4) 

Table 1: Descriptive sample statistics for the three groups from Study I and II 
Study II 
To further explore differences in specific cognitive demands, i.e., competence 
components related to the knowledge domains required to apply teacher noticing, 
between the three groups of teachers and to follow up on the findings from Study I, we 
further analysed the sample from Study I in Study II (Bastian et al., 2023). We 
developed an extensive category system to describe the cognitive demands of each test 
item, such as dealing with heterogeneity or competency-based teaching, and conducted 
multivariate analyses of variance to assess the relationship of the handling of these 
demands to the three experience groups.  
Study III 
In the third study (Bastian et al., under review), we complemented the two previous 
studies by measuring the teacher noticing skills of 175 MS (61.1 % female, M = 9.1 
study semesters (SD = 2.7)) from six German universities before and after their 
teaching internship, thus enabling a longitudinal analysis of the development of their 
noticing skills. In addition, we assessed the OTL used by the MS during their 
internship, such as the extent of teaching practice, reflective activities, or mentor 
support, through a Likert item-based self-assessment after the internship. The data were 
then analysed using multiple regression and cross-lagged panel analyses. 

RESULTS 
The structure of teacher noticing 
Based on the analyses of the MS, ECT, and ET in Study I, the three-dimensional model 
of perception, interpretation, and decision-making showed a better fit than a one-factor 
model (Δχ2 (Δdf) = 348.82 (2), p < .001), supporting the conceptual and empirical 
separation of the three facets (Bastian et al., 2022). The analyses revealed strong latent 
correlations between perception and interpretation (r = .81) and interpretation and 
decision-making (r = .82), but only moderate association between perception and 
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decision-making (r = .46). This is consistent with the cross-lagged panel analysis from 
Study III (see Table 2). Interpretation at T1 had significant cross-lagged paths on 
perception and decision-making at T2 and predicted these skills, while the reverse 
cross-lagged paths on interpretation at T2 were not significant. Interpretation skills 
appeared to play a central role in the development of all three noticing facets and thus 
a prominent role in the structure of teacher noticing. The analyses provided evidence 
for a causal relationship, i.e., high interpretation skills prior to the teaching internships 
lead to higher perception and decision-making skills after the teaching internship. 
Variable Perception T2 Interpretation T2 Decision-making T2 
 β β β 
Perception T1 .36*** - .03 .02 
Interpretation T1 .30***   .57*** .28** 
Decision-making T1          -.15   .01 .36*** 
R2 .33   .31 .34 

 Table 2: Cross-lagged panel model for the facets of teacher noticing 
Note: ** ≙ p < .01, *** ≙ p < .001. T1/T2 ≙ measurement point 1/2. In the analysis, 
we controlled for high school diploma grade, semester, and dichotomized school type.  
The development of teacher noticing skills 
The comparison of MS, ECT and ET showed significant differences between pre-
service and in-service teachers in favour of the latter for all three noticing facets, 
suggesting a significant development with teaching experience from MS to in-service 
teachers (see Table 3). However, this development does not seem to be linear, as ECT 
and ET only differed significantly in decision-making, but in favour of ECT, and the 
ECT performed nominally better in all three facets, indicating a possible decline in 
skills, but certainly saturation effects.  
Variable Master’s students Early-career 

teachers 
Experienced 
teachers 

Perception  45.6 (11.1)a,b 51.8 (9.2)a 50.1 (8.9)b 

Interpretation 43.6 (12.0)a,b 52.6 (8.4)a 51.0 (8.5)b 

Decision-making 44.0 (11.2)a 53.1 (8.4)a 50.3 (9.3)a 

Table 3: Mean scores and standard deviation by experience group and facet 
Note: For each facet, M = 50 and SD = 10. For each facet, values that differed 

significantly (at least p < .05) are indicated by the same letter. 
This finding was further explored in Study II to better understand the areas, in which 
ECT and ET differ (Bastian et al., 2023). The results suggested significant differences 
with small effect sizes in three main teaching demands: decision-making (d = .34), the 
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mathematics pedagogical perspective (d = .28), and recent mathematics pedagogical 
and general pedagogical topics (.31 ≤ d ≤ .38 [several demands investigated belonged 
to this category]), such as dealing with heterogeneity. Furthermore, Study III 
demonstrated a significant increase in a pre-post comparison over the course of the 
MS’ teaching internship for all noticing facets with small effect sizes (perception: 
d = .31, interpretation d = .39, decision-making d = .31). 
Influencing factors on teacher noticing 
As reported above, interpretation skills and, to some extent, length of teaching 
experience appeared to be influencing factors in the development of all teacher noticing 
skills. In addition, we examined the influences of OTL on the noticing facets of MS in 
their teaching internships in Study III (Bastian et al., under review). These analyses 
revealed positive influences of linking theory to teaching situations on perception 
(β = .19*) and interpretation (β = .25***). Emotional mentor support during the 
internship (β = .27**) and time spent on lesson follow-up (β = .19**) significantly 
predicted decision-making. However, the amount of the MS’ own teaching practice 
had no effect on the change of their noticing skills. This may suggest that deliberate, 
reflective practice and the conscious linking of theory and practice are necessary to 
facilitate the development of teacher noticing based on teaching experience gained in 
teaching internships. 

DISCUSSION 
In this paper, we presented the results of three recent studies on a quantitative 
standardised investigation of the structure, development and factors influencing 
teacher noticing. The analytical conceptualisation of teacher noticing with its three 
facets of perception, interpretation, and decision-making was empirically separable and 
proved to be superior to a single-factor model. In addition, decision-making was 
confirmed as an essential part of teacher noticing, not only through the model fit but 
also by its differentiating power on groups of teachers. This supports the adoption of 
analytical frameworks of teacher noticing that include a decision-oriented facet in 
future research. Furthermore, the findings of Study III indicated complex, reciprocal 
relationships between the three facets in their development, as opposed to a linear 
learning process of first learning to perceive, then to interpret, and then to make 
decisions. Interpretation appeared to be particularly important in the interactional 
structure, as it not only predicted its own development, but also influenced the 
development of perception and decision-making.  
Teaching experience appeared to be a strong facilitator in the development of teacher 
noticing, as MS increased their skills over the course of their teaching internship, and 
ECT had significantly higher skills than MS. Therefore, a certain amount of teaching 
experience may be necessary to develop teacher noticing as a situation-specific skills. 
At some point, however, teaching experience alone may not be sufficient to progress 
further, as evidenced by the saturation or even decline in noticing when comparing 
ECT and ET. Deliberate practice may be necessary to further develop and achieve 
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higher expertise in teacher noticing. This is supported by findings of Study III, which 
showed that time spent on lesson follow-up, the linking of the theories of university 
teacher education to specific situations, and the emotional mentor support had 
significant positive influences on facets of teacher noticing, while the mere amount of 
teaching had no effect by itself. Thus, deliberate practice in which teachers are aware 
of what they are doing, have time to reflect and link their practice to professional 
knowledge, and talk about their teaching with other teachers appears to be influential 
to develop noticing skills. 
The studies have limitations that need to be considered and argue for cautious 
generalisation of the results. All three studies used convenience samples. Study I and 
II provided insights into the development of teacher noticing using cross-sectional data, 
so other influences, such as changes in teacher education curriculum, may have caused 
the observed differences. The analyses in Study III were conducted without a control 
group, so recall effects may have occurred. 
Overall, the three studies provide new insights into the structure, development and 
determinants of teacher noticing based on quantitative analyses and standardised 
testing. However, more longitudinal studies and a closer look at the effects of OTL on 
its development are needed to better understand teacher noticing and to find improved 
means to foster its development. 
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TWO MORE OR TWICE AS MUCH? PROPORTIONAL 
REASONING STRATEGIES IN GRADES 5 TO 7  
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SZTE Metacognition Research Group 

Proportional reasoning determines the school performance of students not only in 
mathematics, but in other areas, and it plays an important role in everyday life as well. 
The early emergence of proportional reasoning is influenced by many factors, 
including the recognition of multiplicative relationships. In our research, we examined 
proportional reasoning by means of the interview method among 5th, 6th, and 7th-grade 
students. During the interview, in addition to solving proportional problems, the 
students solved open-ended problems that gave insight into their additive and 
multiplicative thinking.  Our data and results can bring us closer to understanding the 
important requisites of proportional reasoning and the possible developmental step 
between additive and multiplicative reasoning strategies. 

INTRODUCTION 
Proportional reasoning is an important pillar of school mathematics. It is also an 
integral part of our everyday lives, whether it is cooking, shopping, pricing, or 
measuring distances. Proportional reasoning not only makes our daily lives easier, but 
it is also an essential foundation for many areas of mathematics. Proportional reasoning 
is a psychological construct with many structural connections to different fields of 
mathematics (Boyer and Levin, 2015). The level of development of proportional 
reasoning influences students’ achievement in other school subjects (physics, 
chemistry, geography, etc.) as well. Although there are various views on the nature of 
the development of proportional reasoning, characteristics of the tasks used to measure 
the development play a crucial role in affecting students’ solution strategies on 
proportional reasoning tasks (Fernandez et al., 2010). Our study aimed to map the 
presence of each of these conditions in grades 5 to 7. We interviewed the students and 
asked them to solve proportional task with different characteristics. The students 
solved the task while thinking aloud. The interview responses revealed students' 
thinking strategies in the sense of whether they are at the additive or multiplicative 
level of reasoning. In addition, the so-called "relative proportional reasoning", lodged 
right between additive and multiplicative thinking, was addressed (Gencturk et al., 
2022). We investigated how the strategies used during the interview influenced the 
student's performance on each task.  

THEORETICAL AND EMPIRICAL BACKGROUND 
The age of onset of proportional reasoning was previously thought to be around the 
ages of 11 and 12 (Inhelder and Piaget, 1958). However, later research has shown that 
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proportional reasoning, or elements of it, are present from very early in life. Some 
forms of proportional reasoning are already present before the start of schooling and 
children develop the ability to interpret proportional situations early. For example, 
children aged 5 to 7 feeding differently sized fish gave more food to larger fish 
(Resnick and Singer, 1993). Different studies indicate different developmental rates, 
and there are different ideas about which types of tasks pupils can solve more 
effectively at different ages. Goswami's experiments with preschool children show that 
children as young as 3-4 years can use analogical reasoning with simple ratios. The 
experiment showed that young children can understand equivalent ratios even when 
quantities are not isomorphic (Singer et al., 2001) 
The use of visual representations in task-solving situations allows the study of 
preschool and lower primary school age groups. They can be used to show elements of 
proportional reasoning without the use of concrete Arabic numbers or number words, 
or even special terms (e.g., ‘ratio’). Exercises based on visual representations can of 
course be applied to the upper primary age group and can be used to track proportional 
reasoning. Visual representations can represent both discrete and continuous 
quantities. Various studies have been conducted to investigate children's proportional 
reasoning with discrete and continuous quantities in preschool and primary 
school.  Boyer and Levine (2015) found that preschool children are more adept at tasks 
with continuous quantities than with discrete quantities in a comparison problem (see 
also Boyer et al., 2008). Vanluydt et al.’s (2020) experiment with children aged 5-9 
years shows that in missing-value problems, continuous quantities make it more 
difficult to solve tasks with discrete quantities compared to discrete quantities. 
Vanluydt et al.'s (2020) experiment with children aged 5-9 years shows that continuous 
quantities make it more difficult to solve problems with discrete quantities as opposed 
to missing-value problems. 
In Jeong et al.’s (2007) experiment, 6-, 8-, and 10-year-old children were given a 
proportional reasoning task in the context of a game involving probability. These 
results suggest that the type of quantities used in the tasks (either discrete or 
continuous) strongly influences children’s ability to judge proportions. Proportional 
reasoning is influenced by further factors, such as one-to-many being easier for learners 
than many-to-many. In order to successfully solve proportional reasoning tasks, 
comprehension of general vocabulary and mathematics-related specific vocabulary is 
an important precondition. The presence of proportional reasoning requires knowledge 
of mathematical terminology, including specific vocabulary for proportional 
reasoning, such as double, half, etc. (Vanluydt et al., 2021). 
An important pillar of children's development is the emergence of additive and then 
later multiplicative thinking. With the emergence of multiplicative thinking, students 
reach the level of what we may call true proportional thinking. One of the main 
challenges is to move from additive reasoning to multiplicative reasoning for 
proportional problems (Van Dooren et al., 2010) Degrande et al. (2018, 2019) 
investigated the extent to which third- to sixth graders prefer additive or multiplicative 
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relationships by presenting them with problem situations that are equally open to both 
types of reasoning. It is predicted that multiplicative preference (as measured by 
multiplicative responses to open problems) will promote early proportional reasoning, 
while additive preference (as measured by additive responses to open problems) will 
act as a barrier, because children who prefer additive preference may make more 
additive errors in proportional problems (Vanluydt et al., 2022).  
The question is whether the strategies used by children aged 10-13 can be categorized 
as strictly either additive or multiplicative or whether there is a transition between the 
two. In an experiment with teachers by Copur-Gencturk et al. (2023), it was found that 
there is a transition between the additive and multiplicative path, a third category 
labeled as “relative reasoning”. Those characterized by the use relative reasoning 
strategy used the additive relationship between quantities but also paid attention to the 
size of the quantities and the differences between quantities. The shift from additive 
reasoning to proportional reasoning begins when one notices that the difference 
between two variable quantities does not remain constant as the size of the covariate 
quantities changes. Proulx (2023) used a series of interviews to study the proportional 
reasoning of two students, an 11-year-old boy and a 13-year-old girl. The interviews 
revealed the presence of a relative reasoning stage as a transition between additive and 
multiplicative reasoning.  
Research questions 

(1) What strategies do children use in upper and lower secondary grades while 
solving proportional reasoning tasks?  

(2) How does strategy use affect students' performance on each task? 
(3) How do task characteristics influence students’ strategy use? 

METHOD 
Participants 
In this study, 60 students were interviewed for 5th, 6th, and 7th grade classes (20 students 
from each grade) at a school in the capital city of Hungary. 

Measures 
Students were asked to solve two introductory and three proportional problems. In the 
introductory tasks, we gave two values for discrete (Point task) and continuous 
quantities (Bar task) in pictorial form and asked students to give the third element. 
When the third element was given, both additive and multiplicative reasoning could be 
correctly applied, in the latter case using a ratio of 1:2. In their mathematical studies at 
the lower secondary grades, students mainly encounter open-ended tasks given by 
discrete quantities. In the three proportional tasks, the ratio 2:3 appeared in different 
ways. In the first case (Dog task), discrete quantities were used, and the ratio was 
represented by a drawing. Students had to observe puppies and see what proportion of 
them were collared and uncollared. The second task (Orange task) was about 
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comparing the amount of orange juice in two different measuring cups, thus solving a 
discrete quantity task (Proportion task). In the third task (Candy task), the price of some 
packets of candy was asked, and the data were given only in text or numbers. The two 
tasks used the same numbers. 
While solving the tasks, we focused on the students' thought processes using asking  
The students' interview responses were coded according to two criteria. We assessed 
the ability to solve the tasks and also the strategies used while solving the tasks. First, 
for each task, students' performance was assessed on a dichotomous scale (0 or 1). 
Strategies were coded according to the literature (Copur-Gencturk et al., 2023) as (1) 
additive reasoning, (2) multiplicative reasoning, (3) relative reasoning used by the 
student while solving the task, and (4) the use of a reasoning strategy different from 
the previous ones. Coding was done by two people according to the criteria discussed 
beforehand. In the case of divergent codes, the final position was established after 
discussion. 
RESULTS 
First, we looked after tasks by grade and overall. Table 1 presents the mean (SD in 
parentheses) performance of students in different grades on the items. 

Item Grade 5 Garde 6 Grade 7 Total 
Points 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 
Bar .25 (.44) .45 (.51) .60 (.50) .43 (.50) 
Dog .50 (.51) .55 (.51) .70 (.47) .58 (.50) 
Orange 
Candy 

.15 (.37) 

.80 (.41) 
.20 (.41) 
.90 (.31) 

.55 (.51) 

.90 (.31) 
.30 (.46) 
.87 (.34) 

Table 1: Students’ mean performance (SD in parentheses) on the items according to 
grades.  
The ANOVA test shows that in four tasks (Points, Bar, Dog, and Candy) there is no 
significant difference between the performance of the grades. However, in the Orange 
task, there is a significant difference between grades 5 and 7; F (2,57) = 5.061, p = 
.009, (Levene's test for homogeneity, p = .002, Dunnette T3 post-hoc comparison gives 
p = .022). 
 
Strategies 
We looked at the strategies students used in each task. The frequency of occurrences 
is shown in Table 2 for each task.  
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Item/Strategy (1) Additive (2) Multiplicative (3) Relative (4) Other 

Points 52 8 0 0 
Bar 22 19 6 13 
Dog 1 27 23 9 
Orange 
Candy 

44 
7 

16 
53 

0 
0 

0 
0 

Table 2: The appearance of strategy types per task 
Additive and multiplicative strategies were the most frequently used. However, there 
is a remarkable appearance of relative reasoning. The emergence of this strategy was 
observed only in the closed tasks. We observed two types of relative reasoning. First, 
when learners realize that it is not enough to consider the difference in quantities, but 
that there is more to it than that. They go beyond additive reasoning but do not know 
how many times they should be looking. When the second type appears, the learner is 
already aware that it is a multiple but does not know the calculation procedure or cannot 
calculate the result using the multiplicative strategy. In this case, they use it as a kind 
of "escape route", trying to find an analogy in the solution.  
One student gave the following answers after giving a good solution: 
1 S:  There are 15 dachshunds and 6 of them are collared. I think this is the 
2  right one.  
3 I:  Why do you think that? 
4 S:  Because that's how I think it would work out proportionally. Yes. So  
5  proportionately. 
6 I: What do you mean, proportionally? 
7 S: If you look at it, it's the most similar. Yes, because here it's 4 and then 
8  there's only 1 with a collar and it's not so similar proportionally, but here 
9  it's about the same proportionately. 
10 I: And if you counted? 
11 S: 15 divided by 6 is about 2, and then let’s say 3:2 is one. Then I don't know. 
12  By counting it seems to be closer, because 4:1 is further away. 
13  Anyway, I don't know. I think it looks right. 
For the open tasks, we found that students did not use relative reasoning, their solutions 
were limited to the other options: additive reasoning and multiplicative reasoning. The 
proportional task (Csapó, 1997) was the most characteristic example of the separation 
of learners' reasoning in terms of additive and multiplicative reasoning. In this task, 
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only these two types of thinking appeared. If one scale goes up by two, the other will 
also go up by two. Those who used additive reasoning were convinced of the 
correctness of their solution. Those who used multiplicative reasoning were more 
uncertain about their solution. When asked what would happen if half of the orange 
juice was poured into the jar, the students corrected their solution after the comparison 
and realized that the additive solution was not the right way to go. 
The Candy task had the same numbers as the Orange task, yet the students performed 
better there. Those who recognized that they were doing an analogous task sometimes 
corrected their previous solution. It may have been easier in this task because the 
amount of sugar and the amount to be paid were different units of measurement, but in 
the orange juice task, the equal distance marked on two pots of different widths did not 
mean different measurements to the children. 
Does the right solution depend on the choice of strategy? 
Everyone solved the Point task correctly, so there was no difference in the strategies 
used. In the Band task, there is a significant difference in the correctness of the 
solutions between groups using different strategies, as confirmed by ANOVA, F (3,56) 
= 3.350, p = .009 (Levene's test for homogeneity, p < .001; Dunnette T3 post-hoc 
comparison gives p = .025). There is no significant difference between those using 
additive and multiplicative solutions. However, there is a significant difference in the 
ability to solve the task between those using additive vs relative and multiplicative vs 
relative strategies (based on the results of the Levene test for homogeneity, p < .001 
Dunnette T3 post-hoc comparison gives p < .001 and p = .011). 
In the Dog task, only one student used the additive reasoning strategy. However, there 
is a significant difference between the multiplicative and relative strategy users in their 
performance. For those using relative reasoning, the ratio of correct answers was 52%, 
and for those using multiplicative reasoning, it was 82%.  An independent samples t-
test was used, Levene's test is significant, p < .001, i.e. equal variances are not assumed, 
so the Welch-test is significant for the difference between the performance of the two 
groups, p = .031. Students using the relative reasoning strategy performed worse 
compared to students using the multiplicative reasoning strategy. 
In the orange task, 94% of those using the multiplicative strategy solved the task 
correctly. In the candy tasks, additive and multiplicative reasoning are typical. 94% of 
the students using multiplicative reasoning gave the correct answer, while one student 
got the right solution by another method.  
Consistency or preference in strategy use 
The prevalence of strategies used in each task does not typically show clear preferences 
in this age group. A crosstabs analysis was conducted to compare the strategies used 
in the tasks, showing a significant contingency coefficient between strategy use in the 
two cases. For the Point task - Dog task pair, p = .047, and for the Dog task - Orange 
task, p = .013.  
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DISCUSSION 
The main novelty of the current research is addressing and documenting students’ 
proportional reasoning according to task variables. Our most important finding 
concerns the presence of relative reasoning that can only be observed in closed tasks, 
and not in open-ended tasks. Relative reasoning is a kind of transition between additive 
and multiplicative strategies (Proulx, 2023). The cross-tabulation analysis shows that 
those who used relative reasoning on closed tasks often switched to additive reasoning 
on open tasks as if they moved back to an earlier stage of the developmental ladder.  
Among the task characteristics, the use of continuous versus discrete quantities proved 
to be also relevant. In the case of continuation of points and discrete quantities, the 
students solved the problem without error. However, in the bar task, for continuous 
quantities, when they were asked to continue bars in a way of their choice, the accuracy 
was .43 (.50). At this age, students seemed to have more difficulty on the continuous 
quantity task. The task was presented as a missing-value problem and supports the 
results obtained at lower ages, which for this type of task were found to be more 
difficult than discrete tasks (Vanluydt et al., 2020). 
The most important educational implications are as follows. Through discussion of 
several closed tasks, the path towards multiplicative reasoning could be reinforced by 
acknowledging and taking advantage of relational reasoning as an intermediate step. 
Thus, the use of relative reasoning could be a powerful educational strategy in the 
teaching of ratios since relationality could reinforce the recognition of ratios. In the 
classroom environment, peer interactions could facilitate the fostering of proportional 
reasoning. Fielding-Wells et al. (2014) investigated the development of fourth-grade 
students' proportional reasoning in a classroom setting and found that proportional 
reasoning helped transform additive strategies into proportional (multiplicative) 
reasoning. Peer interactions improve students' solution processes and explain 
individuals' subsequent gains (Schwarz and Linchevski, 2007).  
Additional information 
This work was supported by the Research Programme for Public Education 
Development of the Hungarian Academy of Sciences. 
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EXPLORATIONS WITH AMBIGUITIES IN MATHEMATICAL 
PROBLEM-SOLVING 

Elin Berggren  
Linnaeus University, Department of Mathematics, Sweden  

This study explores the characteristics of narratives in a problem-solving discourse, 
where the reasoning processes of two students are analysed. It aims to examine the 
factors contributing to endorsing students’ generated narratives during the process. 
The results indicate that explorative actions are characteristic of the narratives 
generated by the students. The primary factors contributing to the endorsement of 
narratives are identified as “Ambiguity of difference in sameness” and “Ambiguity of 
generalization”. Awareness of these different ambiguities, their nature, and their role 
in the discourse is crucial for how mathematics teacher educators can support 
students’ development in mathematical reasoning. 

INTRODUCTION 
It is important for teacher students to develop and enhance their problem-solving skills. 
Given that problem-solving constitutes a fundamental aspect of the high school 
mathematics curriculum, achieving proficiency in this subject becomes essential for 
educators. Teachers play a pivotal role in guiding their students, not only to understand 
mathematical concepts but also in explaining, coordinating, and demonstrating the 
proper use of mathematical terminology as defined by the discourse within the relevant 
mathematical community. Following Sfard (2008), this paper uses the term “discourse” 
to describe the specific form of communication that is used by mathematicians or used 
within mathematics classrooms. This form of communication is characterized by 
endorsed narratives expressed through mathematical definitions, theorems, or proofs 
considered accurate when accepted by the participants in the discourse. 
The study presented in this paper is part of an ongoing project exploring students’ 
mathematical reasoning in problem-solving, presenting a small portion of empirical 
data involving a pair of students working on a mathematical maximization problem in 
Calculus. Before this study, the reasoning of another student pair dealing with the same 
problem was analysed. Observation in the reasoning of the first student pair, revealed 
that ambiguities created by the students played a crucial role in how their narratives 
were accepted. Using Sfard’s research (2008, 2021, 2023), this paper aims to 
characterizing the narratives of the second student pair and identify the factors 
contributing to the approval of both students’ narratives. The question addressed in this 
paper is:  What are the characteristics of narratives in a problem-solving discourse 
involving derivative, and what factors contribute to the endorsement of these 
narratives? 
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RELATED LITERATURE 
Understanding Calculus and derivatives is a crucial aspect of mathematics learning for 
preservice teachers. Studies in Calculus constitute a significant part of Swedish high 
school mathematics and, consequently, a substantial component of teachers’ future 
professional practice. However, previous research has indicated a limited 
understanding of derivatives among many students (e.g., Haghjoo et al., 2020). It is 
also common for students to prioritize symbols over graphical representation when 
studying derivatives (e.g., Biza, 2021).  Despite existing research on students’ 
reasoning in Calculus, there seems to be a need for additional investigations into 
discourses involving Calculus and problem-solving in university courses for 
prospective teachers in upper secondary school (e.g., Mukuka et al., 2023).  
In this paper, discourse is used in line with Sfard’s (2008) definition which also include 
the notion of endorsed narratives. In the endorsement process unacknowledged 
discursive gaps may arise where some of them are essential for learning while others 
are more inhibitory (Sfard, 2023). Sfard also uses the term ”communicational gaps” to 
describe a critical aspect that is important for teachers to be aware of in their 
communication with students in mathematical discourse (Sfard, 2021). One critical 
aspect of communication is ambiguities, as observed in the study by Berggren et al. 
(2023), which indicates that students exhibit ambiguity several times when working 
together on a Calculus problem. Investigating these ambiguities provides an 
opportunity to gain a deeper understanding of the students’ reasoning process. 
According to Barwell (2003), ambiguity can allow students to investigate what and 
how it is possible to express with mathematical language and explore mathematics.  
Peterson et al. (2020) define "clarifiable ambiguity" as an ambiguity that essentially 
arises when someone utilises an unclear referent. When asked, the person responsible 
for creating this ambiguity can straightforwardly provide clarification (Peterson et al., 
2020). In this paper, the term ”ambiguity” is used to describe an essential aspect of 
communicational gaps when two students discuss a mathematical problem they are 
trying to solve.  

THEORETICAL FRAMEWORK 
For the analysis of the data, consideration is given two characteristics of mathematical 
discourses: narratives and routines (Sfard, 2008). According to Sfard (2008), there are 
a total of four characteristics: word use (mathematical vocabulary), visual mediators 
(visible objects), narratives (any sequence of utterances that describe objects, relations, 
and process, such as definitions, theorems, and proofs), and routines (repetitive patterns 
characteristic of mathematical discourse). Mathematical routines develop through 
repetition and adaptation of previous practices (Sfard, 2008). They involve defined and 
recurring patterns in mathematical discourse, guiding tasks such as calculation and 
proof. According to Sfard (2008), there is three categories of mathematical routines: 
explorations, deeds, and rituals. A routine becomes an exploration if its implementation 
contributes to a mathematical theory, such as, for example, an axiom, definition or 



Betts & Son 

  

2 - 66 PME 47 – 2024 

theorem. Deeds, however, focus on producing actions or modifying mathematical 
objects. Rituals are routines aimed at creating and sustaining a bond with other people 
while recognizing their authority within the discourse. Exploration routines can be 
further subdivided into three distinct subtypes: construction, substantiation, and recall 
(Sfard, 2008). Constructions result in new narratives that are endorsable. 
Substantiations are actions that help students decide whether to endorse or reject 
constructed narratives. Recalls are the processes one performs to be able to summon a 
previously endorsed narrative.  

METHOD 
This study is qualitative and analyses the communication between two male students 
working together on a mathematical problem-solving task (Figure 1, translated from 
Swedish to English). In the problem-solving situation, the students engage in 
reasoning.  

 
Figure 1: The task, as presented to the students (Berggren et al., 2023) 

The student pair is the second of two pairs whose communication is analysed.  The 
various communications between the two pairs of students could be seen as two 
different mathematical discourses. With other discourses come different routines and, 
thus, different ways of acting (Sfard, 2021). I have used the same research question for 
both pairs of students to obtain a more significant variation of characters in a narrative 
within a problem-solving discourse involving derivatives. The analysis of the different 
pairs of students is part of a dissertation investigating the mathematical reasoning of 
preservice teachers.  
The data presented in this paper were collected during a mathematics course on 
Calculus for preservice teachers in their first year of their mathematics teacher 
education program. They work in pairs with a task chosen by the researcher among a 
set of tasks provided by the course teacher. The students worked without the 
supervision of the teacher and outside the classroom. The data consists of the students’ 
written answers and a videorecording capturing the students’ hands and actions with 
paper and pencil during the session.  
I used the transcription of what the students were saying and writing and analysed 
every sentence and action in part. The beginning of the analyse consisted of identifying 
key aspects of the discourse: word usage, visual mediators, and routines, and their 
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interrelationships. Episodes was then divided into constructed or endorsed narratives. 
The review of preliminary narratives was closely aligned with the study’s theoretical 
framework and the research question. 

RESULTS AND ANALYSIS 
The students work on the problem in a logical sequence of sub-problems that they 
encounter. Parts of the students’ work are presented in the order they approached them. 
The entire reasoning is divided into four distinct narratives: The area of the triangle, 
The slope of the tangent line, The intersection of the tangent line and the y-axis and 
The equation of the tangent line. Three of these narratives involve ambiguities, which 
will be presented below. 
Just before the following discussion, the students have determined, with the aid of a 
computer program (GeoGebra), that the triangle has its maximum area when the 𝑥𝑥-
coordinate of the point of tangency is equal to one. They have also chosen to denote 
this 𝑥𝑥-coordinate as 𝑎𝑎. The students are now attempting to utilize a specific case, when 
the point of tangency is (1, 𝑒𝑒−1), to derive the equation of the tangent.  
The area of the triangle 

36  S1: […] but then we think that… based on this... and that is when 𝑎𝑎 is equal to 
one… it seems like… or when? 

37 S2:  You mean the height is equal to one, right? 
38 S1:  What? No, but the point.  
39  S2: The point… yes. Okay. 
40 S1: Or the 𝑥𝑥-coordinate one. 
41 S2: But isn’t it a bit strange to have it as 𝑎𝑎 when we have the area as 𝑎𝑎? …so 

can we name it 𝑃𝑃 for example? 
42 S1: It sounds better. Do you think that… 
43 S2: That’s approximately one, isn’t it? It’s not exactly one, is it? 
44 S1: It says… 
45 S2: At one, okay? [Writes 𝑃𝑃 = 1]…it is good. 

In rows 37-40, the students attempt to ensure that they are referring to the same object. 
The language is clarified, and they agree that they are talking about the 𝑥𝑥-coordinate 
of the point of tangency. In row 41, student 2 realizes the need for a new notation for 
the point they are discussing. Through substantiation using GeoGebra, the students 
then attempt, in rows 43-44, to determine whether the maximum area for the triangle 
formed by the tangent and the coordinate axes occurs precisely when the x-coordinate 
of the point of tangency is one. When student 2 writes 𝑃𝑃 = 1, the narrative is accepted. 
In this excerpt, an ambiguity emerges that the students themselves do not seem to be 
aware of yet. What does the documentation 𝑃𝑃 = 1 imply for the students’ ongoing 
reasoning? 𝑃𝑃 = 1 is an unclear reference as it does not specify which coordinate the 
“1” is referring to. This can be interpreted as an ambiguity denoted as ambiguity of 
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different in sameness. The term different means that distinct objects are referred to, and 
sameness pertains to the use of a single notation. In this case, it means that students are 
using a single notation for two different objects. The symbol 𝑃𝑃 is employed for both 
the 𝑥𝑥- and 𝑦𝑦-coordinates. 
The intersection of the tangent line and the y-axis  
The students use the slope-intercept formula for a line, which is expressed as 𝑦𝑦 =
 𝑘𝑘𝑘𝑘 +  𝑚𝑚, were 𝑘𝑘 is the slope of the line, and 𝑚𝑚 is the 𝑦𝑦-intercept (following standard 
Swedish notation).  They are now trying to find a value for 𝑚𝑚. Student 2 has previously 
written that ℎ = 1

𝑒𝑒
 , referring to the height of the point of tangency.  

67 S2: And it is the height when… when x is zero then it must be the height. 
68 S1: Exactly, because it is then 𝑚𝑚. 
69 S2: But when we have 𝑒𝑒  to the power of 𝑥𝑥 ... to the power of zero, then it 

becomes one. [Point at the expression ℎ = 1
𝑒𝑒
 Which the student had written 

earlier.] …so, then the 𝑚𝑚-value is to the power of minus one, right...? We 
have 𝑒𝑒 to the power of zero and it is equal to one. [Writes 𝑒𝑒0 = 1.] 

70 S1: mm.   
71 S2: So, what we have is the height. It is then equal to m minus one.  

[Writes ℎ = 𝑚𝑚− 1.] 
72 S1: Because now we put... We'll see here...  
73 S2: No. 
74 S1: For now… exactly, yes, that one won't be right [Points at  ℎ = 1

𝑒𝑒
 which 

student 2 has written.]  
75 S2: No. [Adjusts the expression to ℎ ≠ 1

𝑒𝑒
 ]  

The utterance in row 69 indicates that student 2 imagines the point of tangency moving 
along the tangent instead of along the curve 𝑦𝑦 = 𝑒𝑒−𝑥𝑥. Student 2 looks at an expression 
(ℎ = 1

𝑒𝑒
) that is not related to the graphical context they are discussing. The mistake that 

occurs can be traced back to naming the 𝑦𝑦-coordinate of the point of tangency as ℎ, 
which is the same notation used for the height of the triangle. In row 74, student 1 shifts 
focus from the graph to the algebraic expression on paper and realizes that these two 
do not align. The ambiguity of different in sameness appears when the same notation 
is used for both the height of the triangle and the height of the point of tangency. An 
additional challenge involves the students struggling with generalizing expressions. 
This is observed as students’ struggle with finding a value for 𝑚𝑚 instead of seeking a 
general expression.  
The Equation of the Tangent Line  
The students have derived an equation for the tangent in a specific case and determined 
that 𝑘𝑘 = −1

𝑒𝑒
 and 𝑚𝑚 = 2

𝑒𝑒
 . When the students then attempt to express the value of 𝑚𝑚 for 
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a general tangent to the curve, they start with the expression 𝑚𝑚 = 1
𝑒𝑒
− −1

𝑒𝑒
∙ 𝑥𝑥 which 

yielded  𝑚𝑚 = 2
𝑒𝑒
 when 𝑥𝑥 = 1.  

125  S2:  It will be x everywhere, right?  
  [Adjusts the expression for 𝑚𝑚 to 𝑚𝑚 = 1

𝑒𝑒𝑥𝑥
– −1

𝑒𝑒𝑥𝑥
∙ 𝑥𝑥 ] 

Here, the ambiguity of different in sameness becomes evident. The students substitute 
𝑥𝑥 instead of the specific 𝑥𝑥-coordinate, 1, used in the particular case. This results in a 
notation representing two different objects in the expression. At this moment, the 
students do not seem to be aware of the ambiguity. 
Subsequently, the students work on simplifying and rephrasing the expression for 𝑚𝑚 
in various ways, attempting once again to substitute 𝑥𝑥 = 1 into the expression for 𝑚𝑚. 
After an eight-minute discussion, student 1 recognizes the ambiguity.  

178 S1: […] It feels like we need to have two 𝑥𝑥-values or something. 
179 S2: We shouldn't need that. 

Student 1 is interrupted by the utterance, "We shouldn't need that," and both students 
agree to start over with the equation of the tangent. They now opt to define the point 
of tangency 𝑃𝑃 as 𝑃𝑃 = (𝑥𝑥, 𝑦𝑦).  

181  S2: […] Now we set the point 𝑃𝑃 with an 𝑥𝑥 and a 𝑦𝑦 value. 

This indicates that the students perceive ambiguity in the previous definition of 𝑃𝑃. They 
proceed to search for a general expression for m but now begin to articulate their 
intentions more clearly to each other. Following another seven minutes of discussion, 
they initiate a discussion about the point of tangency and its x-coordinate in relation to 
the tangent’s intersection with the 𝑥𝑥-axis. 

226 S1: So now we then want to find that 𝑥𝑥-coordinate based on that 𝑥𝑥-coordinate. 
[Points first to the point of intersection of the tangent with the x-axis and 
then to the point of tangency.] 

The student seems to understand that there are two different objects, yet continues to 
use the same notation for both. After a brief discussion about the tangent’s intersections 
with the coordinate axes, student 1 realizes what needs to be done.   

234 S1: […] but then we have to... We have to differentiate... the mistake we made... 
We kind of got that when we came back from the beginning because we 
used 𝑥𝑥 in too many places I think. Because we use 𝑥𝑥 for that 𝑥𝑥 and 𝑥𝑥 for 
that 𝑥𝑥... I think... 

Student 1 engages in a reasoning process with themselves here and realizes the mistake 
of using the same notation for two different objects (the 𝑥𝑥-coordinate of the point of 
tangency and the 𝑥𝑥 -coordinate of the tangent’s intersection with the 𝑥𝑥 -axis). The 
students go beyond the ambiguity by introducing two different variables for the two 
distinct objects. In this and previous narrative an additional ambiguity appears which    
is denoted as ambiguity of generalization.This ambiguity characterizes of the students’ 
not using a mathematical notations that allows them to transition from the specific to 
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the general case. Repeatedly the students encounter challenges as they tend to 
substitute specific values into the general expressions, preventing them to advance in 
the problem-solving process.  

DISCUSSION AND CONCLUSION 
The students use rituals to confirm their involvement in the discussion as they proceed. 
The discussion is solution-focused and they express themselves minimally, both 
linguistically and mathematically. Nevertheless, the ambiguities in their 
communication are observable with two prominent ambiguities in their narratives:  the 
Ambiguity of different in sameness and the Ambiguity of generalization.  
The discourse is explorative, with ambiguities arising both as a part of and a 
consequence of the students’ exploration routines. These ambiguities are challenges 
that must be addressed before the students can make progress in their further reasoning. 
It is crucial for the teacher to identify what these ambiguities are and understand the 
reasons for their occurrence. Ambiguities play an important role in the students’ 
argumentation training and mathematical theory use. Often, they are necessary for 
students to continue in an explorative phase of the discussion. The explorative phase 
refers to the part of a narrative that consists of exploration routines. 
The result indicates that ambiguities, as aspects of communication gaps, have 
significance in how narratives are endorsed. In the empirical context, narratives with 
ambiguities can be interpreted as challenges, necessitating students to employ 
explorative routines such as constructions, substantiations, and recalls to reach a 
solution. The ambiguities that arise often depend on how mathematical symbolic 
language is utilized (Barwell, 2003). The task under discussion requires students to use 
mathematical notations. Despite being perceived as solution-focused, their reasoning 
becomes more explorative than ritualized and the students are compelled to delve 
deeper into their descriptions of mathematical objects. 
There are several “clarifiable” ambiguities (Peterson et al., 2020) throughout the entire 
reasoning process. However, the ambiguities identified in this study differ, as they do 
not appear as easily “clarifiable” to the students, making resolution less 
straightforward. Nevertheless, addressing these ambiguities is crucial for the students 
to make progress. Additionally, these ambiguities do not always involve situations 
where it is unclear what the students are referring to. Instead, visual mediators like 
pictures and graphs are used to clarify the mathematical objects they are discussing. 
Recognizing the role of ambiguities can contribute to better understanding of students’ 
process of narrative endorsement and what new narratives that they need to create. 
Awareness of the different ambiguities, their nature, and their role in the discourse is 
essential for how mathematics teacher educators can support students’ development in 
mathematical reasoning. The teacher’s knowledge of the various types of ambiguities 
can also make students aware of how a problem-solving process can be productive for 
learning mathematics. 
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PARENT PERCETIONS OF THEIR MATH PARENTING ROLES 
IN THE HOME MATH ENVIRONMENT 

Anastasia Betts and Ji-Won Son 
University at Buffalo – SUNY 

Type A growing body of research has demonstrated the critical importance of the early 
home mathematics learning environments of children prior to the onset of formal 
schooling in kindergarten.  However, very few studies have looked specifically at 
factors that influence the motivations and decision-making of parents with respect to 
their math parenting.  This study used the RESET framework to examine the 
perceptions of parents (n = 847) of 4- to 5-year-old children who were not yet in 
kindergarten to better understand how they perceived their role and actions in the 
HME. Better understanding of parents as agents in the HME can inform stakeholders 
desiring to improve the success of home intervention and support programs. 

INTRODUCTION & BACKGROUND 
A large body of research supports the impact of early math success on later learning 
(Claessens & Engel, 2013; Duncan et al., 2007; Nguyen et al., 2016; Ritchie & Bates, 
2013; Schweinhart et al., 2005). Success in school math is associated with higher rates 
of secondary graduation, college entry, college graduation, lifetime earnings, and more 
(Schweinhart et al., 2005).  Unfortunately, the math learning of students in the USA is 
in crisis (deBrey et al., 2019; OECD, 2023). International assessments of math 
performance show USA students seriously lagging behind other countries, many of 
whom have just a fraction of the GDP of the United States (OECD, 2023). The National 
Assessment of Educational Progress (NAEP) – a standardized assessment that has been 
administered to 4th, 8th, and 12th grade students since the 1960s—reveals that more 
than 60% of students not proficient in grade level standards (deBrey et al., 2019).  And 
while the past two decades have shown a gradual upward trend in mathematics 
achievement, fully all gains were erased due to the Covid-19 pandemic, returning the 
general population of learners back to 2003 math achievement levels (Bryant et al., 
2023). The United States, long known as a global leader in the fields of mathematics, 
science, and STEM, is not likely to remain so if the rising generations are not proficient 
in mathematics.  
Many children enter formal schooling without the background knowledge needed to 
successfully learn (Betts, 2021; Betts & Son, 2022). These differences in readiness-to-
learn result in some children being able to make the most of the learning that takes 
place in school, while others struggle to learn and master key kindergarten math 
competencies.  Such lost learning opportunities, in turn, contribute to persistent and 
widening gaps in students’ math learning as they move from grade to grade (Duncan 
et al., 2007). And while some children are enrolled in formal preprimary schooling 
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options (e.g., preschool, pre-kindergarten, or transitional kindergarten), approximately 
60% of children are not enrolled in any kind of preprimary school (NCES, 2022). For 
these children, their primary early learning environment is the home, where parents 
and caregivers—who may or may not have the knowledge needed to effectively 
support their children’s early math learning—are their first teachers.  Without more 
equitable beginnings, it is difficult to ensure that every child will have access to the 
best start in mathematics (Huinker et al., 2020). 

THE HOME MATH ENVIRONMENT 
The past decade has seen a growing number of studies focused on the critical 
importance of the Home Mathematics Environment (HME), and the important role that 
parents play in the earliest math learning of children. The quality of a learners’ HMEs 
are crucial in preparing them for mathematics learning in school (Blevins-Knabe, 
2016). Early exposure to math concepts in the home is often lacking, leading to 
disparities in readiness and achievement upon school entry. Factors influencing these 
disparities are thought to include socioeconomic status, parent education level, and 
parental engagement, with children from high-SES backgrounds typically having an 
advantage in early math skills (Blevins-Knabe, 2016). Meta-analyses reveal a wide 
variability in HMEs and confirm the critical role of parental influence on children's 
math readiness (Daucourt et al., 2021; Dunst et al., 2017), emphasizing the need to 
understand and enhance the HME—and parents’ pivotal role in it—to improve 
children's preparedness for formal education. 

PURPOSE OF STUDY 
The purpose of this study was to examine parents’ and caregivers’ (referred 
collectively as “parents” here) perceptions around Mathematical Parenting, defined as 
the cognitions, utterances, behaviors, and practices of parents and caregivers that 
influence the development of their children’s math understanding, knowledge, and 
skills.  The study of the HME has several limitations that the present study seeks to 
address, including limited studies on parents’ roles in the Home Math Environment 
(HME), along with a lack of standardized methodologies and tools for studying the 
HME (Blevins-Knabe, 2016). In response to this, the researchers devised the RESET 
framework which specifically seeks to examine how parents perceive their role in their 
child’s math learning, their math learning expectations for their child, their perceptions 
of their own math skills and knowledge, as well as their parenting self-efficacy, and 
their perceived time and energy available to engage in supportive math parenting 
behaviors (see Table 1).   

RESET Framework Domain Descriptions 

R 
(Role) 

A parent’s construction of their parental role is shaped by their early experiences 
in learning math, the ways in which they were parented, values and beliefs related 
to education, and other peer and societal or cultural influences.  A parent’s role is 



Betts & Son 

 

2 - 74 PME 47 – 2024 

socially constructed and may change in response to changing social conditions, 
parent efforts and education (e.g., parent education or intervention programs, or 
even the child themselves), or the accumulation of life experiences. 

E 
(Expectations) 

The parent’s expectations for the child’s performance or development in 
mathematics is influenced by the value that the parent places on the learning of 
mathematics, its perceived role in the life of the parent and child, its perceived 
impact on the future success of the child, and the parent’s knowledge and 
awareness of the mathematics concepts and skills appropriate for the child’s age 
and developmental level.   

S 
(Skills) 

Parents’ perceptions of their own mathematics skills and knowledge impact the 
ways in which they choose to interact with their children through mathematics, the 
types of skills and concepts they emphasize, and the expectations they have for 
their children’s math development (e.g., if a parent feels like his or her life 
opportunities were limited because of weak math skills, they may conversely adopt 
higher expectations for their child’s math learning in order to ensure the child is 
not limited by lack of math knowledge and skills). 

E 
(Efficacy) 

Parents’ sense of self-efficacy is related to their belief in their ability to 
successfully support the math development of their child.  It is influenced by their 
perceptions of math skills and knowledge, and influences their expectations for 
their child’s math learning, as well as the ways in which they engage their child in 
mathematics activities.  

T 
(Time) 

Parent engagement in shared math activity is influenced by their perceptions of 
the time and energy available to participate.  Further, parent perceptions of time 
and energy may be impacted by parents’ perceived skills and knowledge and 
personal sense of self-efficacy. For example, more time and energy may be 
required from parents with low self-efficacy to engage meaningfully with their 
children through mathematics (more time to prepare in order to feel confident and 
comfortable, more anxiety that saps energy, etc.). 

Table 1: The RESET Framework 
THEORETICAL FRAMEWORK 
The RESET Framework (Table 1) is grounded in Vygotsky’s (1986) work detailing 
the importance of the more knowledgeable other in the learning dynamic, 
Bronfenbrenner’s (1992) ecological systems theory of learning that describes how 
different spheres of influence shape an individual’s (e.g., parent’s) learning, beliefs, 
values, and behaviors, Mowder’s (2005) parent development theory that describes the 
ways in which parents learn to do the work of parenting, and Hoover-Dempsey and 
Sandler’s (1997) work on the factors that impact parental involvement in children’s 
learning. Based on 847 parents’ responses on the RESET survey, the current study 
reports parents’ perceptions on role, expectations, skills, efficacy, and time in the HME.  
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METHODS 
The research questions that guided this study are: (1) How do parents perceive their 
role, expectations, skills, efficacy, and time in their Home Early Mathematics 
Environments? (2) How do their perceptions on the RESET differ by race, gender, 
socio-economic status? The sample included a diverse, nationwide group of parents (n 
= 847) of 4-5-year-old children who had not yet started kindergarten. They were 
recruited and screened by a commercial panel provider (Innovate MR, n.d.) for 
participation in a digital online survey. The sample included parents who represented 
a diverse set of genders, ethnic, income, and educational backgrounds (see Table 2).   
 

Category Level Frequency Percent 
Valid 
Percent 

Cumulative 
Percent 

Gender Female 626 73.9 73.9 73.9 

 Male 210 24.8 24.8 98.7 

 Non-Cisgender 11 1.3 1.3 100.0 

Ethnicity White 596 70.4 70.4 70.4 

 African American 83 9.8 9.8 80.2 

 Hispanic or Latino 55 6.5 6.5 86.7 

 Indigenous 12 1.4 1.4 88.1 

 Asian 28 3.3 3.3 91.4 

 Multiracial 73 8.6 8.6 100.0 

Age Under 25 years old 43 5.1 5.1 5.1 

 25 to 34 years old 437 51.6 51.6 56.7 

 35 – 44 years old 299 35.3 35.3 92.0 

 45 and older 68 8.0 8.0 100.0 

Income Under $50K Annual 391 46.2 46.2 46.2 

 $50K to $100K Annual 299 35.3 35.3 81.5 

 Over $100K Annual 157 18.5 18.5 100.0 

Education HS/Less than college 313 37.0 37.0 37.0 

 Some College 244 28.8 28.8 65.8 

 Undergrad or Grad Degree 290 34.2 34.2 100.0 

Child 
School           

Daycare 36 4.3 4.3 4.3 

Preschool/Pre-k 514 60.7 60.7 64.9 
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Home 297 35.1 35.1 100.0 

Table 2: Sample Demographics (n = 847) 
RESULTS 
Parents completed the RESET Survey Instrument (Betts & Son, 2022), which included 
30 items, with 6 items each across the domains of RESET, which were previously 
tested in two separate studies and deemed reliable (α > .70).  Parent responses on 6 
items in each domain were combined to create composite mean scores for each domain 
(e.g., Role Mean of 5.67, etc.). These composite mean scores acted as proxies for parent 
perceptions of the RESET that describe the home early math environment, with higher 
composite means indicating more positive perceptions, and lower means indicating 
more negative perceptions. In general, parents expressed higher perceptions of Role 
(M = 5.66, SD = .87) and Expectations (M = 5.76, SD = .84), and lower perceptions 
of their math Skills (M = 4.58, SD = 1.41), math self-efficacy (M = 5.09, SD = .99), 
and Time that they devoted for their kid learning at home (M = 4.76, SD = 1.06) (see 
Table 3).  However, means below 5.00 represent composite scores that indicate 
ambivalent or negative perceptions along a domain. 
 

 Role 

(α = 
.72) 

Expectations 

(α = .78) 

Skills 

(α = .85) 

Efficacy 

(α = .74) 

Time 

(α = .73) 

Mean 5.66 5.76 4.58 5.10 4.67 
Std. Deviation .87 .84 1.41 .99 1.06 
Variance .75 .71 2.00 .98 1.13 

Table 3: Parent perceptions RESET (Means, SDs, Var.) 
A series of statistical tests (e.g., One-Way ANOVAs, Tukey’s tests for multiple 
comparisons, Multiple Linear Regression, Two-Step Cluster Analysis, etc.) were 
performed to examine differences on RESET means across a number of categorical 
variables that include race, gender, socio-economic status (See Table 1). [put in some 
explainer for how the non-cisgender parents were groups with mothers or fathers]. 
Parent Gender revealed a statistically significant difference between Mothers and 
Fathers in their perceptions of Role (p = 0.012, 95% CI = [0.03, 0.36]), with Mothers 
having higher perceptions of their Role in their children’s math learning.  Conversely, 
Fathers demonstrated significantly higher perceptions of their math Skills (p < 0.001, 
95% CI = [0.36, 0.88]), and self-Efficacy (p = 0.0, 95% CI = [-0.01, 0.36]) than 
Mothers when engaging in mathematical parenting. There were no statistically 
significant differences in Expectation and Time between parents of either male or 
female gender, and parents who identified as non-cisgender. 
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Multiple linear regression analysis found that the independent variables of parent Age, 
Gender, Education, and Income were significant for one or more of the RESET 
domains. For the dependent variable of Role, parent age was found to be a significant 
predictor (β = .086, p = .042), while parent gender had a significant negative 
relationship (β = -.140, p = .027) confirming that mothers had significantly higher 
perceptions of their Role than did fathers. The linear regression equation for the 
dependent variable Role with both parent age and parent gender as predictors would 
be: Role = β0 + β1(parent age) - 0.140(parent gender (father)) + ε. For the dependent 
variable Expectations, parent age (β = .112, p = .006) and education (β = .123, p = 
.002) were significant predictors. For the dependent variable Skills, parent gender (β = 
.331, p = .001), education (β = .228, p < .001), and income (β = .215, p = .003) were 
significant predictors. For the dependent variable Efficacy, parent education was a 
significant predictor (β = .127, p = .006). Finally, for the dependent variable Time, 
parent age was a significant predictor (β = .107, p = .040). Accordingly, the following 
linear equations can be created:  

• Expectations = β0 + 0.112(parent age) + 0.123(education) + ε;  
• Skills = β0 + 0.331(parent gender) + 0.228(education) + 0.215(income) + ε;  
• Efficacy = β0 + 0.127(education) + ε;  
• Time = β0 + 0.107(parent age) + ε 

These results suggest that parent age, gender, education, and income may have 
different impacts on different aspects of parents' perceptions of their math parenting 
roles and expectations. This was confirmed during two-step cluster analysis identified 
two distinct clusters including: Cluster 1, characterized by parents who tended to have 
less education (high school degree or no college), lower income (less than $50K 
annually), lower percentages of children in preschool-PreK, higher percentages of 
mothers, younger parents (25-35-years-old), and RESET means of Skills (M = 4.33), 
Efficacy (M = 4.98), and Role (5.66). Cluster 2 was characterized by parents who 
tended to have more education (college degree), higher income (over $100K annually), 
included higher percentages of children in preschool/PreK, fathers, older parents (35 
years old and up), with RESET means of Skills (M = 5.06), Efficacy (M = 5.30), and 
Role (5.65). Comparing RESET means across the two clusters revealed that parents 
with lower education, income, higher percentage of mothers and children at home had 
much lower perceptions of their Skills and Efficacy than parents from Cluster 2, though 
both groups had similar perceptions of their Roles. 

DISCUSSION 
The research discussed here represents work in progress and has only begun to scratch 
the surface of how parents develop their perceptions around math parenting. Results 
show that different parent characteristics, such as gender, age, education level, and 
income all significantly impact parent perceptions around RESET, albeit in different 
ways. Results further suggest that for stakeholder partnerships with parents and 
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families to be successful, different supports and resources should be considered for 
different subgroups of parents characterized by different needs.  For example, younger 
parents (even of those with children in preschool or prekindergarten) may need more 
support than do older parents.  Additionally, parents with less educational and income 
resources exhibit lower perceptions of their skills and efficacy and would also benefit 
from more support.  Most of all, cluster analysis revealed that most children not 
enrolled in preschool or pre-K were being parented by parents with lower resources, 
skills, and efficacy (Cluster 1), making them most at risk for lack of math-learning 
readiness at the onset of schooling. Further research should consider how this subgroup 
of parents may be reached and better supported so that their children might also begin 
kindergarten ready to learn. 
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FACILITATORS’ CATEGORIES WHEN NOTICING A FICTIONAL 
PD-SITUATON: PEDAGOGICAL CONTENT VS. GENERAL 

PEDAGOGIC FOCUS  
Vanessa Bialy, Victoria Shure, Malte Lehmann, and Bettina Roesken-Winter 

Humboldt-Universität zu Berlin 

Professional development (PD) courses contribute to the improvement of mathematics 
instruction, requiring facilitators to possess specific expertise for effective navigation 
of complex instructional scenarios. This study explores the identification of clusters 
pertaining to facilitators’ categories when engaging in noticing of a fictional PD 
situation. Three clusters emerged: Cluster A exhibits the use of pedagogical content 
knowledge on the PD level (PCK-PD), cluster B accentuates general pedagogical 
content knowledge on PD level (GPK-PD), and cluster C strongly emphasizes GPK-
PD. Although facilitators (N = 156) across clusters share similar teaching 
experiences, variations exist in their facilitation experiences. These findings provide 
valuable insights for aligning PD courses with the specific needs of facilitators.  

INTRODUCTION 
Professional development (PD) courses play a pivotal role in mathematics education, 
enhancing teachers’ skills and contributing to the overall improvement of mathematics 
instruction (Prediger et al., 2022), with facilitators playing an important role in teacher 
learning (e.g. Borko et al., 2011). Specifically, facilitator expertise, including 
facilitators’ ability to engage in noticing during PD courses, supports this learning. 
Drawing on van Es and Sherin’s (2002) framework, noticing involves (a) recognizing 
the significance or noteworthy aspects of a situation, (b) establishing connections 
between specific interactions and the broader principles of teaching and learning they 
embody, and (c) employing contextual knowledge to reason about interactions within 
the given context. These skills are crucial for facilitator expertise in PD settings, 
enabling facilitators to adeptly navigate complex instructional scenarios. Research on 
facilitator expertise in mathematics education, addressing what facilitators need to 
know to create substantial, content-specific learning opportunities for teachers, 
emerged through the work of Zaslavsky and Leikin (1999). Recent research, however, 
has often emphasized generic aspects by viewing PD as a singular entity, thereby 
overlooking specific content-related considerations (Prediger et al., 2022). To consider 
content-related aspects, this study delves into aspects of content-related PD, exploring 
facilitators’ categories, such as pedagogical content knowledge on the PD level (PCK-
PD) and general pedagogical knowledge on the PD level (GPK-PD). We examine the 
categories facilitators use when engaging in noticing of a fictional PD situation, 
identify clusters and characterize them in terms of teaching and facilitation experience 
as a means of aligning PD courses with facilitators’ needs.  
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Facilitator expertise for noticing during PD courses 
Van Es and Sherin’s (2002) noticing framework for teachers can be transferred to 
facilitators and professional development settings. The three essential elements – 
identifying crucial aspects, making connections, and leveraging contextual knowledge 
for reasoning – apply across instructional and facilitative contexts (van Es & Sherin, 
2002). This adaptability is evident when aligning this framework with the PID-model 
proposed by Kaiser et al. (2015), which emphasizes situation-specific skills such as 
perceiving events, interpreting activities, and decision-making. Whether in a classroom 
or a professional development setting, perception, interpretation, and decision-making 
are fundamental processes contributing to the diagnostic competence and adept 
navigation of diverse aspects of teaching or facilitation (Hoth et al., 2016). 
While the examination of mathematics facilitators’ expertise, especially for specific 
mathematics PD content, is still a developing field, research has shown how 
facilitators’ expertise is essential for the quality of PD programs (Borko et al., 2011). 
Frameworks for considering teachers’ expertise have been lifted to the facilitator level 
(Prediger et al., 2019), such as the ROGI framework that examines facilitators’ 
resources, orientations, goals, and identities (Karsenty et al., 2023). Prediger et al. 
(2022) also lifted a framework for teacher expertise (Prediger, 2019) to a framework 
for content-related facilitator expertise, merging a cognitive and situated perspective 
(suggested, for example, by Borko et al., 2014). The framework contains jobs as typical 
and complex situational demands that go hand in hand with facilitation of specific PD 
content, and practices as recurring patterns of facilitators’ utterances and actions for 
managing the jobs. Facilitators’ practices can be determined by underlying categories, 
pedagogical tools, orientations, and situative goals.  
For this paper, the knowledge that filters and focuses the facilitators’ categories or 
categorial perception and thinking is tied in particular to their pedagogical content 
knowledge for teachers’ professional development (PCK-PD). Thereby, facilitators’ 
PCK-PD reflects the knowledge that facilitators bring to the PD concerning teachers’ 
learning. This could include, for example, knowing about teachers’ diagnosing of 
typical student challenges with the mathematical content and how to help teachers to 
best enhance their student learning with a conceptual focus, such that the construction 
of conceptual understanding of procedures and concepts is prioritized (e.g., Bray, 
2011). Furthermore, PCK-PD includes addressing how to support teachers in focusing 
on long-term student learning by considering students’ learning trajectories and 
connecting to their prior knowledge while also creating a cognitively activating and 
adaptive learning environment (Prediger et al., 2023). Another important aspect lies in 
enabling teachers to help their students engage in collaborative communication and 
discussion with one another about the mathematical ideas (Prediger et al., 2023; 
Walshaw & Anthony, 2008). General pedagogical knowledge on the professional 
development level (GPK-PD), on the other hand, includes managing and instructing 
courses and addressing challenges like teacher resistance and motivation, extending 
beyond mathematics (Prediger et al., 2022). 
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PRESENT STUDY AND RESEARCH QUESTIONS 
Given the importance of facilitator expertise for the quality of PD programs, as 
highlighted by frameworks like ROGI (Karsenty et al., 2023) and Prediger’s (2022) 
content-related facilitator expertise framework, our focus is on facilitators’ categories, 
examining their ability to diagnose challenges of teacher learning, prioritize conceptual 
understanding, and help teachers create an engaging learning environment. To gain 
insight into where facilitators stand in terms of their noticing categories at the 
beginning of their own one-year PD-course, the following questions guided the study:  
RQ1: Can different clusters for facilitators’ categories be identified when they engage 
in noticing of a fictional PD situation?  
RQ2: How can these clusters be characterized in terms of teaching and facilitator 
experience?  

METHODOLOGY 
Participants, context, and data collection 
The present study is situated within the large-scale PD program QuaMath, which aims 
to improve PD quality, and, ultimately, mathematics instruction in Germany. The 
program duration is 10 years, with an outreach of approximately 10,000 schools from 
primary to secondary level. The focus on instructional quality is guided by five 
principles for mathematics teaching, gained by an extensive literature review: 
conceptual focus, cognitive demand, student focus and adaptivity, longitudinal 
coherence, and enhanced communication (Prediger et al., 2023). First, facilitators 
attend a one-year PD program dedicated to exploring the five principles in detail for 
different mathematics topics, and how to support teacher learning in this respect. 
Second, they then provide the PD courses for teachers themselves. Particularly, the 
facilitator PD aims to strengthen their situation-specific skills in relation to teachers’ 
learning of the five principles.  
PD facilitators from 15 out of 16 Federal States in Germany started the program in 
September 2023. Among them, N = 156 facilitators from the primary level, with M = 
15.5 (SD = 9.7) years of mathematics teaching experience, opted to participate in this 
study. Facilitation experience ranges anywhere from 0 to more than 7 PD sessions held 
as facilitators. Prior to the start of the program, the facilitators completed a survey 
containing demographic questions as well as a situated assessment of their noticing 
skills in regard to teacher utterances regarding the main principles of the program. 
Thus, respective aspects could be raised with respect to noticing a fictional dialogue of 
teachers from a PD, discussing the use of a digital learning application (app) in the 
classroom (Figure 1). In this fictional dialogue, the teachers primarily discuss short-
term and motivational benefits of the use of the learning app. Aspects such as teaching 
for conceptual understanding in a long-term manner, promoting cognitive activation 
for students, monitoring students’ learning and grounding instructional decisions on 
their progress, as well as developing a communicative learning environment are not of 
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focus. The facilitators were asked to respond to the following questions: 1) Briefly 
describe what stands out to you about this discussion amongst teachers in a PD. 2) How 
would you interpret the statements of the three teachers? 3) As a facilitator, how would 
you respond? Answers to questions 1 and 2 are viewed as the facilitators’ perception 
and interpretation of the situation, with no further distinction being made between the 
two skills. Question 3 evokes facilitators’ decision-making. 

 

Figure 1: PD situation - dialogue amongst teachers concerning the use of an app. 
Data analysis 
Facilitators’ responses to the three questions were analyzed regarding the categories 
they used to perceive, interpret and decide upon the situation. For the data analysis, we 
followed Prediger’s et al. (2022) distinction between facilitators’ general pedagogic 
knowledge (GPK-PD), and pedagogical content knowledge (PCK-PD) for teacher PD. 
Furthermore, we combined a deductive with an inductive approach. With respect to 
facilitators’ PCK-PD, we coded the data with aspects of the five principles conceptual 
focus, cognitive demand, student focus and adaptivity, longitudinal coherence, and 
enhanced communication. For each answer, these categories were rated 0 (category 
was not addressed), and 1 (category was addressed). No additional categories emerged 
from the data. With respect to facilitators’ GPK-PD, we drew on inductively coding 
facilitators’ responses. In sum, we yielded the following six categories that were then 
finally coded for the whole data set: atmospheric argumentation, general digital media 
focus, methodological individualization, short-term success, affective-motivational 
aspects, and general description. For both PCK-PD and GPK-PD, each question 
response in its entirety comprised the unit of analysis. That is, the PCK-PD and GPK-
PD subcategories were assigned to facilitators’ perception/interpretation of the 
situation (questions 1 and 2), and their decision-making (question 3). A team of 
researchers piloted the coding system and after several rounds of discussion, one 
researcher compared the coding with those of the other members of the research team. 
Cohen’s kappa between κ = .88 and κ = .94 for inter-rater reliability was achieved. 
For the facilitators’ perception/interpretation and decision-making, a sum code was 
built for the amount of codes of PCK-PD, and GPK-PD respectively. Subsequently, 
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we conducted a hierarchical agglomerative cluster analysis, using Ward’s method, in 
which similarly employed types of facilitators’ categories were grouped together in an 
accumulating manner to generate clusters of facilitators using similar categories 
(Clatworthy et al., 2005). Levene’s test was conducted to assess the homogeneity of 
variances across the clusters, and showed that equal variances for PCK-PD for 
perception/interpretation and decision-making, and GPK for decision-making could 
not be assumed for all of them (p < .001). To examine the statistical significance of 
differences of PCK-PD and GPK-PD usage in perception/interpretation and decision-
making, we performed ANOVA and Welch-Test, which revealed significant 
differences between the clusters. Subsequent post-hoc tests (Tukey and Games Howell) 
revealed which clusters accounted for these differences. 

RESULTS 
In regard to the first research question, we yielded three different clusters for 
facilitators’ categories when noticing the fictional PD situation. The first cluster, 
cluster A (n = 45), is characterized by facilitators relying rather on PCK-PD for both 
perception/interpretation (P/I) and decision-making (D). Thereby, PCK-PD entails 
mentioning aspects of conceptual focus, cognitive demand, student focus and 
adaptivity, longitudinal coherence, and enhanced communication in relation to the 
teacher utterances. Using PCK-PD for both perception/interpretation and decision-
making is significantly higher in this cluster compared to the other two clusters (P/I: 
Welch’s F(2, 87.84) = 20.06, p < .001; D: Welch’s F(2, 80.51) = 118.58, p < .001). 
Cluster B (n = 69) exhibits a focus on GPK-PD in perception/interpretation and 
decision-making, accompanied by moderate scores on PCK-PD usage. GPK-PD 
comprises aspects such as atmospheric argumentation, general digital media focus, 
methodological individualization, short-term success, affective-motivational aspects, 
and general description to respond to teachers’ statements in the fictional PD situation. 
Meanwhile, cluster C (n = 42) shows a strong focus on GPK-PD. The use of GPK-PD 
for both perception/interpretation and decision-making is significantly higher in cluster 
C than in the other two clusters (P/I: F(2, 153) = 26.36, p < .001; D: Welch’s F(2, 
73.90) = 65.27, p < .001). Table 1 provides an overview on the three clusters. 

 Cluster A (n = 45) 
PCK-PD focus 

Cluster B (n = 69) 
GPK-PD focus 

Cluster C (n = 42) 
strong GPK-PD focus 

PCK-PD 
P/I 1.32 (0.98) 0.41 (0.58) 0.27 (0.47) 
D 2.20 (0.87) 0.13 (0.34) 0.14 (0.35) 

GPK-PD 
P/I 0.78 (0.80) 1.43 (0.90) 2.23 (1.09) 
D 0.69 (0.76) 0.97 (0.42) 2.33 (0.75) 

Table 1: Clusters for facilitators’ categories when noticing the fictional PD situation 
(means and standard deviation of PCK-PD, maximum score 5, and GPK-PD, 

maximum score 6). 
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The following statements from facilitators in cluster A exhibit what their focus on 
PCK-PD for both perception/interpretation and decision-making entails: 

I think that the teachers may not have internalized the principle of conceptual focus in math 
instruction or that they may see the app as a relief of their work, as so many children are at 
different performance levels. (Perception/interpretation, Facilitator A_1, PCK-PD 
subcategory: conceptual focus) 
I would ask what content goals are pursued with the app and which competencies can be 
promoted through it. Additionally, I would inquire about alternatives. What advantages 
does the app offer compared to other forms of instruction? (Decision-making, Facilitator 
A_2, PCK-PD subcategory: longitudinal coherence) 

Instances from facilitator statements in cluster C, exemplify what a strong GPK-PD 
focus for both perception/interpretation and decision-making encompasses:  

Ms. Özdemir shows a rather negative attitude towards digital media. Ms. Maier keeps a 
close eye on her students regarding the positive effects this app can have. With every new 
idea, one should always consider how it can be integrated into the classroom and what 
benefits it has for teachers and students, as well as any potential drawbacks. 
(Perception/Interpretation, Facilitator C_1, GPK-PD subcategories: general digital media 
focus, short-term success, general description) 
I would appreciate and thank the participants for contributing their own experiences and 
prior knowledge. I would ask someone else to explain the app to the other participants and 
possibly facilitate its use if I am familiar with it. I would encourage all participants to share 
their own experiences with it. (Decision-making, Facilitator C_2, GPK-PD subcategories: 
atmospheric argumentation, general digital media focus) 

Regarding research question 2, we further characterized the clusters in terms of 
facilitators’ teaching and facilitation experiences (Table 2).  

 Cluster A Cluster B Cluster C 
Mathematics teaching 
qualification  

yes: 88.9% 
no: 11.1% 

yes: 82.6% 
no: 17.4% 

yes: 88.1% 
no: 11.9% 

Teaching experience (years) 13.90 (10.30) 16.30 (8.89) 15.73 (10.41) 

Facilitation experience (PD 
courses held as facilitator) 

0: 22.2% 
1-6: 20.0% 
>7: 57.8% 

0: 24.6% 
1-6: 23.2% 
>7: 52.2% 

0: 45.2% 
1-6: 14.3% 
>7: 40.5% 

Table 2: Facilitators’ teaching and facilitation experiences for the three clusters. 
The proportion of facilitators without a mathematics teaching qualification in clusters 
A and C is comparable, being higher in cluster B. Facilitators in cluster B possess the 
most teaching experience, while only slight differences exist among the clusters. In 
cluster A, with the PCK-PD focus, facilitators have the most experiences as facilitators, 
with 57.8% having held over 7 PD courses. Facilitators in cluster B show similar 
experiences, with 52.2% having facilitated over 7 PD sessions. In cluster B, 24.6% 
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have no facilitation experience, compared to 22.2% in cluster A and 45.2% in cluster 
C. Cluster C, whose facilitators showed a strong GPK-PD focus, comprises the cluster 
with the least facilitation experience. 

DISCUSSION AND CONCLUSION 
With respect to facilitators’ situation-specific skills, we found differences regarding 
the categories that were applied when perceiving and interpreting a fictive PD situation 
and making decisions on how to deal with teachers’ statements. The three clusters 
reveal substantial differences of how facilitators noticed the situation, ranging from a 
PCK-PD to a strong GPK-PD focus. Facilitators who applied PCK-PD categories 
discussed, for instance, whether teachers questioned if the app helps students to gain 
conceptual knowledge or if long-term goals can be achieved. On the contrary, 
facilitators from the other two clusters focused on GPK-PD categories, placing 
emphasis, for example, on atmospheric aspects, such as appreciating teachers’ 
statements. Alternatively, they highlighted that teachers attended to students’ sense of 
achievement by the short-term success provided by the app. Even more so, facilitators 
in cluster C applied many different GPK-PD aspects, and did not rely on content-
specific aspects of teachers’ learning. In sum, we gained insight into how differently 
facilitators perceived, interpreted and decided how to react to the fictional PD situation. 
The three clusters also revealed differences regarding facilitators’ background. They 
share almost the same amount of teaching experience, with nearly 20% of facilitators 
in cluster B teaching out-of-field. However, they differ from each other regarding their 
facilitation experiences. In cluster A, which has a focus on PCK-PD, facilitators are 
the most experienced, with experience decreasing from cluster B to C. In cluster C, 
nearly 50% of the facilitators are inexperienced.  
In our study, we accessed facilitators’ approximated noticing by using a situated 
approach that allows for economically gaining insight into their situation-specific 
skills. One limitation lies in using only one situation and analyzing categories as only 
one specific aspect of facilitators’ expertise. However, we gained insight into where 
facilitators stand in view of their noticing categories at the beginning of their own one-
year PD course. Within the QuaMath project, facilitators’ gaining of PCK-PD 
categories for supporting teachers’ learning of the five principles for substantial 
mathematics teaching is in the focus. So far, such PCK-PD aspects are only evident for 
facilitators in one cluster. Our research thus contributes relevant information on how 
to align PD design to fit facilitators’ specific needs. 
Additional information 
This research was funded within the project QuaMath, financed by the Standing 
Conference of the Ministers of Education and Cultural Affairs (KMK) in Germany.   
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STUDENTS’ EXPLANATIONS FOR UNIT CONVERSIONS: 
SPECIFYING UNDERLYING STRUCTURES TO BE ADRESSED 

Sofia Bielinski1 and Susanne Prediger1,2  
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2 IPN Leibniz Institute for Science and Mathematics Education Berlin, Germany 

Visual models have been widely used to promote students’ understanding for mathe-
matical procedures. Yet students’ explanations using visual models can reveal under-
estimated complexities that need to be unpacked to provide targeted learning opportu-
nities. In our qualitative study, we analyzed how 10–12-year-old students explain the 
conversion of mass units, and we unpacked what different connections between repre-
sentations need to be verbalized. The analysis revealed that students who connect the 
representations draw upon three kinds of underlying structures: bundle structures, re-
finement structures, and place-value structures. All should be explicitly focused on and 
supported in future designs for teaching-learning arrangements.  

EXPLAIN UNIT CONVERSION: A LEARNING GOAL TO BE UNPACKED 
Increasing consensus exists that students should not only learn to explain the meaning 
of mathematical concepts (e.g., fractions), but also procedures (e.g., multiplication of 
fractions; Kilpatrick et al., 2001), often by support of visual models. For various arith-
metical procedures, students have been engaged in explaining procedures through vis-
ual models, and studies have repeatedly shown that visuals do not automatically help 
unless students focus on the relevant mathematical structures in the visuals (Fuson et 
al., 1997; Glade & Prediger, 2017). Based on these findings, learning environments for 
arithmetical procedures have been increasingly focused on relevant structures.  
Our overall design research study aimed at transferring this approach from arithmetic 
to an essential procedure in measurement, unit conversion, which can also be con-
ducted symbolically or by visual-based strategies (e.g., with the visual model in Figure 
1). In this paper, we qualitatively analyze how students explain the conversion of mass 
units with the visual model to unpack what its explanation entails in detail.  

 

Figure 1: Explaining the procedure of converting mass units:  
task and design of a visual tool (Bielinski et al., submitted)  
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THEORETICAL BACKGROUND  
Explaining with visual models requires focus on underlying structures 
For enhancing students’ understanding of procedures, visual models (graphical repre-
sentations or manipulatives) have been widely used, particularly in arithmetic educa-
tion (Lesh, 1979). Yet students have been shown not to profit automatically from the 
use of visuals unless they learn to impose structures onto the visuals, for instance, in 
the part-whole structures for adding in fraction bars (Lesh, 1979), place-value struc-
tures onto base-ten blocks for multi-digit subtraction (Fuson et al., 1997), or multipli-
cative bundle structures for distributive factorizing of multiplications (Clark & Kamii, 
1996; Tondorf & Prediger, 2022). 
In particular, when students are asked to explain why a procedure works, the explicit 
description of structures is crucial (Glade & Prediger, 2017). Hence, instructional sup-
port should be provided for students to focus on and articulate those conceptual struc-
tures underlying the procedure in view (Fuson et al., 1997). A typical schematization 
learning trajectory can thereby be designed in which students learn to (1) translate 
mathematical objects and operations between symbolic and visual representations, (2) 
enact visual-based strategies to represent the procedure in view and read off the result, 
(3) internalize the mathematical structures underlying the visual-based strategies so 
that the strategies can be pursued using only mental processes, (4) find patterns in in-
formal visual-based strategies to schematize them into a formal procedure, and (5) jus-
tify the formal procedure by the underlying structures and patterns (Treffers, 1987; 
Glade & Prediger, 2017). Whereas Steps 1 and 2 of the learning trajectory can be con-
ducted in purely empirical modes of enactment and reading off (perhaps without seeing 
underlying structures), Steps 3–5 can be promoted by asking students to explain the 
procedures and focusing their attention on the underlying structures. 
To support students’ focus on structures within the design of the learning environment, 
however, the most relevant structures for a particular topic must be specified by the 
design researcher, so that adequate scaffolds can be constructed (Fuson et al., 1997).  
Transferring the schematization approach to a less investigated topic:  
Explaining procedures of mass unit conversion  
Compared to the well-researched area of arithmetic, measurement has continued to be 
“a key, but under-researched area of the learning of mathematics” (Cheeseman et al., 
2017, p. 144). While students’ understanding of key measurement concepts (such as 
length or area) has been thoroughly investigated, little is known on students’ under-
standing of unit conversion, an essential procedure in the field of measurement (sum-
marized in Smith & Barrett, 2017). For our study, we chose mass, the most neglected 
among the measurement quantities (Cheeseman et al., 2017; Smith & Barrett, 2017), 
aiming to unpack what exactly is needed to explain how to convert kilograms into 
grams. For this, we aimed at transferring schematization pathways established in arith-
metical procedures (see above) to unit conversion for mass units.  
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Figure 2: Conceptual framework for initiating and analyzing  
student explanations in visual-based conversion of mass units 

In the digital teaching learning arrangement that we have designed in our overarching 
design research project divomath (Bielinski et al., submitted), students are introduced 
to the visual model of base-ten blocks on the balance scale (Figure 1). The balance 
scales conveys the relational meaning of the equal sign as “equally heavy,” the base-
ten blocks support bundle structures of 1000 in each block and base 10 in each digit.  
Students’ learning opportunities are sequenced in a schematization trajectory similar 
to those described above for arithmetical procedures in the following steps: Students 
first learn to interpret and compare mass units through translating symbolic measures 
into blocks (“2400g can be represented by two 1000g blocks and four 100g flats.” 
“2.4kg can be represented by two 1kg-blocks and four flats of 0.1kg.”). The conversion 
equality “2.4kg = 2400g” is then interpreted as an equilibrium on the balance scale that 
can be read off the interactive digital balance scale tool in an empirical mode without 
explicit reference to structures (the balance scale goes down for the heavier blocks). 
To explain the unit conversion (and internalizing structures), students need to over-
come this empirical mode of reading off the visual and refer to the bundle structures 
underlying the place-value system and the conversion factor 1000: For converting 
2400g into kg, students need to connect the symbolic representation of “2400g” with 
the bundle representation “2 thousands and 4 hundreds in g” and then to the visual 
representation of the two large green blocks and four green flats. These green blocks 
and flats are as heavy as two blue blocks and two blue flats, so the student converts 
this by exchanging green for blue blocks within the visual representation. Before trans-
lating this representation into symbolic measures in kg, students need to connect them 
to the bundle representation: two ones and four tenths in kg, which can then be trans-
lated into the symbolic representation as 2.4kg. Once the students understand that the 
blocks with equal weight come with refining a 1kg block into a 1000g block, they can 
schematize the visual-based conversion strategy into a symbolic transformation of 
2400g x 1000 g/kg = 2.4kg. Hence, the bundle structure is a representation mediating 
between the symbolic and visual representation (as in Fuson et al., 1979), further struc-
tures can be identified empirically.  
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Research question 
Connecting six different representations bears a remarkable complexity. The state of 
research on similar schematization challenges for arithmetical procedures (Fuson et al., 
1997; Tondorf & Prediger, 2022) has suggested that students might produce hetero-
genous ways of explaining the connections. We unpack these complexities and heter-
ogeneities in two research questions:  
RQ1. How do students explain unit conversion of mass units using the visual model?  
RQ2.  On which underlying structures do they draw to connect representations? 

METHODOLOGICAL FRAMEWORK  
Methods of data collection for unpacking students’ oral explanation 
The study presented in this paper is embedded in a larger design research study focus-
ing the reconstructive part rather than the iterative design consequences. As 10–12-
year-old children rarely write long explanations, we captured their oral explanations 
articulated as they worked with the interactive visual model (Figure 1). For this, we 
conducted design experiments in laboratory settings with 18 pairs of students, partici-
pating in two or three 45-minute design experiment sessions each. From about 34 hours 
of video recorded during design experiment sessions on mass unit conversion, we tran-
scribed selected episodes and extracted students’ explanations.  
Methods of data analysis 
For the qualitive analysis of students’ transcribed explanations for the focus task from 
Figure 1, we applied a deductive-inductive coding procedure: In Step 1, we deductively 
started from a coding scheme developed for visual-based strategies for transforming 
expressions (Tondorf & Prediger, 2022) and adapted it for visual-based strategies for 
unit conversion. With the adapted coding scheme, students’ utterances were coded with 
respect to (a) the explicitly addressed representations (six vertices in Figure 2) and (b) 
the kind of connections they articulated between the representations (edges in Figure 
2). In Step 2, the coding scheme was inductively deepened to infer the underlying 
structures on which students drew when articulating connections. The analytic out-
comes are presented diagrammatically, with six examples shown in Figure 3. Non-
addressed representations are marked by grey vertices, and addressed representations 
with full colors. Explicitly articulated connections are drawn using arrows on the 
edges. Parts of the transcript are shown in the vertices and edges of the diagram.  

EMPIRICAL INSIGHTS  
Figure 3 collects four examples selected as typical for the whole spectrum of explana-
tions that 36 students provided in design experiments and their analysis. The four ex-
planations explicitly connect different representations (non-articulated representations 
are marked in grey). Jens stays within the representations for kilograms and hints to 
grams only vaguely (Turn 1c), whereas the other three explanations address symbolic 
and visual representations for kilograms and grams. 
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Figure 3: Four explanations and their analytic schemes  
for addressed representations and articulated connections  

Among them, Jan and Matthias explicated the bundle representation that they ex-
pressed as directly tied with the visual representation (not in an abstract form as “the 
thousands” but “the kg-block,” Turn 2a). Engin addressed the coarse and fine blocks 
for the large and small units only without quantification by talking about “in fine” 
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(Turn 3b), yet not about the base 1000. We interpret “it would also be” (Turn 3b) as a 
unidirected expression of equilibrium. Behind these heterogenous connections, we can 
identify underlying structures to which students explicitly or implicitly refer:  
Jens uses bundle structures without alluding to place values when he “cuts a 5kg block 
into five 1kg-blocks” (Turn 1a), with a remarkable concise language, he explicitly dis-
tinguished the large bundle of the “5kg” from smaller bundles “1kg-block” which can 
be counted as 1, 2, 3, 4, 5 1kg-blocks, which is the core idea of multiplicative thinking. 
Similarly, Jan treated tenths as bundles: “0.3kg flat, i.e., three 0.1kg-flats” (Turn 2a). 
It is interesting to see that within our four examples here, the bundle structure was 
always seen in the visual representation, an important indication that the visual model 
served its first purpose. Other students (whose explanations are not shown here) also 
expressed bundles independently from the blocks.  
The bundle structures were often embedded in uses of other features of place-value 
structures: Jan additively split the 2.3kg into ones and tenths (Fuson et al., 1997), say-
ing “2.3kg are 2 kg-blocks and 0.3kg flats” (Turn 2a) and interpreted the face value 
“3” multiplicatively as “three 0.1kg-flats” (Turn 2a). Similarly, Matthias “packed to-
gether” (Turn 4e) five 1000g-blocks into 5000g, using the multiplicative characteristic 
for turning face values into place values. Multiplicative bundle structures are an inte-
gral part of the place-value system, and then need to be combined with other place-
value features, as the role of place and face values and additive splits.  
The third relevant kind of structures are refinement structures. Refinement structures 
can be addressed qualitatively as Engin’s explanation of “two coarse blocks” (Turn 3a) 
that later became “two fine blocks” (Turn 3b). He articulated his awareness of refine-
ment structures by saying, “and in fine, this would be also two blocks” (Turn 3b). Jan 
expressed refinement structures when “converting” (Turn 2b) 2kg blocks into the un-
bundled “2000g cubes” (Turn 2c), using refinement and bundle structures in the same 
moment. Matthias related the two visual representations in an empirical approach, by 
“just as heavy” (Turn 4c). But he immediately combined his empirical approach with 
making refinement structures explicit, not for the blocks alone, but also for the bundle 
structures: “five coarse 1kg blocks ... are just as heavy as five 1000g-blocks” (Turn 4b-
d) is the most interesting phrase. It differs from Engin’s purely qualitative articulation 
of the refinement structures in that it also mentions the bundle of 1000. We depicted 
this other kind of de-bundling with a vertical line connecting two horizontal lines in 
the analytic scheme (Figure 3). In total, we see four different ways of expression the 
conversion process: in a formal symbolic language (Turn 1b); related to the visually 
represented balance scale in an empirical approach, embedded in a complex complete 
phrase (Turn 4b-d) in which the refinement of the bundles is expressed, yet not com-
pletely explicit; in finer and coarser structures in comparisons (Turn 3b); and in visual-
based conversions (Turn 2b).  
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DISCUSSION AND OUTLOOK 
Heterogeneity of addressed connections and underlying structures 
Explaining procedures by means of visual models is generally challenging for children 
(Fuson et al., 1997; Glade & Prediger, 2017; Tondorf & Prediger, 2022); this also ap-
plies to the conversion of mass units in our study. The analysis revealed that children 
were nevertheless able to succeed to manage an amazing complexity. The four explic-
itly presented cases span an impressive heterogeneity in terms of (a) explicitly ad-
dressed representations (all six are addressed overall, but not each by everyone), (b) 
explicitly articulating how the representations are connected (all seven potential con-
nections are articulated by at least one student, but in very different ways), and (c) 
drawing upon different underlying structures. These findings resonate with those in the 
complete data set of 36 students. Figure 4 summarizes the structures we identified as 
relevant in (c) for (a) and (b): besides the bundle structure of multiplicative thinking 
(Clark & Kamii, 1996), we identified base-ten place-value structures with additive 
splits and place-/face-value features (Fuson et al., 1997) and refinement structures 
(Glade & Prediger, 2017) as essential for explaining unit conversion of mass units. For 
the 36 children of the age group in view (10-12 year old), the refinement structures 
seemed to be the newest and most challenging to grasp.  

   

Figure 4: Empirical findings (new in red): Structures identified as relevant for ex-
plaining unit conversion through connecting representations  

 
Limitations and outlook 
Of course, the empirical findings must be interpreted without hasty generalizations, as 
the sample size of 36 students does not allow statistical generalizability. More im-
portantly, the findings are strongly tied to the visual model we offered and the tasks 
and prompts by which students were guided to deal with it. Future studies should in-
vestigate the transferability of the findings to other learning environments, other visual 
tools, and other measurement quantities such as length, time, and money.  
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The current findings, however, already substantially inform the redesign of the teach-
ing learning arrangement: As students’ focus on underlying structures is so critical, 
scaffolds for focusing students’ attention were successively integrated, as were lan-
guage learning opportunities for articulating the structures. The explanation of Mat-
thias in Figure 3 stems from Design Research Cycle 3 in which these integrations had 
already taken place. Further analysis and also a controlled trial are planned to validate 
our current assumption that these structure-focusing phrases can indeed scaffold stu-
dents’ processes of understanding and explain the connections.  
Funding. The design research project divomath is financially supported by the State 
Ministries of Education of North Rhine-Westphalia and Brandenburg (grant to S. Pre-
diger/C. Selter). We thank our project partners. 
 
References 
Bielinski, S., Peters, N., & Prediger, S. (submitted). Digital gestützte Lernpfade hin zum ver-

ständigen Umgang mit Gewichten. Submitted to F. Dilling, D. Thurm & I. Witzke (Eds.), 
Digitaler Mathematikunterricht in Forschung und Praxis. WTM. 

Cheeseman, J., McDonough, A., & Golemac, D. (2017). Investigating children’s thinking 
about suspended balances. New Zealand Journal of Educational Studies, 52(1), 143–158. 
https://doi.org/10.1007/s40841-016-0073-9  

Clark, F. B., & Kamii, C. (1996). Identification of multiplicative thinking in children in grades 
1-5. Journal for Research in Mathematics Education, 27(1), 41–51. 
http://www.jstor.com/stable/749196  

Fuson, K. C., Wearne, D., Hiebert, J. C., Murray, H. G., Human, P. G., Olivier, A. I., Carpen-
ter, T. P., & Fennema, E. (1997). Children's conceptual structures for multidigit numbers 
and methods of multidigit addition and subtraction. Journal for Research in Mathematics 
Education, 28(2), 130–162. https://doi.org/10.2307/749759  

Glade, M., & Prediger, S. (2017). Students’ individual schematization pathways. Educational 
Studies in Mathematics, 94(2), 185-203. https://doi.org/10.1007/s10649-016-9716-5  

Kilpatrick, J., Swafford, J., & Findel, B. (2001). Adding it up. Helping children learn mathe-
matics. National Academy Press.  

Lesh, R. (1979). Mathematical learning disabilities. In R. Lesh, D. Mierkiewicz, & M. Kan-
towski (Eds.), Applied Mathematical Problem Solving (pp. 111–180). Ericismeac.  

Smith, J. P., & Barrett, J. E. (2017). Learning and teaching measurement: Coordinating quan-
tity and number. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 
355–385). National Council of Teachers of Mathematics.  

Tondorf, A., & Prediger, S. (2022). Connecting characterizations of equivalence. Educational 
Studies in Mathematics., 111(3), 399–422. https://doi.org/10.1007/s10649-022-10158-0  

Treffers, A. (1987). Integrated column arithmetic according to progressive schematisation. 
Educational Studies in Mathematics, 18(2), 125–145. https://doi.org/10.1007/BF00314723 

https://doi.org/10.2307/749759


 

 

 2 - 96 
2024. In T. Evans, O. Marmur, J. Hunter, G. Leach, & J. Jhagroo (Eds.). Proceedings of the 47th Conference of 
the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 96–103). PME. 

DO YOU SEE MATH? HOW BAYESIAN INFERENCE AND 
INTERNET MEMES CAN SHED LIGHT ON STUDENTS’ 
UNDERSTANDING OF MATHEMATICAL CONCEPTS 

Giulia Bini 
University of Milan, Italy 

This study examines mathematics students' engagement with visual resources, using 
Bayesian inference and Wittgenstein's "seeing as" concept to explore how they use 
meme templates to represent mathematical concepts. The analysis of memes created 
by two high-school students reveals the significant influence of their mathematical 
knowledge and conceptual understanding on their representations, uncovering 
strengths and weaknesses not easily captured by conventional tasks. The findings 
contribute a fresh viewpoint on students’ understanding of mathematical concepts, 
broadening the conversation on the role of visual inputs in mathematics education. 

INTRODUCTION: THE IMPORTANCE OF VISUAL INPUTS 
The role of sensory perception in the construction of mathematical concepts is widely 
considered pivotal (Andrá et al., 2015; Arzarello et al., 2005). Among sensory 
perceptions, visual inputs are deemed crucial for the understanding of mathematics 
(Arcavi, 2003; Duval, 1999; Presmeg, 2006; Radford, 2010). This importance stems 
not only from the fact that the ability to process visual representations is considered a 
fundamental aspect of human cultural development since cave paintings (Cecchinato, 
2009) but also from the “pictorial turn” of 21st-century culture (Mitchell, 1995, p. 15). 
This shift has overturned the long domination of written text in Western scholarly 
culture. Historically, images were considered a means to communicate with people 
with limited literacy, while written texts were the prerogative of a cultured elite. 
Fuelled by technology, facilitating the creation and diffusion of visual resources, the 
pictorial turn has promoted images to the centre of contemporary “communication and 
meaning-making” (Felten, 2008, p. 60). 

THEORETICAL FRAMEWORK: SEEING AND SEEING AS 
While recognizing the significance of visual inputs in aiding communication and 
meaning-making in the mathematics classroom, the task of choosing appropriate visual 
resources to effectively support learners in constructing and understanding 
mathematical concepts is challenging. Cognitive science has shown that the way our 
brain organises, identifies, and interprets visual sensorial stimuli is subjective and 
strongly influenced by our previous knowledge and expectations (Bernstein, 2008; 
Seriès & Seitz, 2013). Indeed, research has shown that the processing of visual 
information involves both a bottom-up and a top-down progression. In the bottom-up 
phase, our brain processes inputs piecing them together to build up higher-level 
information (e.g., shapes for object recognition). In the top-down phase, our 
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expectations (informed by our prior knowledge) influence our perception. These two 
phases correspond to what Wittgenstein in his Philosophical Investigations (1953) 
calls seeing (the bottom-up input processing) and seeing as (the top-down personal 
interpretation). Wittgenstein illustrates his concept of seeing as, emphasizing the 
subjective nature of interpretation in visual experiences, through the study of 
ambiguous images, exemplified by the duck-rabbit illusion in Figure 1. 

.  
Figure 1: The duck-rabbit illusion 

This visual puzzle, first published in the German magazine Fliegende Blätter on 
October 23rd, 1892, and subsequently investigated by the American psychologist 
Joseph Jastrow in 1899, presents an image that can be interpreted as either a duck or a 
rabbit, depending on the viewer's perception. Since its first appearance, the image has 
become paradigmatic to highlight how “we see with the mind as well as the eye” 
(Kihlstrom, n.d., par. 2), shedding light on the malleability and subjectivity inherent in 
our perceptual experiences. Indeed, it shows that perception is shaped not only by 
external stimuli but also by mental processes and expectations. 
The influence of our expectations on the processing of visual stimuli is exemplified by 
Brugger and Brugger’s study (1993). The study shows how a sample of people 
presented with a stylised version of the duck-rabbit illusion tended to see it as a rabbit 
around Easter and as a duck (or a similar bird) in October. The testing place was at the 
main entrance of the Zurich Zoo in Switzerland; thus, we can imagine that the subjects’ 
expectations could be curved towards seeing an animal, but why a rabbit at Easter and 
a duck in October? We note that in Switzerland rabbit images at Easter and ducks in 
autumn are part of a shared folklore. Thus, Brugger and Brugger show us not only how 
much the subjects’ expectations shape their seeing as but also that, through this seeing 
as, we gain knowledge about the culture that infuses these expectations. 
Research in cognitive neuroscience models the process of seeing as using Bayesian 
inference (Seriès & Seitz, 2013), which allows inferring how our brain evaluates the 
conditional probability that an interpretative hypothesis is true given some input data, 
taking into account a prior probability represented by existing knowledge. Specifically, 
if in Bayes formula 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)∙𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
 we consider A (Hypothesis) as the subject’s 

interpretative hypothesis of some visual sensory inputs B (Data), then Bayesian 
inference offers a mathematical model of how our cognitive system evaluates the 
reliability of an interpretation of visual sensory inputs P(Hypothesis|Data), based on 
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the Likelihood between data and hypothesis P(Data|Hypothesis), on Prior expectations 
P(Hypothesis), and on the Clarity of data P(Data), as detailed in Figure 2. 

 
Figure 2: Bayesian inference on visual inputs interpretations 

Thus, the subject’s perceived probability that an interpretative hypothesis of some 
sensory input data is correct depends not only on the compatibility between data and 
hypothesis (Likelihood) but also on the ratio Prior/Clarity between the subject’s 
expectations and the explicitness of input data. Focusing on this ratio, we see that its 
value gets bigger either when the Prior is very strong, or when the Clarity of the input 
data is very small. Thus, the more visually ambiguous the input data, the more the Prior 
influences the interpretation, as happens in Brugger and Brugger (1993). To sum up, 
our culture and existing knowledge constitute a Prior through which we interpret our 
visual perceptions, and their impact and visibility are all the more evident the vaguer 
is the information contained in the perceived visual stimuli (Esposito et al., 2023). 

INTERNET MEME TEMPLATES AS VISUALLY AMBIGUOUS STIMULI 
Coming to the teaching and learning of mathematics, we can imagine gaining 
knowledge about students’ Mathematical Prior, i.e., their knowledge and 
understanding of mathematical concepts, by investigating how they mathematically 
interpret images that can be considered visually ambiguous inputs from a mathematical 
standpoint. Examples of these images are meme templates (Figure 3): popular images 
diffused on the Web, that users utilise in creating Internet memes. 

 
Figure 3: Samples of meme templates (source Imgflip) 

Internet memes are a form of online cultural expression that rapidly spreads across the 
Web. They are typically relatable images accompanied by user-generated captions that 
evolve as users creatively modify and share them. Memes typically reflect current 
events, social trends or experiences, providing a shared language and cultural 
references within online communities (Bini et al., 2022). Meme templates are the 
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foundational elements from which various mutations of Internet memes are created. 
They serve as a framework for users to insert their own content while adhering to the 
established format (Bini et al., 2023). Templates contribute to the virality of memes by 
offering a familiar structure that users can adapt to convey their unique perspectives or 
reactions, overlaying original texts to express different messages, and fostering a sense 
of collective humour and connection in the landscape of digital culture. 
Meme templates are born outside the mathematical context and are visually ambiguous 
from a mathematical standpoint, i.e. they do not have an intrinsic mathematical content. 
Nevertheless, they can be seen as representations of mathematical concepts and, in this 
sense, they are used within dedicated online communities to create memes representing 
mathematical statements (Bini et al., 2022). 
This research is therefore guided by the following research question: What prior 
mathematical knowledge and understanding can we infer from students’ seeing meme 
templates as representations of mathematical concepts? 

METHODOLOGY AND METHODS 
Data come from a school experiment conducted in May 2018 with a group of 27 12th-
grade learners in a scientific-oriented high-school in Italy. The task, to be completed 
individually at home as an end-of-the-year recap activity, was to create a mathematical 
meme on one of the year's maths topics and record an explanatory video of the 
addressed mathematical concept. Students shared memes and videos through a 
collective digital space, using the free Web-app Padlet, and subsequently their 
productions were the focus of a class discussion. 
Assigning this task sets a cultural scenario that we can expect to activate students’ 
mathematical priors influencing the act of seeing as meme templates as representations 
of mathematical concepts. This cultural scenario is in turn influenced by the way of 
schooling mathematics in the geographical environment that constitutes the setting for 
the experiment. 
In the following July 2018, two of the students were interviewed, Mario and Luca 
(pseudonyms), selected because they created memes that were particularly interesting 
as they used templates to carry part of the mathematical meaning and not simply to 
emotionally reinforce the meme’s message. Students were interviewed together, and 
they were both asked to explain how they got their idea for the meme. Interviews have 
been audio-video recorded, transcribed and subsequently analysed utilising a 
qualitative methodology and adopting an interpretative approach as outlined by Cohen 
et al. (2007), focussed on eliciting how Mario and Luca’s mathematical priors 
influenced their view of meme templates as representations of mathematical concepts. 
DATA AND ANALYSIS 
Mario’s mathematical meme 
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Mario’s meme (Figure 4, centre) focusses on the study of a function, specifically on 
the process of plotting the first derivative sign chart to find a function’s local 
maximum. In the cultural context where the experiment was conducted, it is customary 
to complete this sign chart with slanted arrows, pointed upward for increasing intervals 
and downward for decreasing ones. Body shapes in the template used by Mario (Figure 
4, left) evoke the outline of these slanted arrows, that also appear in his explanatory 
video (Figure 4, right). 

Researcher: How did you get your idea for the meme? 

Mario: I was scrolling through various images [on Instagram] and I came across this 
picture [Figure 4, left], obviously without text, with these three people put 
in strange positions and the mind of a normal person says ah that's nice, 
they are in strange positions, while the mind of a math student says this 
could represent a function and therefore be effectively seen as a function 
following the lines of the bodies and the vertices formed by the heads and 
feet look like the maximum and the minimum of the function, so I said it 
could be a creative way to find the maximum and minimum of a function 

Researcher: Ok, so it was the image that evoked a mathematical thought […] while 
scrolling, I get a mathematical idea 

Mario: exactly! 

 
Figure 4: Mario’s template (left) finished meme (centre) and video explanation (right) 
Mario’s attention is seized by the template (Figure 4, left), which he sees as (his own 
words!) the graphic representation of a function. He neatly captures the role of the 
culture in interpreting the image, picturing that a normal person would not see in it 
more than people in strange positions, while a mathematically infused observer (a math 
student) is reminded of the graph of a function with a maximum and a minimum. 
However, his understanding appears confused: he shifts from referring to the cartesian 
graph of the function itself to referring to the derivative sign chart needed to find the 
maximum and minimum of a function, which is the idea apparently addressed by the 
meme (Figure 4, centre) and developed in the explanatory video (Figure 4, right). We 
can hypothesise that Mario’s confusion is induced by the similar appearance between 
the possible cartesian graph of a function following the lines of the bodies in the 
template (such as 𝑦𝑦 = 𝑥𝑥 − 𝑥𝑥3) and the arrows in its derivative sign chart. Arrows in 
his video match the bodies in the template but show another misconception: they 
describe the increasing and decreasing trend of a quotient (N and D stand for numerator 
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and denominator, and the chart corresponds to the sign rule for division), but the value 
b where the denominator of the derivative changes its sign is not necessarily a 
maximum for the function. This analysis reveals that Mario’s mathematical prior is 
deeply influenced by the iconic aspect of the mathematical concept he wanted to 
represent, a fact that hinders his understanding and produces the confusion. 
Luca’s mathematical meme 

 
Figure 5: Luca’s template (left) finished meme (centre) and video explanation (right) 
Luca’s meme (Figure 5, centre) addresses the fact the derivative of the exponential 
function 𝑦𝑦 = 𝑒𝑒𝑥𝑥 is the function itself. Luca’s template (Figure 5, left) is a two-panel 
image to be read from top to bottom: in the upper frame a bartender is throwing a 
customer out the bar, and in the lower frame the customer reappears undisturbed behind 
the bartender. This template is habitually used to represent recurring events: in this 
case, the mathematical fact that 𝑑𝑑(𝑒𝑒𝑥𝑥)

𝑑𝑑𝑑𝑑
= 𝑒𝑒𝑥𝑥, which is subsequently proved by Luca in 

his explanatory video (Figure 5, right). 
Researcher: The same question for you: how did you get your idea for the meme? 

Luca: I did not have any idea yet... so I was looking among the various templates to see 
if any could particularly inspire me and then I saw this template [Figure 5, 
left], which by the way I had actually already thought of, that is, I had 
already seen that template and something about it had already occurred to 
me before doing this work on memes... so as soon as I found the template 
it was an epiphany... because after having worked on it so much it was 
automatic, that is, the image itself unleashed… 

Researcher: So, it's the same thing ... 

Luca: Yes, it is the image that brings [the mathematical concept] to your mind... […] it is 
precisely the image and the mathematical topic that are connected, almost 
naturally 

Similar to Mario, Luca's attention is captivated by a template (Figure 5, left) discovered 
while scrolling the Internet, activating a mathematical idea. Luca acknowledges the 
role of the culture in his vision (after having worked on it so much it was automatic) 
but it's important to highlight that Luca’s epiphany is sparked by the metaphorical value 
of the image, representing recursion, rather than by its iconic value, as is the case with 
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Mario's meme. This reveals that Luca’s mathematical prior involves a conceptual 
understanding of the mathematical idea represented by the meme, that attains to the 
deep mathematical structure and not simply to its surface appearance. This conceptual 
understanding is confirmed in the video explanation where he faultlessly proves that 
the “derivative of ex is ex” (Figure 5, right). 

RESULTS AND DISCUSSION 
The analysis of the mathematical memes created by Mario and Luca provides valuable 
insights into how students’ mathematical prior influences the way they see templates 
as representations of mathematical concepts. Comparing Mario’s and Luca’s cases, it 
becomes evident that students' mathematical priors, constituted of conceptual 
understanding of the topic, cultural context, and educational experiences, play a crucial 
role in shaping their interpretation of visual stimuli. Borrowing Etkind and Shafrir’s 
terminology (2013, p. 5347), we can affirm that Luca is a good conceptual thinker and 
his mathematical prior allows him to recognise the meaning equivalence between the 
template and the mathematical topic, while Mario is a poor conceptual thinker and is 
misled by the surface similarity between the template and contrasting mathematical 
concepts. Acknowledging the limitation of the sample cases, these examples illustrate 
the significance of analysing how students interact with visually ambiguous stimuli, 
such as meme templates, to gain insights into their knowledge and understanding of 
mathematical concepts, which is something that is not so straightforward to achieve 
with traditional tasks. The analysis also uncovers students’ strengths and weaknesses, 
such as misconceptions and cultural influences on students' understanding of 
mathematical concepts. The findings from this research have implications for educators 
in planning interventions to address misconceptions and select further attuned visual 
inputs to support students’ meaning-making. 
In conclusion, the analysis of meme templates as visually ambiguous stimuli offers a 
unique lens through which to explore students' understanding of mathematical 
concepts. The insights gained from this study can contribute to the broader 
conversation on the role of visual inputs in mathematics education and provide 
practical considerations for educators seeking to enhance students' mathematical 
understanding. 
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CONTEMPLATING THE ROLE OF MATHEMATICAL EGOTISM 
Rebecca Burtenshaw 

University of the Sunshine Coast  

This theoretical paper considers Mathematical Egotism’s role in the development and 
reinforcement of particular views of mathematics, beliefs about mathematics, and 
students’ beliefs about themselves. Various literature, examples, and considerations 
are presented in exploring how Mathematical Egotism contributes to students’ 
disengagement, disillusionment, or disaffection with mathematics. This paper also 
provides a possible antidote via Mathematical Empathy. 

INTRODUCTION 
The mention of mathematics has the potential to stir a range of responses. Some speak 
of mathematics' beauty, while others speak of its dull irrelevance and elitism (Nardi & 
Steward, 2003). Beliefs – or cognitive filters that consciously or unconsciously 
influence interpretations of new phenomena (Calleja, 2021) – can be gained from life 
experiences and shape a person’s identity or perceived place in the world (Collinson, 
2012). Mathematics classrooms are one place where students may develop their beliefs 
regarding mathematics and themselves. While classrooms are intended to be a place of 
support, the underlying existence of Mathematical Egotism can unintentionally create 
barriers that lead to students' disengagement, disillusionment, and disaffection towards 
mathematics. The purpose of this theoretical paper is not to shame or blame busy 
teachers but to consider the possibility of Mathematical Egotism’s role in developing 
and reinforcing particular views of mathematics, beliefs about mathematics, and 
students’ beliefs about themselves. For this reason, this paper will first position the 
author and then investigate the terms ego and egotism, before identifying the presence 
of Mathematical Egotism through the provision of examples. The paper will conclude 
by offering a possible antidote in Mathematical Empathy.  

POSITIONING MYSELF 
Following Thanhesier’s (2023) lead in sharing her position before discussing related 
topics, my experiences and the development of beliefs will also be acknowledged with 
respect to a student of mathematics, a teacher of mathematics, and a researcher of 
mathematics education. I did not experience much success in school mathematics, but 
not for the lack of trying. Mathematics did not make sense. The discussions were brief, 
and the textbook exercises were never-ending. I only found out I was practising the 
wrong approaches to mathematical problems after test results or assignment grades 
were released, with no time to ask for help because the next unit was beginning. 
Nevertheless, I kept trying because I wanted to be a person who understood 
mathematics and intended to be a teacher. After failing my first assessment piece in 
Term 1 of Senior studies, I was encouraged to drop from a higher track in mathematics 
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to an “easier” track. This was the last straw for my confidence, and soon, I began 
treading along the failing line of this lowest track, too.  
The disengagement and disaffection I experienced in school mathematics are not 
unique. Mathematics is experienced and perceived as a boring, difficult subject with 
little relevance and value (Nardi & Steward, 2003). Mathematics can be viewed as 
quite a conservative subject shrouded in “tradition” or universal truths (Handal, 2009) 
and commonly perceived as the rote-learned reproduction of pre-established 
procedures and rules (Calleja, 2021; Nardi & Steward, 2003; Shepard, 2000). Mendick 
(2005) alleges that this view of mathematical knowledge “as absolute and 
unquestionable” creates the status of “the ultimate intelligence test” (p. 247). 
Consequently, there are beliefs that mathematics is reserved for “maths people” 
(Palmer, 2009), with “maths brains” (Boaler, 2015), and the continuation of elitism, 
superiority and stereotypes (Nardi & Steward, 2003) reiterated with each generation.  
As a student of mathematics, I was often surrounded by teachers who told me how 
much they loved mathematics. I wondered how they could ever understand my 
perspective when we seemed to have very different experiences of mathematics. Then 
- later on - as a teacher, I found myself speaking with students who shared similar and 
familiar wonderings, some of whom assumed I must have had undisputed success in 
mathematics class to eventually teach mathematics. While my career and further 
studies took me to different places, I now find myself undertaking a PhD in 
mathematics education to spend my career in mathematics education research. 
However, there is a wariness of working amongst a field of researchers who – upon 
my school mathematics experiences and the societal messages I am predisposed to – I 
may not authentically belong with. I find myself straddling multiple standpoints - the 
mathematics education researcher, the teacher, and the students who are disengaged, 
disillusioned, or disaffected with mathematics. While my experiences as a mathematics 
education researcher have been unanticipatedly inclusive, the beliefs and values 
constructed in school mathematics continue to linger and compete with what I now 
know.  
My PhD research aims to interrogate the meaning of success in mathematics education. 
Though broadly cited, there are contradictory and conflicting messages about various 
success phenomena in mathematics education or how success is determined—for 
example, success metrics or assessment. However, the recurrence and variety of 
applications suggest that success is highly sought after and highly valued. Mathematics 
education research has increasingly acknowledged the influence of values and beliefs 
in mathematics education, including the interconnectedness of affective domains, 
beliefs around the nature of mathematics and the different theoretical or practical 
approaches to mathematics (Beswick, 2021; Bishop et al., 2003). Despite the close 
relationship learning, pedagogy, and assessment should share, acknowledging the 
influences of values and beliefs within assessment is not nearly as commonly appraised 
(Musial, 2021). As the PhD exploration continues, several peripheral observations have 
emerged and provoked questioning of taken-for-granted psychological ideologies 
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intertwined with success, metrics of success and the assessment of success. For 
example, questioning whether an unwillingness to let go of behaviourist assessment 
ideologies constrains the advancement of school mathematics education, further 
contributing to the narrowing of beliefs about success (Burtenshaw, 2023). This 
theoretical paper would like to consider another peripheral observation by exploring 
the role of Mathematical Egotism. 

EGO AND EGOTISM 
Ego and Egotism share similar derivation, though they have distinct expositions 
theoretically. Freud (1923) establishes three enacting aspects within a personality 
structure model - the id, the ego and the superego. The id is the most unconscious and 
primal part of our psyche, often associated with unbridled pleasure and desires (Freud, 
1923). The ego is a “part of the id which has been modified by the direct influence of 
the external world” (Freud, 1923, p. 25). Broadly, the ego assists in negotiating, 
counteracting or - at times - resisting the primal or impulsive desires of the id and acts 
as the “processing system” or decision-making component that strives to fulfil the id 
in the most socially appropriate manner (Freud, 1923). A strong ego is good, as a strong 
ego is more apt at rationalising primitive desires. The Superego embodies and absorbs 
society's broader values, morality, ideals and ethics, which provides standards for the 
ego (Allison, 2023). The voice of consciousness develops from a young age as our 
psyche assimilates and conforms to form an ideal sense of self (Allison, 2023; Freud, 
1923). Freud’s seminal theories continue to be challenged and re-examined (e.g. 
Allison, 2023). However, like many others, Freud offers a foundation for further 
exploration. These explorations of ego’s origins provide an alternative perspective to 
the commonly used applications of ego, whereby the term egotism is more fitting.  
Broadly, egotism is driven by a desire for “social status, glory, credit, adulating 
attention, honour, superiority, special entitlements, prestige, and power” (Roberts & 
Cleveland, 2017). Egotism often manifests with accompanying or contributing vices 
such as arrogance, haughtiness, defensiveness, vanity or narcissism - the latter driven 
explicitly by superiority or a desire to be “accepted as a member of one’s affinity 
groups” (Tanesini, 2021, p. 97). Through exploring types of egotism comprised of 
vices of superiority (see Tanesini, 2021), Coppola (2023) writes how “a person 
confirms their self-beliefs of superiority by engaging in downward social comparison” 
(p. 299). As such, egotism increases the potential of enacting humiliation and 
intimidation tactics, leading to potential alienation of self or others (Coppola, 2023). 
Similar behavioural traits can be applied explicitly to and observed within 
Mathematical Egotism.  

MATHEMATICAL EGOTISM 
Mathematical Egotism is the tendency to depict mathematics - often from an exclusive 
perspective - in a manner that alienates different perspectives, beliefs or values and 
which contributes to the sustained elitism and superiority for which mathematics is 

https://journals-sagepub-com.ezproxy.usc.edu.au/reader/content/18946f83c66/10.1177/1321103X221117114/format/epub/EPUB/xhtml/index.xhtml?hmac=1705018790-eMWaKZn0NUP%2FBgRWWyKIKKYQ5zHieJ2w9yjOwvoemsc%3D#bibr36-1321103X221117114
https://journals-sagepub-com.ezproxy.usc.edu.au/reader/content/18946f83c66/10.1177/1321103X221117114/format/epub/EPUB/xhtml/index.xhtml?hmac=1705018790-eMWaKZn0NUP%2FBgRWWyKIKKYQ5zHieJ2w9yjOwvoemsc%3D#bibr36-1321103X221117114
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societally notorious. Mathematical Egotism does not refer to the person or people but 
a trait incidentally adopted by a person. As the discussion on egotism suggests, 
Mathematical Egotism could leverage mathematics to secure or demonstrate social 
status, distinction, superiority and prestige. Mathematical Egotism can be overt or very 
subtle and could be unintended or - to a lesser extent - intended. Therefore, 
Mathematical Egotism can manifest in diverse ways, including through a continued 
reputation of elitism, a lack of self-awareness (of self and others), and alienating 
pedagogical practices. 
Social status, superiority and prestige within Mathematical Egotism are not modern 
phenomena. Burnyeat (2000), in his paper Plato on Why Mathematics is Good for the 
Soul, describes how Plato believed that a person could not become “a moral hero or 
saint” without “discipline in sheer hard thinking”, such as what mathematics provides. 
He writes on the various opinions of similarly prestigious minds of Ancient Greece, all 
of which speak of sharp minds, natural intelligence and how mathematics studies “is 
extremely demanding to learn and practice” and, therefore, is “a good test of 
intellectual and moral calibre” (Burnyeat, 2000, p. 9). Moral righteousness and strong 
mathematical capabilities are interwoven.  
An example of Mathematical Egotism - though small but repetitively observed - is the 
frequency with which confident mathematicians or mathematics teachers discuss their 
appreciation for mathematics while also - possibly unwittingly - alienating people or 
their students for not similarly beholding such fondness. To be clear, sharing one’s 
passions is not to be reprimanded, nor is celebrating passions inadmissible. But, for the 
sake of discussion, let us consider possible assumptions within commonly occurring 
statements such as “Why can’t my students see the beauty and creativity of 
mathematics?” or “Mathematics is fun and engaging on its own and does not require 
real-world applications” (see Montano, 2013). Firstly, this denotes that there is a 
universal understanding of what mathematics is. Thanheiser (2023) writes how “the 
field of mathematics is in agreement that there is no joint definition of what 
mathematics is” (p. 1). Teachers’ beliefs about the nature of mathematics and what 
they value regarding mathematics will guide how teachers teach the subject (Beswick, 
2012; Bishop et al., 2003; Calleja, 2021). Literature (e.g. Calleja, 2021; Ernest, 1989; 
Thanheiser, 2023) also depicts varying approaches to the learning and teaching of 
mathematics, often each with their own beliefs and values underpinning (Shepard, 
2000). This begs the question, if there is more than one view of mathematics and more 
than one way to learn or teach mathematics, could there be more than one way of 
becoming a self-assured mathematician?  
These passing statements about mathematics also assume that the stated views of 
mathematics and beliefs align with what is demonstrated through teachers’ pedagogical 
decision-making, assessment practices and classroom culture. Calleja (2021) and 
Beswick (2012) have noted similar unalignment between teacher beliefs and practices 
in their research. Another assumption is that statements like these propose that students 
who are disengaged, disillusioned, or disaffected with mathematics choose not to have 
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a positive relationship with mathematics or do not want to see the applicability of 
mathematics. In this aspect, students shoulder the responsibility to make sense of 
mixed messages while managing disillusionment, along with the blame when they are 
unable to reconcile unaligned experiences. This seems counterintuitive. Not 
recognising these possibilities or assumptions could unintentionally lend itself to 
Mathematical Egotism.   
Equivalent examples may include a wealthy business executive telling a destitute 
person how easy it is to make a million dollars. Alternatively, a very fit person flexes 
and boasts to a friend who openly struggles with their fitness goals or body image. As 
with Mathematical Egotism, circumstances or barriers may exist that are not 
considered in each circumstance. For example, the one (presumptively in a “superior” 
position) has a deeper understanding of critical aspects the other has not yet grasped or 
different experiences that have led to the development of beliefs. 
 Mathematical Egotism could be operating within classroom culture and relationships 
with mathematics educators. Mathematical Egotism may emerge when, after a student 
demonstrates how they went about a mathematical task to the class, their whiteboard 
work is promptly erased and replaced by the teacher showing “the best way” or “the 
quickest way” of reaching that same solution. Again, while rational and possibly 
justifiable, there is deliberation to consider how Mathematical Egotism contributes to 
the developing beliefs of students and their relationship with mathematics. 
Coincidentally, Gatekeeping was also a theme that arose in Coppola’s (2023) 
exploration of musical egotism and how “one’s expression of superiority might be 
interpreted as an implicit degradation of others’ self-worth” (Leary et al., 1997 in 
Coppola, 2023). She found that participants experienced egotism through poor 
relationships with teachers and a poor sense of belonging in the classroom, which was 
“very often perpetuated through hierarchical master-apprentice relationships with 
teachers” (p. 306). Finally, Coppola (2023) also discusses the interwovenness of 
egotism and elitism. The latter has already been determined via research as contributing 
reasons for the disaffection towards mathematics (Nardi & Steward, 2003).  
Mathematical Egotism may be experienced when competent mathematicians –students 
or professional adults - work on a group task amongst a mixed-ability group yet speed 
ahead and disregard the peers left behind. This is not to say capable mathematicians 
should hide their expertise, but motivations or intentions and whether these meet the 
goals of the group task should be considered. This example does not intend to 
encourage notions of streaming. However, streaming culture in schools could also have 
traits of Mathematical Egotism via the perceived rank and stereotypes associated with 
this culture.  
There is theoretical and experiential evidence to suggest Mathematical Egotism could 
be a blind spot within our wider profession. An awareness of Mathematical Egotism 
could create a space to explore the barriers for students who are disengaged, 
disillusioned, and disaffected with mathematics. However, this exploration could also 
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determine that Mathematical Egotism is a contributing barrier for students who are 
disengaged, disillusioned, and disaffected with mathematics. For example, when a 
student is vulnerable and shares their disaffection, how do we, as a profession, regard 
those beliefs, or are these disclosures dispelled as they differ from the teachers’ beliefs 
and experiences? How often do we consider poor behaviour as, alternatively, the 
“quiet, invisible disaffection” that Nardi and Steward (2003) describe? Do students 
perceive the open invitation to admire mathematics as authentic, or do such invitations 
lead to further alienation? The antidote to such Mathematical Egotism may lie within 
Mathematical Empathy.  

MATHEMATICAL EMPATHY 
Confident mathematicians and mathematics teachers are in a powerful position to 
support students who are disengaged, disillusioned, or disaffected with mathematics. 
Their depth of mathematical knowledge, love for mathematics, and associated skill sets 
like problem-solving signify their unique perspicacity to support students through their 
disillusionment and mathematics past this negative reputation. An adjustment from 
ego-centredness to other-centredness (Davis, 2010) could begin to write a new 
narrative - from Mathematical Egotism to Mathematical Empathy.  
Empathy is the ability to vicariously recognise and acknowledge the feelings and 
experiences of others, including the cognitive capacity to infer thoughts and beliefs 
(Williams, 2019). Commonly depicted as “the ability to walk in another’s shoes”, 
empathy is notably different to sympathy, which typically denotes feelings of pity for 
another’s misfortune and - in some cases - relief that one is not in the “other’s shoes”. 
Empathy takes an approach grounded in equality or equity, whereas sympathy has an 
implicit dynamic imbalance. Stojiljković et al. (2012) explain how empathy is an 
important characteristic of effective teachers and opens communication between 
teachers and students.  
Mathematical Empathy refers to the mindfulness of others’ mathematical perspectives, 
beliefs and experiences with mathematics. There is difficulty in distinguishing the path 
ahead when you are lost. However, mathematicians and mathematics teachers have a 
greater understanding of mathematics and the paths towards that greater understanding. 
Instead of mathematicians and mathematics teachers imposing their own views of 
mathematics and beliefs about mathematics - which Mathematical Egotism traits could 
drive - Mathematical Empathy sees the teacher walk alongside the student with a 
shared goal of facing or overcoming barriers that lead to disengagement, 
disillusionment or disaffection.  

CONCLUSION 
The phenomenon of Mathematical Egotism may be confronting or uncomfortable to 
contemplate. This paper is not to condemn but to consider. In considering 
Mathematical Egotism, this paper discussed how its existence could result in the 
tendency to depict mathematics in a manner that alienates different perspectives of 
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beliefs, contributing to the sustained elitism and superiority for which mathematics is 
societally notorious. Teachers’ awareness of their own beliefs relating to mathematics 
and those of their students could help teachers recognise instances of unintentional 
Mathematical Egotism and its possible contribution to students’ disengagement, 
disillusionment, and disaffection with mathematics. This awareness forms the 
foundations of Mathematical Empathy – providing an antidote to Mathematical 
Egotism – as teachers work alongside students to disentangle their views, beliefs, and 
self-perceptions pertaining to mathematics. Mindfulness of Mathematical Egotism 
could provide a fundamental step towards shifting narratives and broadening the 
opportunities for success within mathematics education.  
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UNDERSTANDING STUDENTS’ REASONS AND AIMS OF 
EFFORTS AND PERSISTENCE IN MATHEMATICS 

Elaine Yu Ling Cai and Gregory Arief D. Liem 
National Institute of Education, Nanyang Technological University 

In the present study, we investigate the ‘aims’ elementary school students pursue 
through effort and persistence (i.e., their achievement goals) and the ‘reasons’ driving 
them (i.e., their motivations) in their mathematics classes. Self-report instruments 
measuring students’ motivational reasons, achievement goals, and effort and 
persistence in their mathematics classes were administered. Mediational path analysis 
showed that achievement goals, collectively, played a significant mediating role in 
almost all the links connecting motivational reasons to effort and persistence. 
Autonomous motivation was associated with greater effort and persistence. Self-based 
goals strengthened the positive direct effects of autonomous motivation on effort and 
persistence.  

INTRODUCTION 
Singapore students have consistently performed well in the international assessment of 
academic proficiencies (see e.g., results of the 2019 Trends of International 
Mathematics and Science Study [TIMSS]; Mullis et al., 2020). However, there is a 
possibility that students find that their parents and teachers set high academic 
expectations which are communicated in a controlling way. Furthermore, students 
perceive teacher-led whole class instruction during mathematics classes as a norm 
(Kaur & Ghani, 2012) and teaching approaches tend to be highly structured. Bearing 
in mind these characteristics of Singapore’s sociocultural and educational system, this 
study aims to explore Singapore’s students’ effort and persistence in mathematics in 
relation to their achievement goals and motivational reasons. Findings of this study 
will lend practical insights into fostering engagement of students with similar cultural 
and educational characteristics in their learning of mathematics.  
Underpinned by self-determination and achievement goal perspectives (Elliot, 
Murayama, & Pekrun, 2011; Ryan & Deci, 2000), we investigated the ‘what’ and the 
‘why’ of students’ effort and persistence by studying the ‘aims’ students seek to pursue 
through effort and persistence (i.e., their achievement goals) and the ‘reasons’ driving 
their effort and persistence (i.e., their motivation). As shown in Figure 1, the role of 
achievement goals in mediating the effects of motivational reasons on effort and 
persistence in mathematics is examined.  
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Motivational Reasons  Achievement Goals  Engagement 
     
- Autonomous motivation 

(AM) 
- Controlled motivation 

(CM) 

 
 

- Task-based goals 
(TBG) 

- Self-based goals 
(SBG) 

- Other-based goals 
(OBG) 

 
 

 
- Effort and 

Persistence 

 
 

    

Covariates  
- Grade 
- Gender 
- Prior effort and persistence 

    

Figure 1: Hypothesised model depicting the role of achievement goals in mediating 
the links between motivational reasons and effort and persistence (controlling for 

sociodemographic factors and prior effort and persistence) 

THEORETICAL FRAMEWORK 
Achievement Goals  
In the 3 × 2 achievement goal model, Elliot et al. (2011) proposed six types of 
achievement goals which students adopt. They are task-approach goals which orient 
students to attain the task’s absolute demands; task-avoidance goals which orient 
students to avoid not attaining the task’s absolute demands; self-approach goals which 
orient students to score better than their own previous score; self-avoidance-goals 
which orient students to avoid scoring worse than previous score; other-approach goals 
which orient students to score better than others their peers; and other-avoidance goals 
which orient students to avoid scoring worse than their peers. A study conducted by 
Johnson and Kessler (2013) found that task-based goals had a more positive 
relationship with academic achievement than self-based goals whereas other-based 
goals had a negative relationship with academic achievement.  
Self-determined motivation as reasons underlying achievement goals 
Several researchers (e.g. Vansteenkiste et al., 2010) found that different motivations 
underlying achievement goals differentially predicted educational outcomes. Self-
determination theory (Ryan & Deci, 2000) maintains that the reasons that regulate or 
motivate individuals’ behaviours may vary in their level of autonomy. Autonomous 
motivation refers to a motivational source that regulates individuals’ behaviours 
because of the enjoyment and fulfilment of personal meaning that the activity or 
behaviour serves to bring. Meanwhile, controlled motivation represents a motivational 
source that regulates individuals’ behaviour because of the intention to meet perceived 
social expectations (such that enticing the behaviour brings pride to themselves rather 
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than guilt or humiliation) and to obtain rewards and/ or avoid punishment. Research 
has shown that relative to controlled motivation, autonomous motivation was 
associated with stronger intention to persevere in studies (Lavigne et al., 2007).  
Autonomous and controlled motivations have recently been viewed as possible 
motivational reasons underlying achievement goals (Vansteenkiste et al., 2014) and 
they are aligned with the hierarchical model of achievement motivation (Elliot, 1999) 
where students’ achievement goals mediate the relationships between their individual 
attributes (e.g., achievement motive) and engagement. Students’ engagement could be 
understood from the reasons driving engagement and the aims they seek to attain 
through engagement. For instance, students striving to outperform their peers (i.e., 
pursuing other-approach goals) may do so because they do not wish to lose extra play 
time (i.e., controlled reason) or the personal benefits they anticipate for furthering their 
education (i.e., autonomous reason). Students seeking to understand learning materials 
(i.e., pursuing task-approach goals) may do so out of their intention to meet a deadline 
(i.e., controlled reason) or their interest in the topic (i.e., autonomous reason).  
Prior studies have sought to integrate key constructs in the self-determination and 
achievement goal perspectives. Vansteenkiste et al. (2010) found, beyond Belgian 
students’ performance-goals, autonomous motivation underlying performance-
approach goals predicted persistence. Michou et al. (2014) found that for Greek 
university students, controlling reasons for mastery-approach goals were predicted by 
fear of failure and related negatively to effort regulation. The same study also found 
that controlled motivation negatively predicted effort regulation. Cai and Liem (2017) 
found that self-based goals strengthened the benefits of autonomous motivation on 
elaboration among elementary mathematics students. Taken together, autonomous 
motivation underlying achievement goals are more beneficial for students’ learning 
than controlled motivation. As such, we ask: In the Asian context, which achievement 
goal plays a more important mediating role in the link between motivations and effort 
and persistence among elementary school students’ learning of mathematics? 

METHODOLOGY  
Participants and Measures 
The sample comprised 491 students (54% girls; Mage = 11, SDage = 0.87) from a 
Singapore government elementary school selected based on convenience sampling. 
Around 35% of the participants were in Grade 4, 38% in Grade 5, and 27% in Grade 
6.  
The Academic Self-Regulation Questionnaire (Ryan & Connell, 1989) measuring 
motivational reasons, 3 × 2 Achievement Goal Questionnaire (Elliot et al., 2011) and 
Student Approaches to Learning (Marsh et al., 2006) subscale for effort and persistence 
were adapted to the mathematics classroom context and administered to the students. 
Earlier studies which have used these scales have documented their validity and 
reliability. The items for motivational reasons and achievement goals were rated on a 
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scale ranging from 1 (not at all true of me) to 5 (very true of me), while effort and 
persistence items were rated on a scale ranging between 1 (never) and 5 (always). In 
the Academic Self-Regulation Questionnaire (Ryan & Connell, 1989), a 17-item 
questionnaire, autonomous motivation was operationalised by six intrinsic and 
identified motivation items (𝛼𝛼 = 0.84), while controlled motivation was measured by 
the 11 introjected and extrinsic motivation items (𝛼𝛼 = 0.85). The 3 × 2 Achievement 
Goal Questionnaire (Elliot et al., 2011) consists of 18 items incorporated into six three-
item goal subscales: Task-approach, task-avoidance, self-approach, self-avoidance, 
other-approach, and other-avoidance goals. The three six-item higher order 
achievement goal subscales also displayed sound reliability, task-based goals (𝛼𝛼  = 
0.82), self-based goals (𝛼𝛼  = 0.88), and other-based goals (𝛼𝛼  = 0.89). Effort and 
persistence were measured by the four-item effort and persistence subscale (𝛼𝛼T1 = 0.83, 
𝛼𝛼T2 = 0.83) obtained from the Student Approaches to Learning instrument (Marsh et 
al., 2006).  
Procedure 
The students completed the survey in the second and third school terms of the year 
(i.e., Time-1 and Time-2 data, respectively). Although this study focused on the third 
school term data, the research design allowed us to control for effort and persistence 
outcome factors measured at the second school term. The significant effects on 
motivation and achievement goals on effort and persistence would then be considered 
practically important as they are ‘over and above’ the effect of each corresponding 
prior effort and persistence factor.  

RESULTS AND INTERPRETATION  
As presented in Table 1, the approach and avoidance dimensions of an achievement 
goal type were found to be highly correlated (r = 0.82 between task-approach and task-
avoidance goals; r = 0.84 between other-approach and other-avoidance goals; r = 0.97 
between self-approach and self-avoidance goals), showing that elementary school 
children in this sample were unable to distinguish between the approach and avoidance 
dimensions of each achievement goal type. Therefore, the main analysis focused on 
three distinct types of achievement goals.  
Path analysis testing the multiple mediation of the three types of achievement goals in 
linking motivation to effort and persistence was performed using the bootstrapping 
method, a non-parametric procedure that does not require the assumption of normality 
of sampling distribution. Using the Mplus syntax for multiple mediation provided by 
Preacher and Hayes (2008), this approach would enable us to estimate parameters of 
both total indirect effects associated with all the three achievement goals and specific 
indirect effects via each achievement goal. Parameter estimates, and 95% bias-
corrected confidence intervals of the indirect effects were generated from 5000 
bootstraps (random samples). Mediation occurs when indirect effects are significant. 
Effort and persistence were estimated while controlling for prior (Time-1) effort and 
persistence and covariates (grade, gender).  
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Table 1 shows the parameter estimates in the mediational models. Autonomous and 
controlled motivations significantly predicted achievement goals. Beyond the effects 
of the covariates and prior effort and persistence, self-based goals were the only type 
of achievement goal that significantly predicted effort and persistence (𝛽𝛽 = 0.22).  

 Covariates 
 Grade Gender Prior effort and persistence 

Predicting effort 
and persistence 

   

AM -0.20*** 0.01 0.42*** 
CM -0.27*** -0.01 0.21*** 
TBG 0.06 0.10* 0.12** 
SBG 0.07* 0.15** 0.15*** 
OBG -0.01 -0.03 0.05 

Effort and persistence 0.02 0.02 0.34*** 
 

 Motivational reasons Achievement goals 
 AM CM TBG SBG OBG 

Predicting effort and 
persistence 

     

AM      
CM      
TBG 0.21*** 0.21***    
SBG 0.20*** 0.12***    
OBG 0.10* 0.40***    

Effort and persistence 0.32*** 0.03 0.08 0.22*** 0.05 
Note: *p < 0.05, **p < 0.01, p*** < 0.001; Gender (1 = boy, 2 = girl); prior effort/ 

persistence refers to the effort/ persistence measured three months earlier. 
Table 1: Summary of standardised regression coefficients (betas) in the path models 
predicting students’ effort and persistence. 
Table 2 presents the direct, indirect, and total effects in the mediational models. The 
total indirect effects of the two motivational reasons on effort and persistence were 
significant in both instances, reinforcing the importance of achievement goals, 
collectively, in linking motivation to effort and persistence. However, self-based goals 
were the only achievement goal type which significantly mediated these relationships. 
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The total effect of autonomous motivation on effort and persistence was positive (𝛽𝛽  = 
0.39), resulting from its direct effect (𝛽𝛽  = 0.32) and indirect effect through self-based 
goals (𝛽𝛽  = 0.07). Although the total and direct effects of controlled motivation on 
effort and persistence were not significant, its indirect effect through self-based goals 
was significantly positive (𝛽𝛽  = 0.03).   
 

  Indirect effect through  
 Direct 

effect 
TBG SBG OBG All AG Total 

effect 
Predicting effort  
and persistence 

      

AM 0.32*** 0.02 0.04** 0.01 0.07*** 0.39*** 
CM -0.03 0.02 0.03** 0.02 0.06*** 0.03 

Table 2: Summary of effects in the mediation path models predicting effort and 
persistence. 
 
Discussion and Applied Implications 
Findings show that after controlling for sociodemographic and prior effort and 
persistence, autonomous motivation is associated with heightened effort and 
persistence. Findings also support the importance of achievement goals collectively in 
linking motivational reasons to engagement outcomes. Among the three goals, self-
based goals play the most salient role in effort and persistence strengthening the 
benefits of autonomous motivation for effort and persistence.  
Students who engage in mathematics learning due to interest and personal meaning 
exert greater effort and persistence in the subject. The benefit of autonomous 
motivation for effort and persistence was strengthened by adopting self-based goals, 
suggesting that students who channel their interests in mathematics by striving to 
improve their past performance, or avoiding doing worse than before, are more likely 
to persevere when faced with challenges. Although controlled motivation did not 
directly predict effort and persistence, its indirect effect through self-based goals was 
positive, suggesting that when channelled through pursuing self-based goals, 
controlled motivation can be the reason facilitating effort and persistence. Thus, 
regardless of their motivational reasons, when students strive to pursue self-based 
goals, they would exert greater effort and persist at tasks because they know that 
surpassing their own previous performance or not performing worse than before is 
something achievable, and this gives them the confidence to persevere in being more 
proficient in mathematics. 
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The present findings hold practical implications for teaching, parenting, and school 
psychology practices seeking to foster student engagement in Singapore mathematics 
classrooms and those in East Asia, characterised by high competitiveness and school 
achievement orientation. Considering the benefits of autonomous motivation on effort 
and persistence, there is value in fostering autonomy-supportive practices among 
mathematics teachers. In this regard, Reeve (2016) asserts that teachers could provide 
rationale of a task in informational and non-controlling language to help students make 
motivational transition from perceiving that the task is not worth carrying out to 
something that is worth doing. Teachers could also provide information on how 
students they could progress in mastery of concepts and analysis of mathematics tasks. 
This would convince students that it is within their ability to take ownership of their 
progress in learning.  
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STUDENTS’ PERSPECTIVES ON TEACHING BEHAVIORS TO 
ENHANCE THEIR MOTIVATION FOR PARTICIPATION IN 

MATHEMATICS CLASS COMMUNICATION 
Chang-Ming Chiang1, Ting-Ying Wang2, and Feng-Jui Hsieh2 

YCSH1, NTNU2, Taiwan 
This study explores the factors contributing to the teaching behaviours that can 
enhance students' motivation to participate in classroom communication, from the 
perspective of students. A questionnaire, developed based on a year-long qualitative 
investigation, was administered to 542 junior high school students. Exploratory factor 
analysis was applied separately to three communication-related learning activities: 
listening to the lecture, asking questions, and discussing with peers. Eight factors 
relating to three facets — students’ cognitive needs in mathematics, a safe environment 
and good atmosphere, and teachers’ arrangements of modes and materials for 
activities — are identified.  The study also revealed the inevitable intertwining between 
cognitive and affective facets from the factors identified.  

INTRODUCTION 
Taiwan is recognized for its high achievements in international comparison studies 
such as Programme for International Student Assessment (PISA) and Trends in 
International Mathematics and Science Study (TIMSS); however, it faces challenges 
with students' low affective performance (OECD, 2023; Mullis et al., 2020). For 
instance, only 23% of 8th graders in TIMSS 2015 reported high engagement in 
mathematics teaching, lower than the international average of 43% (Mullis et al, 2016). 
Additionally, as many as 56% of 8th graders in TIMSS 2019 reported a dislike for 
learning mathematics, higher than the international mean of 41% (Mullis et al, 2020). 
Addressing the issue of student motivation in mathematics learning is a significant 
challenge for Taiwan. Furthermore, these statistics indicate that this is a global issue 
requiring attention. 
One aspect of students’ engagement in mathematics class is their participation in 
communication within class. Enhancing students’ communication in mathematics class 
not only assists them in engaging in mathematical thinking and understanding, but also 
helps them cultivate critical competence required for the 21st century (Ananiadou & 
Claro, 2009; Xu & Clarke, 2019). Niss (2003) indicated two critical facets of 
mathematics communication: (1) understanding others’ written, visual or oral texts, 
and (2) expressing oneself in oral, visual or written form. In the present study, our focus 
is on enhancing students’ oral communication in mathematics class, which includes 
listening to teachers’ lecture, asking questions, and discussing with peers. However, 
we are aware that other forms of media are also involved in this communication. 
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Adopting the aspect of the student-centred teaching approach, this study explored the 
following research questions related to students’ oral communication in mathematics 
class by investigating students’ perspectives,  

1. What factors contribute to the teaching behaviors that promote students’ 
listening to teachers’ lecture in mathematics class? 

2. What factors contribute to the teaching behaviors that promote students’ 
asking questions in mathematics class? 

3. What factors contribute to the teaching behaviors that promote students’ 
discussing with peers in mathematics class? 

CONCEPTUAL FRAMEWORK 
As illustrated in Figure 1, students’ oral communication in mathematics class involves 
two key participants — the teacher and their peers. Following Niss (2003), we focused 
on students’ understanding of others and expressing themselves. Therefore, in terms of 
enhancing communication between students and the teacher, we examine which 
teaching behaviours can increase students’ motivation to listen to the teacher’s lecture 
and to ask questions. Listening to the lecture and asking questions are commonly 
observed interaction methods in traditional Chinese mathematics class (Shao et al., 
2013). Regarding enhancing communication among students, we explore teaching 
behaviours that can encourage peer discussions. Student discussions have been 
emphasized and promoted in several recent curriculum reforms in Taiwan influenced 
by Western educational practice (Wang, & Hsieh, 2017).  
 
 
 
 
 
 
 

Figure 1: Conceptual framework of this study 

RESEARCH METHOD 
Design and Instrument 
The study was conducted in two stages. In the first stage, a year-long investigation was 
conducted in the first author’s junior high school class, consisting of 30 students, using 
question-oriented mathematical diary writing. During this stage, the students 
responded to 198 open-ended questions across 68 diary entries, aiming at gathering 
their opinions on the teaching behaviours that could enhance their mathematics 
learning motivation. Through content analysis of the students’ responses and a 
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literature review, 139 teaching behaviours in 11 different learning activities (e.g, 
asking questions, discussion, and doing math homework) were identified (Chiang et 
al., 2023). The teaching behaviours were then used to develop 6-point Likert scale 
(ranging from strongly disagree to strongly agree) items of 11 questions for the second 
stage. 
The present paper used three questions relating to student oral communication in 
mathematics class: (1) Would the following situations make you more willing to listen 
to the lecture during math class? (2) Would the following situations make you more 
willing to ask questions during math class?  (3) Would the following situations make 
you more willing to discuss mathematics with your classmates? The three questions 
comprised 16, 18, and 15 items, respectively. 
Participants 
The participants included 542 students from 6 junior high schools in Taiwan. In each 
school, one class was randomly selected from each of the 7th, 8th, and 9th grades. The 
sample consisted of 32.7% of 7th graders, 35.2% of 8th graders, and 32.1% of 9th 
graders, respectively. 
Data Analysis 
For each item, the 6-point Likert scale, which includes strongly disagree, disagree, a 
little disagree, a little agree, agree, and strongly agree, was converted to 1 to 6 points. 
Exploratory factor analysis (EFA) was performed on students’ responses to determine 
the factors contributing to the teaching behaviours that can enhance students’ 
motivation to participate in oral communications in class. EFA, using principal 
component extraction method with varimax rotation method was individually 
performed on each of the three learning activities: listening to the lecture, asking 
questions, and discussing mathematics with peers. Kaiser-Meyer-Olkin tests revealed 
that the sample was adequate for EFA (0.931~0.953). Eigenvalues were used to 
determine the number of factors (those with values exceeding 1). The items with factor 
loadings’ absolute values less than 0.4 were deleted, and the remaining items were used 
to rerun EFA. The average scores of each item and each factor were then calculated. 
Subsequently, paired t-tests were performed to assess differences in students' 
endorsements across factors, while one-sample t-tests were utilized to compare these 
endorsements to the neutral midpoint of 3.5. 
RESEARCH FINDINGS 
Listening to the lecture 
The final run of EFA was performed on 15 items regarding the teaching behaviours to 
enhance students’ motivation to listen to the lecture, resulting in two factors that 
explains a total variance of 57.0% (see Table 1). The first factor, mathematical 
understanding and equality, comprised 8 items with factor loadings ranging from 0.422 
to 0.839. This factor simultaneously involved the teaching behaviours that facilitate 
students’ understanding, such as the providing clear explanation (M606), and 
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informing students on how to apply what they have learnt to solve problems (M610), 
and that reflect the equal treatment of students, such as the teacher's attentive care for 
each student's learning condition (M614) and the assurance of fairness in the classroom 
(M615). The second factor, teaching device and atmosphere, comprised 5 items with 
factor loadings ranging from 0.572 to 0.764. This factor represented a group of 
teaching behaviours that use specific methods or create an enjoyable atmosphere to 
augment oral lectures, for instance, employing games or magic to illustrate 
mathematical concepts (M601), and fostering a relaxed classroom atmosphere (M607). 
The average scores of the first and the second factors are 4.9 and 5.0 respectively, with 
item score ranges for the first and second factors being 4.0 to 5.2 and 4.7 to 5.3. The 
average scores for both factors are significantly higher than the neutral point 3.5 (p 
< .01), indicating students’ strong endorsement of the teaching behaviours in both 
factors. This suggests that students would be more willing to listen to the teacher’s 
lecture if their teachers implement the teaching behaviours that address both their 
mathematical understanding and equality, and when their teachers integrate the oral 
lecture with intriguing teaching activities and a positive atmosphere. 
Listen to the teacher’s lecture Loading Mean SD 

Mathematical understanding and equality  4.8 0.8 
M610 When the teacher informs us about how the learned 

content can be applied in problem-solving. 
0.839 5.0 1.1 

M606 When the teacher's explanations are clear and easy 
to understand. 

0.654 5.2 1.0 

M615 If the teacher avoids favouritism towards male or 
female students during class and ensures fairness. 

0.633 5.1 1.1 

Teaching device and atmosphere  5.0 0.8 
M601 When the teacher employs engaging activities to 

explain mathematical concepts, such as games, 
magic tricks, storytelling, etc. 

0.764 5.3 1.0 

M603 When the teacher uses computers, tablets, or similar 
devices for explanations. 

0.721 4.7 1.3 

M607 When the classroom atmosphere is relaxed and 
enjoyable. 

0.577 5.3 0.9 

Table 1: Statistics of factors contributing to teaching behaviours enhancing listening 
to lecture and exemplified items. 

Asking questions 
The final run of EFA was performed on 18 items regarding the teaching behaviours to 
enhance students’ motivation to ask questions, resulting in four factors that explains a 
total variance of 63.4% (see Table2). The first factor, intellectual needs, includes five 
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items with factor loadings ranging from 0.579 to 0.795. This factor represents teaching 
behaviours  that necessitate the fulfillment of students' intellectual needs. This occurs 
in situations such as when tasks are challenging (M203) or the content is important 
(M204), and future learning will be affected (M204) or confusion will remain (M207) 
if questions are not raised. The second factor, safe environment, comprises five items 
with factor loadings ranging from 0.565 to 0.804. This factor signifies teaching 
behaviours that create a safe learning environment, including not being interrupted 
(M211) or laughed at (M210) even when asking a simple question, and teacher’s caring 
for students' learning conditions (M216) in a manner that is like a friend (M217). The 
third factor, classroom atmosphere, includes five items with factor loadings ranging 
from 0.538 to 0.748. This factor represents teaching behaviours  related to the creating 
joyful classroom atmosphere, including teacher's demonstration of a cheerful mood 
(M202), giving praise or gifts to students who ask questions to make the classroom 
atmosphere relaxed and enjoyable (M205, M208, M212). The fourth factor, teacher's 
responding to questions, consists of three items with factor loadings ranging from 
0.515 to 0.815. This factor indicates how teachers respond to students’ questions, 
allowing students to ask any questions at any time (M214), and ensuring that questions 
get answered (M215); however, the factor also involves teacher’s displaying angry if 
students have questions but do not ask them (M218). 
The average scores for factors one through four are 4.6, 4.9, 4.7, and 4.1, respectively. 
The item scores for factors one through four range from 4.4 to 4.8, 4.8 to 5.1, 4.5 to 
4.9, and 3.6 to 4.8, respectively. The average scores for all four factors are significantly 
higher than the neutral point of 3.5 (p < .01), indicating students’ endorsement of these 
teaching behaviours as encouraging them to ask questions. Paired t-tests revealed 
significant differences between each pair of these four scores (p = .00). The high score 
of the second factor suggests the importance of creating a safe environment for asking 
questions if a teacher expects this from their students. In addition, the results highlight 
the priority for a teacher to arrange their teaching behaviours  if they want to create a 
classroom where students feel encouraged to ask questions. 

Asking questions Loading Mean SD 
Intellectual needs   4.6 0.9 
M203 When the questions are a bit challenging and provide a 

sense of difficulty for me. 
0.795  4.4  1.3  

M204 When I recognize that the content being learned is 
crucial, and not understanding it might affect my 
subsequent learning. 

0.786  4.8  1.2  

Safe environment   4.9 0.9 
M211 If neither the teacher nor classmates mock anyone for 

asking questions, regardless of whether the question is 
simple or only the asker is uncertain about it. 

0.804  4.9  1.2  
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M217 If the teacher interacts with us in a friendly manner, 
akin to a friend. 

0.614  5.1  1.1  

Classroom atmosphere   4.7 0.9 
M208 If asking questions is rewarded with extra credit or 

small gifts. 
0.748  4.5  1.4  

M205 When the classroom atmosphere is relaxed and 
enjoyable. 

0.609  4.8  1.1  

Teacher's responding to questions   4.1 1.0 
M214 If the teacher encourages us to ask questions at any 

time, even if it interrupts the teaching. 
0.815  4.1  1.4  

M215 If the teacher consistently answers any questions 
posed by students. 

0.515  4.8  1.2  

Table 2: Statistics of factors contributing to teaching behaviours enhancing asking 
questions and exemplified items. 

Discussing with peers 
The final run of EFA was performed on 15 items regarding the teaching behaviours to 
enhance students’ motivation to discussing with peers, resulting in two factors that 
explains a total variance of 62.1% (see Table 3). The first factor, curiosity, comprises 
eight items with factor loadings ranging from 0.667 to 0.847. This factor involves 
teaching behaviours  that arouse students' curiosity from both cognitive and affective 
aspects. For example, when questions for discussion are challenging (M401) or 
interesting (M402), the thinking process they arouse is intriguing (M415), and their 
solutions evoke curiosity to find out (M402).  The second factor, mode and material of 
activities, includes seven items with factor loadings ranging from 0.463 to 0.764. This 
factor represents teaching behaviours that involve the use of specific modes or 
materials to enhance student discussions, such as arranging small group activities with 
friends, group competitions, and buzzing in (M403, M404, M411), as well as 
incorporating mathematical magic, puzzles, and real-life topics into teaching materials 
(M405, M410). 
The average scores for the first and second factors are 5.0 and 4.8, respectively, with 
item scores ranging from 4.9 to 5.2 for the first factor and 3.8 to 5.2 for the second 
factor. Both the average scores significantly surpass the neutral point of 3.5 (p < .01), 
indicating students’ endorsement of the teaching behaviours  related to these two 
factors to encourage their discussion in class. The results suggest that teachers could 
address students' curiosity from both cognitive and affective aspects, and provide 
feasible arrangements of modes and materials to engage students in mathematical 
discussions. 
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Discussing with peers Loading Mean SD 
Curiosity   5.0 0.9 
M412 If discussions can clarify my doubts and reveal the 

underlying principles. 
0.847  5.1  1.0  

M401 When the topic under discussion is somewhat 
challenging and difficult. 

0.742  4.9  1.2  

M402 When the scenarios for discussion are designed to be 
intriguing, and the answers arouse curiosity. 

0.687  5.2  1.0  

Mode and material of activities   4.9 0.8  
M404 When we are seated in groups. 0.764  5.0  1.2  
M403 When there are competitive activities such as quizzes 

or group competitions during class. 
0.753  5.0  1.2  

M405 When class incorporates intellectually stimulating 
activities like puzzle games or mathematical magic. 

0.687  5.2  1.1  

Table 3: Statistics of factors contributing to teaching behaviours enhancing 
discussing with peers and exemplified items. 

CONCLUSION 
The factors contributing to the three learning activities (listening to the lecture, asking 
questions, discussing with peers) can be categorized into three groups. The first group 
involves students' pursuit of mathematical understanding; they are willing to engage in 
class communication when they have cognitive needs in mathematics. The second 
group is related to safe environments and a positive atmosphere, which pertain to 
students’ sense of safety in class. In East Asian countries, where collectivist culture 
prevails, especially in Taiwan (Hofstede, 1986), it has been reported that students are 
particularly afraid of failure (OCED, 2018). Therefore, providing students with a sense 
of safety in mathematics classes is especially important if oral communication is 
expected. The third group involves teachers’ arrangement of modes and materials for 
activities. Our findings propose several feasible approaches that are endorsed by 
students. Furthermore, the study also identified the intertwining of cognitive and 
affective facets in several factors, echoing the long-standing importance of integrating 
these two aspects in mathematics instruction (McLeod, 1992). However, this 
integration may not have been well implemented in mathematics classes (Wang et al., 
2023). 
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MENSURATING THE AREA OF A STOLEN LAKE: 
MATHEMATISING A HISTORICAL EVENT 

Sean Chorney  
Simon Fraser University  

In this research report, students mathematise the image of a drained lake and reflect 
upon the repercussions of the draining, specifically in terms of an Indigenous nation 
which had lived beside the lake from time immemorial. Using Google Earth, students 
explore the notion of area by comparing the lake with a personal landmark in their 
locality. The study explores how students describe area in terms of new mathematical 
relations. From their descriptions, six themes emerged that enrich the conceptions of 
area. 

INTRODUCTION 
In this research report, I explore grade eight (13 year-olds) students’ contemplation and 
consideration of the draining of a lake using the mathematical concept of area. Area 
continues to be a challenging topic for students even as late as grade 9 (Lehmann, 2023; 
van de Walle et al., 2019). It is usually conceived of as a formula rather than a 
comparison to a standard. In this study, students engage in a socio-political issue, 
namely the draining of a lake in 1924 by the local government that displaced 
Indigenous people who had lived beside the lake from time immemorial. I approach 
the mathematical notion of area as one way to understand the significance of the 
draining. Rather than thinking of area as a bite-sized concept to be applied to a socio-
political topic, this study presents an approach that explores the draining while thinking 
mathematically. Area is approached as a form of mathematising, and it is seen as a 
positioning of worldly phenomena into a commensurable perspective.  
This study draws on the theoretical work of Reyes (2022), who describes mathematical 
concepts as developing through translating worldly relations into commensurable 
symbolic forms and reconfiguring those forms into new relations. In this study, I take 
the position that this is how students learn mathematics. I take a critical approach to 
teaching mathematics (Skovsmose, 2011) and align with Dominguez et al. (2023), who 
suggest that learning is not about student changing to understand the concept. Rather, 
they explore how mathematics can be reconceived so that it is accessible to students. 
In this study, students engage with thinking about a socio-political issue using an online 
digital mathematical tool, Google Earth, and are prompted to articulate ways of 
relating to the historical event. One overarching question the study asks is how to make 
the mathematical concept of area more meaningful for students so that they actually 
see why they might need to know it. Also: how it can be presented and explained in a 
way that the focus is not on calculation but on relations. The study seeks to understand 
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student expression of meaning about a socio-political issue by exploring the notion of 
area. 

THEORETICAL FRAMEWORK 
The framework upon which I ground this study is the notion of mathematising, which 
originally emerged from the work of Freudenthal (1973). He established Realistic 
Mathematics Education (RME) in the early 1980s and which has since become a Dutch 
mathematics education tradition. RME was founded on mathematising, whereby the 
goal was to connect mathematics to reality as closely as possible and to draw on 
common sense and informal mathematics as a starting point for students and in which 
mathematics can be elicited from everyday life situations (Heuvel-Panhuizen, 2000). 
Wheeler (2001) similarly suggested that mathematising is the act of producing 
“mathematics…in situations where something not obviously mathematical is being 
converted to something that is” (p. 51). Both Freudenthal and Wheeler describe 
mathematising as engaging with the world in non-formulaic, creative, and innovative 
ways that draw on mathematical relations. For them, mathematics emerges from 
mathematisations which engage with the world.  
Reyes (2022) furthers the practice of mathematising within his theoretical framing of 
how the discipline of mathematics develops. For Reyes, mathematics does not emerge 
from the blinding light of timeless truth, but from the translations of worldly relations 
into commensurable symbolic forms, which can then be reconfigured via inventive 
practices, leading to the articulation of new relations. Mathematising for Reyes is the 
act of taking world relations, such as the size of a lake, converting them into symbolic 
forms, and reconfiguring those symbols into new relations. When more relations are 
forged, the mathematics inherent within that relation becomes “more semiotically 
dense, more resistant to challenge, and more real” (p. 56). For Reyes, manipulating 
symbols is meaningless without strong relations. However, when those symbols 
represent something local, something that touches one’s own personal experience, new 
meanings and relations develop. These new meanings are not only about taking in facts 
and piecing them together cognitively, but also are about linking to one’s sense of such 
things as personal commitments, historical awareness, aesthetics, and ethics. 
Barsalou (2020), a psychologist and cognitive scientist, aligns with Reyes’ way of 
thinking by positing a grounded cognitive theory whereby understanding a concept is 
not learning an abstraction but developing a “competence or disposition for generating 
infinite conceptions of a category” (p. 9). An example of this, cited by Reyes, is 
Thurston’s seven meanings of a derivative. “The meaningfulness of ‘derivative’, 
according to Thurston, comes not from each particular definition but from its unlimited 
polysemy” (in Reyes, p. 6). In the same way, when students create new ways of 
expressing area by contemplating Lake Sumas as stolen from the Sumas Indigenous 
people, area becomes meaningful and significant through its polysemy.  
My research explores what new relations emerge from students’ contemplation of this 
event as they use area to mathematise the size of the lake. Specifically, my research 
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question is what new relations of area do students describe when contemplating the 
draining of Lake Sumas? 

METHODS 
The data in this study was collected in December 2023. The researcher who developed 
the activity taught two grade eight classes (13 year-olds) in a school in Western 
Canada. One class had 19 students, the other 22; in both classes, the students sat in 
pairs. The grade 8s were informed of the study by the classroom teacher before the 
researcher taught the class; all students agreed to participate in the study. There was no 
video or audio recording; however, there was a research assistant who took notes. All 
of the data was taken from a worksheet that students were given at the beginning of 
class and which was referred to as the lesson progressed. Students had access to Google 
Earth on a laptop and were given time during the class to complete portions of the 
worksheet. The curriculum in the province from which the researcher taught focuses 
on competencies as central to mathematics learning rather than content. That is, as 
examples, there is a focus on graphing and/or reasoning as opposed to learning how to 
complete the square or how to calculate an area. One competency relevant to this study 
is the ability to “engage in problem-solving experiences that are connected to place, 
story, cultural practices, and perspectives relevant to local First Peoples’ communities, 
the local community, and other cultures” (BCMoE, 2015). This competency is the 
result of the Truth and Reconciliation Commission of Canada (TRC, 2015) based on 
Canada’s mistreatment of Indigenous people. In the curriculum, area is introduced in 
grades 5 and 6 in a way that focuses on using grid paper to calculate area and 
determining the area of complex shapes. Surface area, as a topic, is introduced in grade 
8. The activity in this study is an introduction to surface area. While the activity focuses 
more on the area on a 2D map than on the surface area on a 3D object, the activity is a 
move from area as calculation to area as proportion and toward thinking about surface 
area. Some of the worksheet questions are: How large of an area is 36 km2? How could 
you put 36 km2 into perspective for someone who doesn't know what km2 means? 
Looking at Lake Sumas, what do you notice? (An image of the lake before 1924 is 
projected on a screen for the students to see), What do you wonder? Is Lake Sumas a 
big lake? What would you like to know to help you determine whether it's a big lake 
or not? Drag the lake and position it over top of a landmark you are familiar with, such 
as your home, school, or nearby park. Please sketch the image of this overlay below. 
Why did you choose that landmark?  
All responses were typed into a document and organized by question. These responses 
were then examined, and themes were created. The themes were developed by 
specifically focusing on expressions of area that were grounded in students’ own 
personal meaning making but yet also connected to the story of Lake Sumas.  
Lake Sumas story 
I base the lesson on a story of the Sumas region in British Columbia. Sumas Prairie 
lies approximately 100 kilometres east of Vancouver and is a large fertile area with 

https://curriculum.gov.bc.ca/curriculum/mathematics/5/core
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many homes and farms. Much of the dairy and poultry in grocery stores in Vancouver 
come from the area. In November 2021, an atmospheric river dropped a significant 
amount of rain within a short period of time leading to floods that damaged houses, 
farms, and livestock. One of British Columbia’s main highways, which passes through 
the area, was blocked. Usually, when I ask students what they remember from this 
event, it’s the empty shelves in the local supermarkets. 
What student typically do not know is that the area had previously been a lake lived on 
by the Sumas Indigenous nation. For the Sumas people, 85% of their diet came from 
the lake and there is evidence that they used the lake as far back as 400 BCE. Many of 
the stories they shared throughout generations were based on the lake. But in 1924 the 
lake was drained. The rivers feeding into the area were redirected, and a pump station 
was built so the land could be used for farming. The Sumas people were not consulted 
about the project, even though they had land claims to regions of the Sumas valley. 
One Sumas elder said of the 1924 drainage, “They choked the lake”.  
My interest was to mathematise the lake with respect to its size so that students get a 
sense of how significant its draining was on both the environment and the Sumas 
people. The students use Google Earth to draw a boundary around the lake as it was 
pre-1924 (I have images I show the students). Once the boundary is drawn, Google 
Earth calculates the area and the perimeter; students do not calculate these values. Lake 
Sumas was approximately 36 square kilometres. It is challenging to notice that the lake 
is very large as the area and perimeter, provided by Google Earth are numbers without 
a story, and also because Lake Sumas is situated between two mountains which makes 
the lake appear small. However, I ask students to drag the bounded area to another part 
of the map. I want them to compare the size of Lake Sumas with a landmark they are 
more familiar with to link the significance of the draining with a landmark they find 
meaningful. 

DATA AND ANALYSIS 
The research question asks how students describe area. In this section I share students’ 
responses from the worksheet. In particular, I am paying attention to how students are 
describing area using new relations based on the draining of Lake Sumas. [Note that I 
have not corrected the grammar or spelling of the student responses; this was a choice 
to minimize the distractions of many needed corrections.] 
Theme 1: Personal activities in relation to Lake Sumas 
There were some instances of algorithmic or rule-oriented responses. There were seven 
out of 41 of these responses, of which I share two below, simply as contrast to what 
follows. 

Student_1: To get something that is squared, you have to multiply it by itself, meaning 
multiplying 36 by 36, which is 1296 km, and that sounds pretty large. 

Student_2: I think 36 km2 is 1,296 kilometers is a form of measurement. Two is the 
number of times itself. 
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Both of the responses above are mathematically incorrect, but more importantly they 
are examples of non-personal algorithmic approaches to area. That is, there seems to 
be no personal connection with what is written. 
I contrast the above with the following in which 15 of the 41 students described area 
in terms of a personal activity. I share two here: 

Student_3: Well lake Sumas is big because if you were going to kayake across the lake 
it would take a long time to cross. 

Student_4: For me, 36 kilometers squared is an eight hour walk. 

These two examples are not precise, but they do represent a generative conception of 
area in that area is related to an activity the student can do. The personal makes it 
meaningful but also size is being thought of temporally and through effort and energy.  
Theme 2: Expressing agency in terms of Lake Sumas 
In the following two statements, it is worthwhile to know that Abbotsford is a small 
city close to the Sumas region: 

Student_5: It doesn’t look big on the map but if you think about it, it does actually look 
bigger than Abbotsford which is quite big. 

Student_6: If you ever drive to Abbotsford, you can see how much land it is. 

These responses are less about doing an activity, as in theme 1, and more about the 
willingness to take the time to consider and reflect upon the size of the lake. “If you 
think about it” or “if you ever drive” position the student as having the agency to choose 
to act in a reflective way. In these cases, mathematics is about action one can take if 
one wants to get a better sense of what is going on. 
Theme 3: Comparing other landmarks with Lake Sumas 
Before prompting the students to drag Lake Sumas and compare it with a landmark of 
their choosing, many students had described the size of Lake Sumas by comparing it 
to Cultus Lake. Cultus Lake is very close to the Sumas region and is usually visible 
when looking at Lake Sumas on Google Earth. Cultus Lake is a popular summer spot 
some students have visited. It is considered a large lake and yet is approximately five 
times smaller than Lake Sumas. 14 out of 41 related the size of Lake Sumas to Cultus 
Lake.  

Student_7: Yes, it’s a big lake. You can tell because in comparison, it’s much bigger 
than Cultus lake. 

When I project the image of Lake Sumas before draining in 1924 on a projector screen, 
the lake is transparent and the farm lands that exist now can be seen. 
 Student_8: There is farm lands in the lake, and the farmland is big. There were maybe 

100-200 for a lake it's big. 
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In both of the above cases, it is noteworthy that students are comparing Lake Sumas 
with another geographical landmark that can be seen when looking at Google Earth. 
They are choosing something close by and accessible and seeing area as comparison 
rather than as number. 
Theme 4: Relating the size of Lake Sumas to the mathematical notion of average 

Student_9: I would like to know the sizes of some big lakes and small lakes, to see 
where lake sumas would fall.  

Student_10: Lake Sumas is a pretty big lake in my opinion but there are smaller and 
bigger lakes in the world so I wouldn't say it's one of the biggest. 

In this theme, students appeal to another mathematical topic: average. They position 
Lake Sumas, not in comparison with another single landmark, but rather refer to the 
sizes of other lakes to get a better perspective of whether Lake Sumas is large. 
Theme 5: Relating personal landmarks with Lake Sumas  
In one question on the worksheet, I asked students to drag the outline of Lake Sumas 
and overlay it with a landmark of their choosing. I ask them to draw an image of this 
overlay. I present two examples in Figure 1 that were indicative of what most students 
drew. In general, in all these cases, there is a very personal appeal to a landmark that 
students consider important to them. 

  

Fig. 1: a) Victoria and Oak Bay COMBINED; b) Nine time larger than Stanley Park 
Figure 1a shows Lake Sumas covering the city of Victoria and Oak Bay, British 
Columbia. The capitalized word “COMBINED” emphasizes the student’s surprise of 
how much Lake Sumas covers. Figure 1b shows a dissection of Lake Sumas over 
Stanley Park, with Lake Sumas sketched and labelled to be “9X bigger” (9 times 
larger). The student who presented this particular sketch, overlaying Stanley Park, 
wrote that they chose this as their landmark because they had done “marine biology 
research” there with their father. 23 out of the 41 students gave reasons of why their 
landmark was meaningful (the remaining students left this question blank). Here are 
some examples of other students’ statements: 
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Student_11: Because I remember always going there with my family as a kid. It’s 
nostalgic for me. 

Student_12: Because my grandma is there. 

Student_13: Because it’s the building I go to for school everday, it’s quite large and I’m 
pretty familiar with it. 

The comparison of areas is made commensurable by overlaying the outline of Lake 
Sumas with one that has personal meaning. Students chose landmarks they were 
familiar with. There was a relevance to the landmark and with the overlay, that 
relevance was associated with Lake Sumas. When Lake Sumas is positioned in that 
frame, students can reflect on loss; that is, they might wonder what it would be like to 
lose their own landmark. 
Theme 6: The size of Lake Sumas in terms of impact 

Student_14: It's big because it impacted so many people. 

Student_15: I think that it greatly impacted the coast-salish people that lived there, and 
it was basically their main source of food that was being removed, just so 
that the British Europeans could farm better. 

Student_16: Well taking away the lake also took away the resources it gave to the 
Indigenous peoples (food, water, etc.). 

In these responses, area no longer is perceived as a number or a comparison with 
another landmark, but instead is related to an impact on people's livelihoods. The size 
of the lake is a symbol of how people were treated when the lake was drained. In 
general, student recognized the travesty of the draining on the Indigenous people. In 
these responses, it is evident that the area of Lake Sumas is connected with the 
significance the draining had on the Sumas people.  

CONCLUSION 
In this research report, a historical event was shared with students that connected the 
draining of a lake with a devastating flood that occurred in 2021. Students use Google 
Earth to mathematise an image of the lake before it was drained by outlining the lake 
and dragging it to a landmark of their choice. This study focuses on how students 
describe the size of the lake in their various ways. The pedagogy outlined in the study 
aimed to present students with the view that mathematics is not always about 
algorithms but can also be conceived through a reconfiguration of worldly relations. 
Focusing on the area of the lake and trying to make sense of that size is not only a 
meaning making activity but also introduces new ways of relating to how the draining 
influenced the environment and the Sumas people. The research of this study aimed to 
identify some of the novel relations students used to relate to the size of the lake. In 
answering the research question, I identified six themes related to how area was 
conceived. These themes focused on area as related to: students’ personal interests, 
such as kayaking; impact, whereby some students noted draining a large lake affects a 
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lot of people; appealing to other mathematical topics, such as average; enacting agency, 
what students can do to improve their understanding of a particular situation; and 
personal landmarks that students can remember, visualize and visit. These themes are 
meaningful to the students since the students are making the connections themselves; 
but also, the themes contribute to the mathematical notion of area. The themes are not 
exhaustive; more studies will have to be undertaken to develop a more cohesive and 
robust sense of how students link mathematical topics with stories that involve history 
and cultural perspectives, specifically in regions where the curriculum calls for such 
links. 
Area in this study is a way of seeing. It is a perspective rather than a formula or an 
exercise. This research contributes to the learning of mathematics when addressing 
socio-political issues in the classroom. As we think about the nature of mathematics, 
we might rethink what kinds of relations we want to develop when teaching 
mathematics. 
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SNAPSHOTS OF A TEACHER’S PRODUCTIVE TALK MOVES 
WHEN ORCHESTRATING A WHOLE-CLASS DISCUSSION 

Ban Heng Choy and Jason Lai 
National Institute of Education, Nanyang Technological University, Singapore 

Orchestrating productive mathematics discussions by building on students’ ideas is 
challenging. Although certain talk moves involving eliciting student responses are 
associated with this high-leverage practice, they may not be sufficient for enhancing 
student reasoning. Telling, on the other hand, may play an important role despite the 
perception they are contradictory to a more interactive stance in teaching. In this 
paper, we examined how an elementary school teacher orchestrated a productive 
whole-class discussion through the skilful interweaving of talk moves and telling. 

INTRODUCTION 
Orchestrating productive mathematics discussions by building on students’ ideas has 
been seen as a high-leverage teaching practice by many mathematics educators (e.g., 
Smith & Stein, 2011). This requires teachers to design tasks that reveal students’ 
thinking, listen to, and build on students’ ideas by noticing the mathematics in students’ 
ideas (Choy, 2016). Consequently, teachers have adopted talk moves, such as eliciting 
ideas from students (Lobato et al., 2005), pressing students to clarify their thinking 
(Brodie, 2010), and revoicing ideas from other students (O'Connor & Michaels, 1993) 
to meaningfully incorporate students’ ideas as part of their instructional practices. 
However, deploying these high-leverage moves in the classrooms may not lead to a 
productive engagement of students’ thinking (Van Zoest et al., 2023). On the other 
hand, telling, which is often seen as contradictory to a more interactive stance in 
teaching, may have an important role to play when orchestrating discussions  (Lobato 
et al., 2005). What is unclear is how the different talk moves can be used together with 
telling to engender a more productive mathematics whole-class discussion that enhance 
student reasoning to bring about conceptual understanding. In this paper, we aim to 
add to this conversation about the complexities of orchestrating discussions by 
providing snapshots of an elementary school teacher, Ms. Hannah, as she orchestrated 
a mathematically productive classroom discussion using a challenging problem on 
elapsed time across time zones. We frame this paper around the key research question: 
What are the different talk moves used by Ms. Hannah and how did she use them 
together with telling to bring about a productive mathematics whole-class discussion? 

THEORETICAL CONSIDERATIONS 
We begin by unpacking the idea of a productive mathematics discussion in terms of its 
patterns of discourse and examine how the different talk moves can support or hinder 
opportunities for students to reason mathematically. There are at least two main 
patterns of discourse that feature frequently in mathematics classrooms. First, as 
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described by Mehan (1979), the initiate-response-evaluate, or IRE, pattern of discourse 
is characterised by the teacher initiating talk by posing a question (I), which is followed 
by a response given by a student to the question posed (R), before teacher evaluates or 
gives a feedback to the response (E). In an IRE pattern of discourse, the questions asked 
are usually funnelling in nature, in which the teacher engages in most of the thinking 
by asking a series of questions that guide students through a procedure to a desired end 
(Herbal-Eisenmann & Breyfogle, 2005). In contrast, the second pattern of discourse—
revoicing—as described by O'Connor and Michaels (1993), is usually initiated by a 
student’s question or statement, which is rephrased by the teacher before inviting the 
student or others to explain or justify the initial question or statement. Such patterns of 
discourse are usually characterised by the use of focusing questions, which require 
teachers to listen to students’ ideas (Rinaldi, 2001) and guide them based on what 
students are thinking (Herbal-Eisenmann & Breyfogle, 2005). With the aim of 
implementing a high cognitive-demand task to realise its design potential, it is crucial 
for teachers to adopt patterns of discourse that are more likely to engage students in 
thinking. For this study, we see revoicing as the pattern of discourse that is more 
aligned to the notion of productive mathematics discussions (Smith & Stein, 2011).   
Orchestrating a productive mathematics discussion is challenging and so, it is useful to 
support teachers to do this ambitious work by providing a structure or routines of 
practice to frame their discussion. One such structure is the five practices—
anticipating, monitoring, selecting, sequencing, and connecting—as proposed by 
Smith and Stein (2011). Here, we presuppose orchestrating such discussions as a 
deliberate practice and can be planned. The centrepiece of a productive discussion is a 
mathematics task that is designed to reveal students’ thinking, as anticipated by the 
teacher. During the implementation of the task, the teacher will monitor the students’ 
responses to the task, purposefully select and sequence students to present their work 
before the teacher guides students to connect the different responses to form a 
mathematical conclusion. Doing this involves talk moves such as eliciting ideas from 
students, asking for clarification of ideas, and teacher’s revoicing of ideas to facilitate 
interaction (Van Zoest et al., 2023). Hence, these five practices place demands on a 
teacher’s attention to listen with students and notice the mathematical aspects of 
students’ ideas (Choy, 2016).  
However, using some of these talk moves may sometimes be counterproductive. As 
highlighted by Van Zoest et al. (2023), eliciting ideas, asking to clarify ideas, and even 
revoicing, may “diminish opportunities to engage the whole class with a high-leverage 
contribution that is already available for discussion” (p. 251). For example, eliciting 
ideas from students may be counterproductive when students lack prior knowledge to 
construct new meanings among themselves. On the other hand, using a low-leverage 
practice such as telling may be productive when teachers are “describing a new concept 
or “summarising students work” that “inserts new information into the conversation” 
(Lobato et al., 2005, p. 110) in ways that promote conceptual growth. This brief 
discussion suggests that it not solely the types of talk moves teachers use, or even if 
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teachers should tell students during classroom discussions; but more importantly, we 
need to acknowledge that telling together with other talk moves may form part of a 
“more sophisticated range of pedagogical actions” (Lobato et al., 2005, p. 131). 

METHODS 
The vignettes described in this paper were developed from data collected as part of a 
study that focused on developing a listening pedagogy (Rinaldi, 2001). The vignettes 
centred around Ms. Hannah (pseudonym), a mathematics teacher with more than 18 
years of teaching experience at Quayside Primary School (pseudonym) in Singapore. 
As Ms. Hannah was familiar with the practices of orchestrating mathematics 
discussions (Smith & Stein, 2011), she was one of the teachers we followed closely in 
our study. In this paper, we will present snippets of how Ms. Hannah orchestrated 
mathematics discussions with a class of Grade 4 students around a challenging problem 
on elapsed time (Constance & Kelly, 2012) in the context of time zones. Grade 4 
students in Singapore are expected to solve “problems involving time in 24-hour clock” 
(Ministry of Education-Singapore, 2012, p. 45) and they have encountered concepts 
related to the “awareness of time, succession, duration, and measurement of time” 
(Thomas et al., 2023, p. 55).  
Data were generated from video recordings of the lesson, voice recordings of an 
interview with Ms. Hannah, photographs of students’ work during the lesson, and 
teaching artifacts such as the slides used for the lesson and other instructional materials 
developed by Ms. Hannah for this lesson. We parsed the video recording of the lesson 
and segmented the lesson into the different phases of the lesson. We then identified 
pedagogically significant moments related to Ms. Hannah’s use of the mathematics 
task and examined how she orchestrated the discussion through telling, eliciting 
information from the class, asking students to clarify their contributions, and inviting 
students to revoice their peers’ contributions (Van Zoest et al., 2023). 

FINDINGS 
Overview of the lesson 
The centrepiece of the lesson is a problem in the context of time zones: 

At 11 30 in Singapore, a plane leaves for London. At what time in London will it be when 
the plane touches down if the duration of the flight is 13 hours? Explain your answer.   

This is a challenging problem for Grade 4 students because it involves the concept of 
elapsed time and time comparison, which is difficult for many students (Constance & 
Kelly, 2012). In Singapore, students usually solve problems involving elapsed time in 
the contexts of tasks and journeys in the same time zone. Problems involving different 
time zones are considered challenging and are often given as problem solving tasks 
(e.g., see Chan, 2016, p. 184). As highlighted by Thomas et al. (2023), even students 
in the first year of secondary school (Grade 7) had difficulties understanding concepts 
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of time comparison, such as durations and time zones, in a national assessment held in 
the state of Victoria, Australia.  
Ms. Hannah started by recapping the ideas covered in the previous lesson on the 24-
hour clock, time in seconds, and the use of timeline as a problem-solving tool (2 
minutes). She then initiated a discussion around the notion of time comparison across 
different time zones (9 minutes) by relating to students’ experiences of international 
travel and communication with overseas friends. The problem was introduced to the 
students, and they had some time to read and understand the question individually (2 
minutes) before Ms. Hannah launched a short discussion to clarify any questions 
regarding the problem (4 minutes). Students were given 2 minutes to work on the 
problem on their own before they worked collaboratively to solve the problem on an 
A3-size working sheet (10 minutes). They were also prompted to provide alternative 
solutions if they could. As the students worked on the problem, Ms. Hannah moved 
around the class to monitor students’ thinking and solutions before she launched a 
whole-class discussion by inviting selected groups of students to share their solutions 
and built on students’ thinking to highlight key learning points (10 minutes). She then 
assigned questions from the workbook for students to work on while circulating the 
class to support students who had questions (15 minutes). 
Vignette 1: Time Difference between Singapore and London 
Ms. Hannah provided some time for her students to clarify any doubts about the 
question after the problem was introduced. Several students raised their hands. One of 
the students, S1, wanted to know if the time given was 11.30 a.m. or 11.30 p.m. Instead 
of answering the question, Ms. Hannah redirected the question to her students: 

Ms. Hannah: So, he asked whether it is 11.30 a.m. or p.m. Anybody can answer [Student 
S1]? (Many students volunteered by raising their hands. Ms. Hannah picked 
Student S2 to answer) 

Student S2: Morning. 
Ms. Hannah:  Morning. Why? Must explain [to your friend, S1]. 
Student S2: Because 11 30 is [written] in the 24-hour clock. 
Ms. Hannah: (repeating what Student S2 said). It’s in the 24-hour clock, right? Is it stated 

in the 24-hour clock? Am I right? (Many students nodded.). Okay. Any 
other questions? 

One of the students, S3, noticed that the time difference between Singapore and 
London was missing and asked about it: 

Student S3: What is the time difference between Singapore and London? 
Ms. Hannah:  Very good! This is a piece of critical information that is not there [referring 

to task], right? I am very happy that you saw that. That’s one missing 
information in the task. Without that information, can you solve? 

Whole class: No. 
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Ms. Hannah: Right. Without the piece of information, you can only solve part of it and 
not the whole thing, right? Anybody knows [what the time difference is]? 

A student, S4, volunteered and Ms. Hannah signalled for S4 to answer. S4 gave the 
answer as 7 hours and Ms. Hannah confirmed the answer. She then asked S4 whether 
to “add or subtract 7 hours”. To facilitate the discussion, Ms. Hannah wrote 
“Singapore: 08 00” on the board for S4 to consider.  

Student S4: Minus seven hours? 
Ms. Hannah:  When [S4] said “minus seven hours”, what would that be? Anybody? What 

would that be? (A few students raised their hands and S5 was picked to 
answer).  

Student S5: Zero-one-hundred hours. 
Ms. Hannah: (Repeating what S5 said) Zero-one-hundred hours (Wrote “London: 01 00” 

on the board). Very good. Can you see? What you say 7 hours difference, 
you also need to know whether it is earlier or later. 

In these exchanges, we see how Ms. Hannah created opportunities to clarify S2’s and 
S4’s contributions. By doing so, she not only ensured that her students could see the 
ideas she wanted to highlight but also the reasoning behind the answers, which can be 
seen as case of productive clarifying (Van Zoest et al., 2023). There were also 
occasions where Ms. Hannah elicited key ideas from her students and then reaffirmed 
what the students said. On the surface, it may look like a standard Initiate-Response-
Evaluate, or IRE pattern of discourse (Mehan, 1979), but it is really a case of productive 
telling (Lobato et al., 2005)—where Ms. Hannah explicitly directed the students to the 
essential ideas needed to solve the question. In this episode, S4, who knew the time 
difference between Singapore and London was able to provide that information without 
Ms Hannah doing so. A key distinction in Ms. Hannah’s practice is that her telling was 
interweaved with the other talk moves to maintain student engagement in thinking 
about the problem.  
Vignette 2: “Time plus duration?” 
After the initial clarification, students actively worked on the problem individually 
before they worked collaboratively to solve the problem. Ms. Hannah monitored the 
different solutions worked out by the students and asked three groups of students to 
present their solutions. The first group worked out the solution in Singapore time 
before converting it to London time (see Method 1 in Figure 1): 

Student S5: So, basically this is [S6]’s idea and so because Singapore time is 11 30, so 
she added 10 hours to twenty-one-thirty hours [sic]. And another three 
hours for the total duration of the flight to zero-zero-thirty hours in the 
morning. So, because London is seven hours behind Singapore, so zero-
zero-thirty hours in the morning of Singapore, minus seven hours to 
seventeen-thirty in the evening at London. 

Ms. Hannah:  Okay. Can you just leave it there, please? (asked S5 to leave her answer 
there at the visualiser). Given them a round of applause. (Students clapped). 
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What did they do first? What was their first step? (A few students raised 
their hands, and she picked S7 to answer.) 

Student S7: To add 13 hours. 
Ms. Hannah: Add the duration of the flight. Agree? (Wrote on the whiteboard). Add the 

duration of the flight. Agree? (A few students said “yes”). So, the first thing 
they did: add the duration of fight. I’m just going to put “add”. Then what 
did they do next? (Picked S8) 

Student S8:  Minus seven hours. 
Ms. Hannah: Why did they minus seven hours? What was that for? 
Student S8:  Because in London it’s seven hours… before Singapore time, so they have 

to minus seven hours to find the time in London. 
Ms. Hannah: Okay. Convert to London time (wrote on the whiteboard). Yes? Agree? 

(Some “yes” from students). Anything you want to comment? Look at the 
working. It has to be clear. (S9 raised his hand and Ms. Hannah motioned 
for him to proceed).  

Student S9:  The eleven hundred hours plus 30 hours (sic) plus 13 hours… because both 
things are different, so I think you cannot just add them together (see 
highlighted text in Figure 1). 

Ms. Hannah: (Looked at S9). Good. You have good ideas, but you need to be very clear. 
(Looked at the whole class). [S9] said that this doesn’t look right. They are 
two different things. What does he mean by two different things? Anybody 
wants to add to his comments? (Picked S10 to answer). 

Student S10:  One is time, and one is duration.  
Ms. Hannah: One is time, and one is?  
Student S10:  Duration.  
Ms. Hannah: So, this is not right. We don’t show it this way…  

 

Figure 1: Three solutions presented by students (reproduced for clarity). 
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Ms. Hannah went on to invite another group of students to present a different solution 
(see Method 2 in Figure 1), which is to work in London time from the start. After 
eliciting these two solutions, Ms. Hannah was aware that some students had a third 
solution. She invited two students, S11 and S12, to present their answers (see Method 
3 in Figure 1). This solution “imagined” the time in London to be 11 30 (7 hours later) 
and so the remaining flight time is 6 hours (13h – 7h = 6h). Hence, the required time 
in London will be 17 30 (6 hours after 11 30). As expected, this is a rather sophisticated 
reasoning for a Grade 4 student and a student, S11, had some difficulty expressing his 
ideas. Ms. Hannah then used this opportunity to ask the class some clarifying questions 
to make sure that most of the class could understand the solution before she explained 
the S11’s solution to the class. 
We see how Ms. Hannah used her students’ responses to engage them in mathematical 
reasoning. She was deliberate in her selection of solutions. For the first group, while 
mostly accurate, she noticed and harnessed the affordances of students’ work to 
highlight an important convention when working with time. For the third group, she 
wanted to highlight the sophistication in their reasoning. In addition, we also see how 
she pressed the students to clarify their understanding and engaged her students in 
productive revoicing. Hence, she was able to assess whether her students had actually 
understood the focus of the discussion (Van Zoest et al., 2023) before she explained 
the solutions.  

DISCUSSION 
Taken together, the two vignettes reaffirmed the intricacies and complexities of a 
mathematically productive whole-class discussion (Lobato et al., 2005; Smith & Stein, 
2011; Van Zoest et al., 2023). It is not merely the use of talk moves such as collecting, 
clarifying, and revoicing, that make a discussion mathematically productive. As 
demonstrated by Ms. Hannah, teachers need to engage in both productive listening 
(Rinaldi, 2001) and productive telling (Lobato et al., 2005), and the talk moves must 
work in concert to focus the discussion on key mathematical ideas. Enabling this 
requires efforts to build a conducive classroom environment where it is routine for 
students and teachers to listen, make sense, and share their ideas. Ms. Hannah’s 
structure for the lesson depicted in this paper was not a one-off event. In all our 
observations of her lessons, we saw a consistent lesson structure: Clarifying or 
recapping ideas introducing the task individual working on the task 
collaborating on the task presenting different ideas connecting ideas to make a 
mathematical point focused practice for mastery. This structure is similar to what 
researchers such as Smith and Stein (2011) had suggested. What Ms. Hannah had 
demonstrated was how she used this structure to create opportunities for students to 
share their ideas in ways that would enable her to ask focusing questions relevant to 
the objectives of the lesson (Herbal-Eisenmann & Breyfogle, 2005). Notwithstanding 
the limitations of this study, we believe that her skilful interweaving of talk moves and 
telling was key to unlocking the mathematical quality of her whole-class discussions.  
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ESSENTIAL PROGRAM FEATURES IDENTIFIED BY STUDENTS 
WORKING TOWARD A DOCTORATE IN MATHEMATICS 
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What are the essential components of a doctorate program in mathematics education 
or didactics of mathematics concerning research, coursework, seminars, and 
collaboration? The purpose of this study was to learn from doctoral students across 
the world about how their programs in mathematics education are preparing them for 
research and teaching in mathematics education; how their programs provide 
academic research and writing support; and what they view as missing from their 
experiences. Online surveys, along with follow-up interviews from a subset of survey 
respondents, indicated that doctoral students from 17 different countries stressed the 
importance of international collaboration, examining fundamental theories of learning 
mathematics, and identified a need for more support with academic writing. 

INTRODUCTION 
Over the past two decades, the growing internationalization of institutions of higher 
education has been one of the most widely discussed and researched aspects of 
further education (e.g., Altbach & Knight, 2007; de Witt & Deca, 2020). This period 
has also seen a significant increase in research into the development of and issues 
around mathematics teacher educators (MTEs). One subset of MTEs lacking a robust 
research base is the group of holders and pursuers of doctorates in mathematics 
education or didactics of mathematics, depending on your geography and 
background. Existing research on mathematics education doctorates, although 
limited, has highlighted the great variability in doctoral preparation and programs 
(e.g., mathematics knowledge preparation, research training) and focused on the 
potential to identify a common core of knowledge and experiences that would 
prepare graduates for diverse careers (Goos & Beswick, 2008; Kilpatrick & Spangler, 
2015; Reys, 2002).  
The research presented here is part of a larger project designed to identify features of 
doctoral programs in mathematics education with the potential to make up a common 
core set of experiences, practices, and expertise. Such a core holds promise to 
become what Engwall (2016) identified as the “most significant mode of 
internationalization in higher education . . . the Import of Ideas to the home 
institution” (p. 222). According to Engwall (2016), the Import of Ideas takes place 
mainly through international contacts and collaborations, and through national faculty 
members’ selection of course literature. Therefore, identifying features of doctoral 
programs in mathematics education that remain essential across institutions and 
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countries has the potential to become part of a core set of experiences, practices, and 
expertise for any mathematics education doctoral program, regardless of where it is 
located (Grevholm et al., 2008). 
In this paper, we report on ongoing international research to collect and examine data 
about the experiences, practices, and expertise of individuals with or working toward 
a doctorate in mathematics education. The following questions guide the research 
presented here: 1) What features of doctoral programs, across countries, do 
individuals pursuing a doctorate in mathematics education identify as being essential? 
2) Which aspects of research and teaching in mathematics education do doctoral 
students need more support with? 

METHODS 
A combination of purposive and convenience sampling was used to identify and 
contact (via email) potential participants for the larger study, which is composed of 
individuals with a doctoral degree in mathematics education (or didactics of 
mathematics) or currently working toward such a degree. Several proceedings from 
international and regional mathematics education conferences from the past five years 
(e.g., CERME 13, MERGA 45, NORMA 20, PME 46, PME-NA 45, The Mathematics 
Education for the Future Project, XVI CIAEM) were used to obtain the email addresses 
of potential study participants. Next, potential participants were emailed a letter 
introducing the study and inviting them to click on a link to a consent form and survey 
(the survey link is still active and available at https://tinyurl.com/DocMathEd). The 
survey was designed to identify the experiences, practices, and expertise of individuals 
holding or pursuing a doctorate in mathematics education. It was hoped that 
respondents would forward the email and link to their colleagues and/or doctoral 
students, which occurred in several instances. The last survey question asked if 
participants were available for a follow-up interview about their doctoral program 
experiences. 
Participants 
Survey participants for this report comprised 28 mathematics education doctoral 
students from 17 countries: one participant from Australia, Austria, Brazil, Columbia, 
France, Germany, Ghana, India, Israel, Mexico, United Kingdom, and Zambia; two 
participants from each of Norway and Spain; 3 participants from Indonesia; 4 
participants from Malaysia; and 5 participants from the United States. Each 
participant self-identified as someone working toward a doctorate in mathematics 
education (or didactics of mathematics). Twenty-six of 28 (92.9%) participants 
indicated they planned to pursue a career as a university faculty member (e.g., 
professor, lecturer, researcher) upon graduation. Thirteen of 28 participants (46.4%) 
were pursuing their degree in a Department of Mathematics Education, 6 participants 
(21.4%) in a Department of Mathematics or Mathematical Sciences, 4 participants 
(14.3%) in a Department of Education, and 5 participants (17.9%) were pursuing 
their degree in some other department (e.g., Department of Linguistic, Scientific, and 

https://tinyurl.com/DocMathEd
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Mathematics Education). Finally, of the 18 participants who indicated their 
willingness to participate in a follow-up interview, five scheduled, attended, and 
responded to a 30-minute, semi-structured interview. 
Data Collection 
Participants were asked a series of survey questions regarding how important they 
believed specific features (see Table 1) were to a doctoral program in mathematics 
education. 

Doctoral Program Feature Doctoral Program Feature 

Analyze, design, and evaluate 
mathematics curricula 

Develop broad and deep knowledge of 
the big ideas in pre-K–14 (e.g., ages 2-
20 years) mathematics 

Study the history of mathematics 
education 

Examine how the big ideas in pre-K–14 
(e.g., ages 2-20 years) mathematics 
develop in students 

Examine historical, social, political, and 
economic factors that influence 
mathematics education 

Utilize technology as a tool of inquiry in 
mathematics teaching and learning 

Examine current and historical research 
in the field of mathematics education 

Design learning experiences for students 
and teachers that utilize technology 

Examine and compare fundamental 
theories of learning mathematics 

Supervise field experiences for 
prospective (pre-service, student) 
mathematics teachers 

Examine the influence of curriculum 
frameworks, standards, and/or 
competencies on school mathematics 
programs 

Examine issues of diversity, equity, and 
inclusion in mathematics learning and 
teaching 

Examine and compare different forms 
and purposes of assessment 

 

Table 1: Doctoral Program Features 
Responses were limited to “Very Important,” “Moderately Important,” “Slightly 
Important,” “Not Important,” and “Not Necessary/Not Required.” All 28 participants 
responded to 13 of these Likert-type level of importance questions. The interview 
questions for participants pursuing a doctorate in mathematics education focused on 
the strengths of their program, aspects where they needed more support, prior degrees, 
teaching experience, and current research. 
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Analysis 
The Likert-type level of importance questions were analyzed by weighing each 
possible anchor response as follows: “Very Important” = 4, “Moderately Important” = 
3, “Slightly Important” = 2, “Not Important” = 1, and “Not Necessary/Not Required” 
= 0. Next, the number of responses for each anchor was determined and the sum of 
points was calculated. For example, the question focused on the importance of the 
doctoral program feature “Analyze, design, and evaluate mathematics curricula” 
received the following responses: “Very Important” was selected by 19 participants; 
“Moderately Important” and “Slightly Important” were each selected by four 
participants; “Not Important” by no participants; and “Not Necessary/Not Required” 
by one participant. Therefore, the doctoral program feature “Analyze, design, and 
evaluate mathematics curricula” received a weighted score of 19 × 4 + 4 × 3 + 4 × 2 + 
0 × 1 + 1 × 0 = 96. A sequence of Fisher’s exact tests for a 2 × 5 contingency table was 
also performed to determine the significance of associations between participants’ 
selected importance levels (e.g., “Moderately Important”) and each pair of program 
features (e.g., “Examine and compare fundamental theories of learning mathematics” 
and “Analyze, design, and evaluate mathematics curricula”). 
Thematic analysis was implemented for the interview data, so the researchers could 
analyze emerging themes that aligned with the research questions for those aspects of 
essential components of doctorate programs in mathematics education from the larger 
study that is currently in progress (Braun & Clarke, 2013). This process was structured 
around both research questions in this report, to focus the findings on essential 
components, strengths of doctoral programs, and where more support is needed. 

RESULTS 
The results section is divided into two subsections, each focused on one of the research 
questions. The first subsection provides results from the surveys based on the first 
research question. 
What features of doctoral programs, across countries, do individuals pursuing a 
doctorate in mathematics education identify as being essential? 
The top five weighted scores from the series of survey questions regarding participants’ 
views about the importance of various doctoral program features are illustrated in 
Table 2. These results are ranked from the largest to smallest weighted score value.  

Doctoral Program Feature Weighted 
Score 

Very 
Important 

Examine and compare fundamental theories of 
learning mathematics 

100 21 

Analyse, design, and evaluate mathematics 
curricula 

96 19 
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Develop broad and deep knowledge of the big 
ideas in grades pre-K-14 mathematics (e.g., 
ages 2-20 years) 

93 14 

Examine current and historical research in the 
field of mathematics education 

93 13 

Utilize technology as a tool of inquiry in 
mathematics teaching and learning 

93 13 

Table 2: Essential Features of Doctoral Programs in Mathematics Education 
Results of the sequence of Fisher’s exact tests indicated a significant association 
between participants’ selected importance levels (e.g., “Moderately Important”) and 
the doctoral program feature “Examine and compare fundamental theories of learning 
mathematics” with each feature illustrated in Table 3. 

Doctoral Program Feature p (α = 0.05) 

Study the history of mathematics education 0.0051 

Examine historical, social, political, and economic factors 
that influence mathematics education 

0.0317 

Examine current and historical research in the field of 
mathematics education 

0.0401 

Utilize technology as a tool of inquiry in mathematics 
teaching and learning 

0.0401 

Design learning experiences for students and teachers that 
utilize technology 

0.0448 

Table 3: Significant Fisher’s Exact Test Results 
The results of Fisher’s exact test (p = 0.0336) also indicated a significant association 
between participants’ selected importance levels (e.g., “Very Important”) and the 
doctoral program features “Analyze, design, and evaluate mathematics curricula” and 
“Study the history of mathematics education.” Finally, results of Fisher’s exact test 
indicated the associations between participants’ selected importance levels for all other 
survey feature pairings (e.g., “Examine and compare fundamental theories of learning 
mathematics” and “Analyze, design, and evaluate mathematics curricula”) were not 
significant. Therefore, being provided with opportunities to examine and compare 
fundamental theories of learning mathematics was an essential feature across programs 
and countries. Furthermore, the remaining four features identified in Table 2 have the 
potential to serve as essential common experiences. 
The next subsection addresses findings from both the open-ended survey items and 
interviews and addresses the second research question. Participants’ open-ended item 
responses focused on essential components of mathematics education doctoral 
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programs. Finally, participants’ interview responses focused on the strengths of the 
doctoral programs from the perspectives of current students, what was lacking, in their 
programs, and whether participants believed there were core components that every 
mathematics education doctorate program should include. 
Which aspects of research and teaching in mathematics education do doctoral 
students need more support with? 
Participants discussed the importance of international conference experiences and 
collaborations and indicated such components should be a required part of a core set 
of experiences in any doctoral program. According to one participant, “Exposing 
doctoral students to international forums, webinars, ways to communicate with other 
countries, this can’t be done only by reading. Knowledge can be gained by lectures, 
readings, but . . . international collaboration is needed.” This participant is required to 
present at least at one international conference as part of their doctoral program, a 
requirement for which they are grateful and believe should be part of every program. 
Academic writing support was most often identified as lacking in mathematics 
education doctorate programs. Participants felt they were expected to have acquired 
these skills before entering the doctoral program. Unfortunately, varying backgrounds 
in prior degree programs did not always prepare these doctoral students for academic 
writing in their research. For example, students with prior degrees in pure mathematics 
have experience writing proofs but not necessarily developing literature reviews. Other 
participants expressed a feeling of isolation in their research endeavors and a desire for 
additional opportunities to collaborate with mathematics education colleagues and 
peers. One participant indicated that although their program provided academic writing 
support, they felt isolated because they were attending courses and seminars online as 
their residence was in a different country from their home institute.  
In addition to the lack of support for academic writing, another participant emphasized 
the lack of consistency of support from graduate supervisors. This participant stated, 
“Mentorship and advising are vital – [but] different from person to person; Some PhD 
students get completely isolated by their advisor, while others get brought into research 
projects and spend time writing with their advisor.” This doctoral student requested 
that rules and regulations for the supervising process be implemented so that every 
student has a productive and beneficial experience. Despite this lack of consistency, 
this participant provided positive feedback regarding the core knowledge they acquired 
in the field of mathematics education during coursework. 
According to interview participants, core components of a doctoral program in 
mathematics education, in addition to international conference opportunities, should 
include “emphasizing a scientific mentality and mentoring in a culture of research.” 
Furthermore, participants stated that collaborative research and being treated as part of 
a research team not only promotes collegiality but also provides a greater contribution 
to the field of mathematics education. Two participants emphasized the importance of 
teaching experiences, understanding deductive skills and students’ thinking processes, 
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and interacting with students as they engage in mathematics. This combination of 
perspectives on the importance of both teaching and research components can help to 
provide a guideline for essential components of any doctoral program in mathematics 
education. 
Responses from the open-ended questions in the survey aligned with those from the 
interview, which focused on how teaching experiences benefitted them as a researcher 
in didactics of mathematics. According to one participant, “For me, it is very important, 
the interaction between theory and practice, and the constant involvement with school 
reality; for example, through the supervision of educational internship experiences of 
prospective teachers.” This should be a call to action for any mathematics education 
professor with extensive experience in higher education—to stay involved and relevant 
with current teaching practices and the reality of current classroom experiences. 
Participants’ survey responses also spoke to the importance of international 
collaboration. One respondent stated, “I think that understanding the reality of other 
countries and seeking to learn new strategies and learn about other points of view are 
important to boost the quality of mathematics teaching at all levels in our country.” 
Although the desire to focus on the needs of the student body a teacher or professor is 
currently working with is understandable, there is so much that can be learned from 
connecting with an international network of mathematics educators through a variety 
of forums. 

DISCUSSION  
Doctoral students in mathematics education can pursue many different career paths 
after graduating from their program, yet there are essential features most participants 
in this study indicated were necessary for their future success. As Herbst (2023) 
suggests in his recent editorial, we all serve to contribute to the field of knowledge in 
mathematics education and this process should be more collaborative and supportive. 
One way to achieve more collaboration and support is to incorporate additional modes 
of internationalization into further education. Of course, mathematics education 
university professors and researchers should maintain their autonomy in teaching and 
lines of inquiry; still, some common ground among programs, expectations, expertise, 
and support for doctoral students could lead to greater contributions to our field. 
More attention and support in obtaining funding would be beneficial to current doctoral 
students. This suggestion was requested not only by study participants but also by 
experts in didactics of mathematics during the validation stage of this study’s 
instruments, who lamented about not learning about the funding process earlier in their 
careers. Finally, continued professional development opportunities related to emerging 
digital technologies was requested by study participants and should be part of any 
doctoral program, regardless of the country, institution, or grade-level focus.  
This report is part of a larger, international study with the intent to continue the 
discussion and promote actions toward more cohesive expectations, practices, and 
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expertise for doctoral programs in mathematics education. Such discussions and 
actions have the potential to develop guidelines for robust mathematics education 
doctoral programs. For instance, one participant identified the need for a study such as 
the one presented here, especially in light of the emerging number of doctoral programs 
in didactics of mathematics in Indonesia. The importance of international collaboration 
cannot be understated, and essential components of teaching and research in 
mathematics education should continue to be identified and encouraged. 
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AN EMPIRICAL EVALUATION OF USING INSTRUCTIONAL 
VIDEOS IN DIFFERENTIATED INSTRUCTION FOR EIGHTH 

GRADERS’ LEARNING OF MATHEMATICAL PROBLEM 
SOLVING 

Yu-Hsuan Dai and Kai-Lin Yang 
National Taiwan Normal University, Taiwan  

This study aimed to develop instructional videos for assisting differentiated eighth 
graders’ learning in mathematical problem solving. To evaluate the effect of the 
intervention strategy, we used pre- and posttests on the participants’ performance and 
learning motivation as well as semi-structured interviews to understand high, medium, 
and low-achieving participants’ perceptions of the learning experience. The results 
showed that the teaching designs had significant effects on improving students’ 
performance and learning motivation in mathematical problem solving. The interviews 
revealed that the effect may have resulted from using the instructional videos for 
individual learning pace, clarifying the concepts applied for problem solving, and 
providing clear instructional guidance, especially for low-achieving students. 
INTRODUCTION 

Mathematical problem solving, including the processes of formulating, employing, and 
interpreting, is an important dimension in the Programme for International Student 
Assessment (PISA) framework for mathematical literacy assessment (OECD, 2022). 
Multiple studies have indicated that improving students' mathematical problem-solving 
ability is crucial for cultivating mathematical literacy (Lesh, 2007). In particular, when 
solving PISA-like problems, students with various levels of mathematical literacy may 
learn at different paces and encounter distinct challenges. Differentiated instruction has 
been justified as an effective method to provide appropriate learning opportunities for 
a variety of students. With the development of technology, instructional videos come 
in handy to address the issues of differentiated instruction. 

As technology has developed, instructional videos have become an important element 
in mathematics education. They not only provide visual learning materials but also 
meet the learning needs of different students through differentiated instruction (Kay et 
al., 2012). Based on Mayer's multimedia learning theory and Sweller's cognitive load 
theory, current empirical research has found that interactive multimedia instructional 
design significantly improves students' reasoning abilities (Amir et al., 2018). Khan-
style instructional videos, which demonstrate mathematical equations through 
freehand writing instead of computer-rendered fonts, effectively support students' 
understanding and learning processes by combining visual elements and narrative 
content (Hew, 2018). Additionally, multimedia elements such as videos and animations 
have a positive impact on learning (GebreYohannes et al., 2016). However, there is a 
lack of relevant research on using instructional videos to enhance students' 
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mathematical problem-solving ability and learning motivation. Recognizing the 
necessity of differentiated instruction and the importance of cultivating mathematical 
problem-solving ability, this study explored the development of instructional videos 
for learning how to solve PISA-like problems, and evaluated their impact on students' 
problem-solving performance and learning motivation.  

The research questions are as follows: 

 Does the intervention strategy enhance the learning motivation of eighth-grade 
students? 

 Does the intervention strategy improve the problem-solving performance of 
eighth-grade students? 

 What are the learning experiences of eighth-grade students with high, medium, 
and low academic performance regarding this instructional intervention? 

METHOD 

Design and Implementation of Instructional Videos and Worksheets 

The instructional videos and worksheets were primarily derived from open-ended 
questions in the Taiwan junior high school major examinations. The design of the 
instructional videos applied the media effect of cognitive load theory, utilizing 
voiceover to convey information instead of relying solely on text, effectively reducing 
learners' cognitive burden. (Mousavi et al, 1995). The synchrony principle emphasizes 
presenting visual and auditory information simultaneously; for example, synchronizing 
voiceover with mathematical equations can significantly improve learning 
effectiveness (Mayer et al, 2016). In addition, Hew (2018) analyzed six styles of 
instructional video and found that Khan-style videos featuring instructor-led 
demonstrations using a handwritten method had the highest recall and application test 
performance. 

The study used a single-group pretest-posttest design, with a 4-week teaching 
intervention consisting of one 45-minute class per week. Students were divided into 
high, medium, and low learning performance groups, with six, eight, and six students 
in each group, where the teacher provided adaptive support according to the group’s 
need. The instructional videos were pre-recorded by the researcher and presented the 
problem-solving process using Khan-style explanations along with the teacher's 
dynamic headshot, with each worksheet question accompanied by a QR code.  

This study implemented a cyclical teaching model to enhance students' understanding 
of mathematical literacy questions before proceeding to problem solving. Each 
teaching cycle consisted of four stages. First, students independently considered the 
questions to foster their initial understanding. Second, they engaged in homogeneous 
subgroup discussion, which may benefit peer interaction and understanding of the 
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questions supported by the teacher. Next, students watched the instructional video 
individually. Finally, the teacher took over the last 3 minutes to guide students by 
summarizing and reflecting on problem-solving strategies. This last stage allowed 
students who had not watched the whole video to be aware of the core problem-solving 
strategy. Each class could go through the teaching cycle three times. 

RESEARCH INSTRUMENT 

Problem-Solving Performance 

To measure the difference in students' mathematical literacy problem-solving 
performance before and after the intervention, this study selected open-ended problems 
from Taiwan junior high school major examinations as the test questions. These 
questions were chosen to align with the knowledge typically acquired by eighth-grade 
students, focusing on numerical and quantitative concepts, which are central to this 
intervention study. Considering the teaching time, we selected six major questions, 
each containing two sub-questions, resulting in a total of 12 sub-questions, and 
classified them into easy, medium and hard levels.  

Based on the assessment framework pyramid analysis, we divided the test questions 
into three major sections for the pretest and posttest. It was confirmed in the pilot test 
that there was no significant difference in difficulty between the pretest and posttest 
questions. The sample was selected based on convenience sampling, selecting students 
from one class and dividing them into two groups. One group of students took the 
pretest, while the other took the posttest. Non-parametric related sample tests were 
conducted on the scores of each question according to the scoring criteria to evaluate 
the consistency between the pretest and posttest questions. We calculated the W and p 
values for each corresponding question using the Wilcoxon signed-rank test. The 
results showed that the W values for the three corresponding questions were 0.447, 
0.577, and 1, with corresponding p values of 0.655, 0.564, and 0.317. For the total 
score, the W value was 1.342, and the p-value was 0.18. These results indicate no 
significant difference between the pretest and posttest questions, confirming that the 
difficulty of the pretest and posttest questions was comparable and that they could be 
used to assess the differences in student performance before and after learning. 

Learning Motivation 

The motivation for learning was measured using a questionnaire developed by Cherng 
and Lin (2001), which was adapted from the "Motivated Strategies for Learning 
Questionnaire" (MSLQ) (Pintrich et al., 1991). The original questionnaire was 
designed for university courses, while the version by Cherng and Lin (2001) was 
revised for middle school students. It comprises two components: the value component 
reflects the importance of learning activities to students and their interests, while 
expectancy is related to learners' self-efficacy and beliefs. Based on the results of 
testing 4,082 middle school students, the internal consistency reliability (Cronbach's 
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α) ranged from .55 to .87, and the test-retest reliability ranged from .57 to .87. The 
questionnaire used a Likert 4-point scale, with 4 indicating strongly agree, 3 indicating 
agree, 2 indicating disagree, and 1 indicating strongly disagree. 

Semi-structured interviews on learning experiences 

This study employed semi-structured interviews to gain insights into students' learning 
experiences with instructional videos. The interview questions were designed to 
include fixed questions to ensure data comparability and open-ended questions to 
encourage students to express their deeper feelings and thoughts. Additionally, the 
follow-up questions were adjusted in real time based on students' responses to deepen 
the understanding of their learning process. Table 1 below presents the detailed 
interview questions for the interview purpose, fixed and open-ended questions.  

Furthermore, this study focused on analyzing feedback from students with different 
learning achievements (high, medium, and low) to compare the impact of instructional 
interventions on their learning experiences. Post-class interviews spanning 3 weeks 
collected students' overall perceptions of the instructional intervention, encompassing 
both positive and negative feedback. The interview data underwent systematic 
processing and analysis using thematic analysis. 

Interview 
purpose Fixed Questions Open-ended Questions 

Student's 
learning 
experience 

In what specific ways will you 
benefit from the instructional 
videos? 

Can you provide an example of a 
time when you encountered 
difficulties while watching 
instructional videos, and how you 
resolved them? 

General 
Feelings 
about 
Teaching 

What are your thoughts about 
integrating instructional videos into 
mathematical literacy learning? Do 
you have any suggestions for 
instructional videos and teaching? 

Can you provide an example to 
illustrate the positive and 
negative learning experiences 
brought by instructional videos? 

Table 1. The detailed interview questions for the interview purpose 

Data Collections and Analysis 

This study adopted mixed research methods. Quantitative data included mathematical 
literacy problem-solving performance, based on the PISA mathematical literacy 
assessment standards. A single-group pretest-posttest approach was adopted, and 
paired sample t tests were conducted to compare the average scores before and after 
the test, as well as learning motivation, and the revised version of the Motivated 
Strategies for Learning Questionnaire (MSLQ) was administered. Qualitative data 
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were analyzed using thematic analysis, focusing on students' learning experiences. 
Semi-structured interviews were conducted to gain an in-depth understanding of 
students' emotional responses to the instructional videos and their impact on learning. 

RESEARCH RESULTS 

Problem-Solving Performance 

The pretest and posttest consisted of three major questions, and were scored according 
to the grading standards published by the National Examination Center of Taiwan. A 
score of 3 indicated appropriate strategy, reasonable and complete expression; 2 
indicated a generally complete strategy with calculation errors or lack of demonstration 
of the rationality of some steps; 1 indicated insufficiency to solve the problem, or 
failure to fully transform the problem into a mathematical question; while 0 indicated 
a vague strategy, blank problem-solving process, or an answer that was irrelevant to 
the question. Therefore, the total score for the three questions ranged from 0 to 9. 
Research results based on the mathematical literacy problem-solving performance of 
participating students showed a significant increase in average scores in the posttest 
compared to the pretest (pretest average score of 2.05, posttest average score of 5.75), 
t(19) = -8.865, p = .001. This result indicates that instructional intervention has a 
significant positive impact on student learning outcomes. 

Furthermore, the improvement in students' pretest and posttest problem-solving 
performance can be seen from the scores(see Table 2). The scores were divided into a 
low score group with 0-3 points, a medium score group with 4-5 points, and a high 
score group with 6-9 points. The distribution of the pretest and posttest scores is 
presented in a table. The data showed an upward triangular distribution, indicating a 
positive effect on students with different learning performances. In particular, among 
the low score group students, seven improved to the high score group, three improved 
to the medium score group, and four students in the low score group also showed 
improvement. Students with pretest scores in the medium score groups also improved 
to the higher score range. This result may be attributed to the intervention of 
instructional videos which enhanced the understanding of basic concepts and skills, 
and the in-depth learning of literacy test questions for the first time, resulting in 
improved learning outcomes after 4 weeks. 

Pretest/Posttest 
Score Range Posttest  0-3 Posttest  4-5 Posttest  6-9 

Pretest 0-3 4 3 7 

Pretest  4-5 0 1 4 

Pretest  6-9 0 0 1 

Table 2. Pretest and posttest improvement score range 
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Learning Motivation 

The test results showed an improvement in students' problem-solving performance. As 
for learning motivation, the researchers had already announced to the students during 
the informed consent stage that instructional videos would be integrated into the math 
classes, and the students expressed anticipation and excitement. Therefore, an analysis 
was conducted on the two major aspects of value and expectation in learning 
motivation before and after the intervention. The paired sample t test conducted using 
SPSS showed that the average score of students' learning motivation increased from 
2.8655 in the pretest to 3.4775 in the posttest, with a p-value of .044. This result 
indicates the effectiveness of the instructional intervention in terms of enhancing 
students' learning motivation. It reflects students’ positive response to interactive 
learning methods, as the videos enhanced their understanding of mathematical 
concepts and their perceptions of intrinsic value. 

Learning Perceptions 

The researchers conducted semi-structured interviews with students of different 
learning performances after class every week and used thematic analysis to identify the 
key aspects of students' learning experiences. During the coding process, the 
researchers summarized 15 relevant themes, but they only presented the perspectives 
mentioned by high, medium, and low-performing students.  

After categorization and analysis, students' feedback concentrated on the perceived 
ease of use and usefulness. Perceived ease of use reflected students' evaluation of the 
convenience of implementing teaching interventions. High-performing students 
mentioned the flexibility of watching videos and the ability to watch videos to address 
their own questions freely. Medium-performing students mentioned the need to watch 
videos repeatedly to clarify their questions, while low-performing students emphasized 
the necessity of extra time for understanding. Perceived usefulness reflected students' 
assessment of how teaching interventions improved learning outcomes. High-
performing students considered that instructional videos enhanced their problem-
solving skills and ability to express their ideas clearly. Medium-performing students 
felt that the videos helped them reflect on and identify learning blind spots, while low-
performing students believe that the instructional videos helped them understand the 
questions and made them more willing to learn. 

In the final summary interview and feedback after the last class, high-performing 
students felt that the videos provided a high degree of autonomy, thereby enhancing 
their problem-solving abilities and clarity of expression. Medium-performing students 
emphasized the importance of combining instructional videos with traditional teacher 
explanations to clarify misunderstood concepts, believing that this combination 
effectively helped them reflect and identify learning blind spots. Low-performing 
students particularly valued the benefits of videos in providing learning flexibility and 
clear guidance, which prompted them to learn and understand the mathematical 
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problems more actively. In summary, this study confirmed the effectiveness of 
instructional videos in enhancing students' learning motivation, improving problem-
solving abilities, and meeting different learning needs, providing important empirical 
support for future instructional design. 

DISCUSSION AND CONCLUSION 
This study confirms that the instructional process design of differentiated instruction 
significantly enhances students' mathematical literacy, problem-solving abilities, and 
learning motivation. Reflecting on the implementation effects of instructional video 
design can reveal its potential effectiveness. For example, when students watch 
instructional videos, they may become more engaged in learning because they can first 
understand the essence of the problem, and through group discussions, they promote 
collaborative learning, enhancing a deeper understanding of the problem. Therefore, 
we suggest that future research can refer to this instructional process design, and in 
terms of learning experience, students' positive feedback on perceived ease of use and 
usefulness highlights the role of instructional videos in promoting students' autonomy 
and understanding of different learning performances. High-performing students 
praised the autonomy of the videos; medium-performing students valued the 
integration of videos with traditional teaching; and low-performing students affirmed 
the learning support provided by the videos. 
In summary, this study confirms the effectiveness of instructional videos in 
mathematics education, as they significantly enhance students' mathematical literacy, 
problem-solving performance, learning motivation, and positive learning experiences. 
Students reported that the videos enhanced their autonomous learning and deepened 
their understanding of problems. Future research should refine instructional content for 
students with different learning performances and explore the integration of more 
diverse teaching methods and learning resources. The limitations of this study include 
the need for a more detailed exploration of the impact of differentiated design on 
students of different grades and the need to combine practical operations with 
instructional videos for teaching objectives focused on concept development. 
Therefore, future research should expand the sample size, consider educational 
diversity, and enhance the generalizability of the research results.  
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EFFECTS OF THE TYPE OF ARGUMENT ON STUDENTS’ 
PERFORMANCE IN PROOF-RELATED ACTIVITIES 

Milena Damrau 
LMU Munich, Germany 

Different types of arguments, such as empirical arguments and generic proofs have 
been discussed in the literature regarding students’ convictions and their potential for 
proof comprehension. However, their influence on proof-related activities is still not 
clear. The experimental study presented in this paper aims at closing that gap. Data 
from N=430 first-year university students suggests that generic proofs are easier to 
understand than ordinary proofs. Moreover, it indicates that students’ self-reported 
conviction by different types of arguments does not reflect their actual conviction of 
the truth of statements. The findings highlight students’ difficulties with the relation 
between the validity of a statement and that of its proof and provide a basis for 
developing courses in a manner that eases the transition to proof-based mathematics. 

INTRODUCTION 
Proofs are undoubtedly fundamental for Mathematics. In consequence, understanding 
proof has been one focus of mathematics education research for many decades and 
proof and argumentation are central goals in national educational standards worldwide 
(e.g., Kultusministerkonferenz, 2012; National Council of Teachers of Mathematics, 
2000). Students at different school levels nevertheless struggle with proof and 
argumentation (e.g., Harel & Sowder, 1998; Healy & Hoyles, 2000). The lack of proof 
skills is particularly relevant for students entering university, because in many 
countries this coincides with the transition to proof-based mathematics. Students' 
insufficient proof skills and understanding are in fact often identified as main reasons 
for students’ difficulties with mathematics at the transition from school to university 
(e.g., Gueudet, 2008). 
To make proofs more accessible to students, different types of arguments have been 
proposed as educational tools. However, little is known regarding the influence of the 
type of argument on students’ proof comprehension and other activities (e.g., Mejía 
Ramos et al., 2012). This paper therefore aims to investigate the effects of reading 
different types of arguments (no arguments, empirical arguments, generic proofs, and 
ordinary proofs) on first-year students’ performance in several proof-related activities. 

PROOFS AND OTHER TYPES OF ARGUMENTS 
While proof plays a central role in mathematical practice, no precise definition for it 
exists. An often cited characterization is given by Stylianides (2007), who views proof 
as a mathematical argument containing (a) a set of accepted statements (e.g., 
definitions, axioms, theorems, …), (b) valid and known forms of reasoning (e.g., 
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application of logical rules of inferences, use of definitions, construction of 
counterexamples, …), and (c) appropriate and known forms of expression (e.g., 
linguistic, physical, pictorial, symbolic, …). This characterization of proof highlights 
the importance of context and the individuals who construct and evaluate the proofs. 
Because ordinary proofs (those that are typically constructed by mathematicians) are 
often not accessible to students, for instance, because of involved symbolic forms of 
expression and the level of abstraction, other types of arguments have been introduced 
and discussed in the literature regarding their potential for the learning of proof and 
argumentation. One prominent example is the generic proof. These types of arguments 
are based on specific observations, which reveal a structure that can be generalized to 
hold for a whole class of objects (e.g., Rowland, 2001). Researchers assume that “a 
generic proof makes the chain of reasoning accessible to students by reducing its level 
of abstraction” (Dreyfus, Nardi, & Leikin, 2012, p. 204). The usage and role of 
empirical arguments, i.e., arguments that are based on verifications of a (small) number 
of cases, is more controversial. On the one hand, it is argued that empirical arguments 
are essential for problem exploration and for gaining an intuitive understanding of the 
statement and its validity within an axiomatic system (e.g., de Villiers, 2010), and that 
mathematicians also make use of these types of arguments (e.g., Weber, 2013). On the 
other hand, researchers assume that students’ usage of and conviction by empirical 
arguments may indicate an insufficient understanding of proof and its generality (e.g., 
Conner, 2022). The level of conviction and the awareness of the limitations of 
empirical arguments may thus be essential. 

PROOF-RELATED ACTIVITIES AND THE INFLUENCE OF DIFFERENT 
TYPES OF ARGUMENTS 
The main proof-related activities that are usually being distinguished in research on 
proof and argumentation are proof reading, proof construction, and proof presentation 
(e.g., Mejía Ramos & Inglis, 2009). This paper focuses on proof reading, an activity 
which is under-represented in prior research (Mejía Ramos & Inglis, 2009). It contains 
two central sub-activities: proof comprehension and proof evaluation.  
Proof comprehension is seen as essential for the learning of mathematics at university 
level as students are frequently confronted with proofs in lectures and textbooks (Mejía 
Ramos et al., 2012). Nevertheless, only few studies have investigated how well 
students understand proofs (Mejía Ramos & Inglis, 2009). Even though researchers 
have argued that generic proofs can improve students’ proof comprehension by making 
the ideas more accessible to them (e.g., Dreyfus, Nardi, & Leikin, 2012), respective 
findings are not consistent so far. A positive influence of reading generic proofs 
compared to ordinary proofs on first-year engineering students’ proof comprehension 
was reported by Malek & Movshovitz-Hadar (2011), but with a small sample of only 
10 students. To provide more evidence for the effect of generic proofs on proof 
comprehension, Lew, Weber, and Mejía-Ramos (2020) conducted an experimental 
quantitative study in which 106 mathematics students participated. Students were 
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randomly assigned to either receive a generic or an ordinary proof. All participants had 
to complete a proof comprehension test based on the assessment model of Mejía Ramos 
et al. (2012). The authors did not find evidence that the generic proof lead to better 
proof comprehension than the ordinary proof. Even if generic proofs do not improve 
proof comprehension for mathematics university students—for which further evidence 
is needed—they could still potentially improve proof comprehension of high school 
students or students at the transition from school to university.   
Comparatively more research exists on students’ proof evaluation, i.e., on students’ 
judgements of arguments regarding different aspects, such as the validity of the 
argument or their conviction. Regarding the latter (which I focus on in this paper), it is 
not always clear what “being convinced” refers to: a person’s conviction of the validity 
of the argument/proof, that the argument/proof convinces the person of the validity of 
the statement, or something else. These differences may partly explain why findings 
on students’ conviction of/by different types of arguments are ambiguous. Most 
students (and teachers) claim to be convinced by ordinary proofs—even when the proof 
is incorrect (e.g., Knuth, 2002; Martin & Harel, 1989). However, Weber (2010) 
observed that some university students in his study did not find ordinary proofs 
convincing, even though they accepted them as proof, which is in line with findings 
reported by Fischbein (1982). The degree to which students are convinced by empirical 
arguments and generic proofs is even less clear. Several studies have reported that 
many students (and teachers) claim to be convinced by empirical arguments (e.g., 
Knuth, 2002; Martin & Harel, 1989), but more advanced students are seemingly not 
(e.g., Weber, 2010). Similarly, some studies found that students claim to be convinced 
by generic proofs (e.g., Weber, 2010; Ko & Knuth, 2013) while others found the 
opposite (e.g., Lesseig et al., 2019), in particular, when the level of conviction was 
compared to ordinary proofs (Kempen, 2018). More research is needed to investigate 
how the type of argument influences students’ conviction of the validity of statements 
and to what degree. 
The reading of statements has not been explicitly considered as a proof-related activity, 
even though it seems to be highly relevant for the performance in other activities. Like 
proof reading, reading a statement can have different goals, for instance, the 
comprehension of the statement or estimating its truth/validity. With relation to proof, 
understanding the generality of the statement (as part of the comprehension of 
statements) seems to be of particular importance. Understanding the generality of a 
statement means to understand that no counterexample to a true universal statement 
exists. It can be seen as essential for the comprehension of mathematical statements 
and students’ understanding of proof because it is the generality that is the defining 
element of mathematical proof (Heintz, 2000). To my knowledge, no findings have 
been reported on the influence of the type of argument on students’ estimation of truth 
of the statement. Regarding students’ and teachers’ understanding of the generality, it 
has been found that (understanding) an ordinary proof is not sufficient for some 
students and teachers to be convinced that no counterexample can exist (e.g., Chazan, 
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1993; Knuth 2002). If and how the understanding of generality of statements differs by 
reading different types of arguments has not been investigated so far. 

GOALS AND THE CURRENT STUDY 
The prior research outlined above highlights the need for more systematical studies 
that investigate the effect of reading different types of arguments on students’ 
performance in proof-related activities. This is particularly relevant for the learning of 
proof at the transition to proof-based mathematics, i.e., at the transition from school to 
university. The present study, which is part of my completed dissertation project 
(Damrau, in press), thus addresses the following research questions: (RQ1) How does 
the type of argument influence first-year university students’ self-reported conviction 
by the arguments and how does this relate to their actual conviction of the truth of the 
statements? (RQ2) How does students’ (self-reported) proof comprehension differ 
between students who receive generic proofs and those who receive ordinary proofs? 
(RQ3) How does the reading of different types of arguments influence students’ 
understanding of the generality of mathematical statements? 
Methods 
To analyze the effect of the type of argument, I designed an experiment which was 
conducted at the beginning of two mathematics lectures at a large German university. 
In total, 430 students completed the questionnaire (67.4 % female, 31.2 % male, and 
1.4 % chose not to answer). Most participants were preservice primary school teachers 
without mathematics as major (67.44 %), followed by mathematics students (16.28 %), 
preservice lower secondary school teachers (6.05 %), preservice higher secondary 
school teachers (5.81%), and preservice primary school teachers with mathematics as 
major (4.42 %). The median age of the participants was 20 years (𝐼𝐼𝐼𝐼𝐼𝐼 = 21 − 19) and 
about 96 % were German native speakers. 
In the first part of the experiment, all participants read five universal statements (two 
of them known from school in Geometry, two of them unfamiliar and from Arithmetic, 
and one false Arithmetic statement) and respective arguments (non-general pseudo 
proofs were constructed for the false statement). The type of argument was assigned 
randomly. Group A (116 students) read no arguments at all, group B (112) only read 
empirical arguments, group C (107) generic proofs, and group D (95) ordinary proofs. 
After reading the arguments, all participants then had to estimate the truth value 
(absolutely/relatively sure about truth/falsity or “I have no idea”) of each statement and 
decide whether counterexamples may exist (absolutely/relatively sure those exist or 
not or “I have no idea”). The participants in the groups A, B, and C were asked to 
evaluate the provided arguments regarding their conviction (“Does the justification 
convince you of the correctness of the claim?” completely, partially, not at all) and 
their comprehension (“Do you understand the justification?” completely, partially, not 
at all). In the second part, all participants had to complete a Cognitive Reflection Test 
(based on Frederick, 2005), which was used to control inter-individual differences in 
mathematical performance (for details, see Damrau, in press). The third and last part 
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included demographic questions, including participants’ final high school grade in 
mathematics. Students’ correct understanding of the generality of each statement was 
defined as consistent responses (yes/no) regarding students’ estimation of truth and the 
existence of counterexamples. If the students responded with “I have no idea” to both 
questions, the data for understanding generality was considered missing. 
To estimate the effect of the type of argument on students’ understanding of generality, 
generalized linear mixed models (GLMM) were calculated, because understanding 
generality was defined as a binary variable. Similarly, to analyze the effect of the type 
of argument on students’ performance in estimating the truth value of statements, 
students’ conviction, and students’ proof comprehension, respectively, cumulative link 
mixed models (CLMM) were fitted, because the respective dependent variables are 
ordinal. In both cases (GLMM and CLMM), logistic link functions were used. Inter-
individual differences between participants over all five repeated measurements were 
controlled with a random effect. Further, students’ CRT score, final grade in 
mathematics during school, their participation in an honors course (in German 
Leistungskurs) in school, and their participation in a transition course (in German 
Vorkurs) prior to the beginning of the semester were used as control variables. The 
effect of the type of statement (true vs false, familiar vs unfamiliar) was also analyzed, 
however, respective findings are not presented here due to the focus of the paper (for 
details, see Damrau, in press). Holm’s correction (Holm, 1979) was used to adjust the 
p-values according to the number of respective tests. 
Results 
The type of argument significantly influenced students’ estimation of truth, as 
participants who received empirical arguments were more likely to correctly estimate 
the truth value of the statements than participants who got no arguments (𝐵𝐵 = .44,𝑝𝑝 =
.004). Reading generic proofs had a similar but smaller effect (𝐵𝐵 = .27,𝑝𝑝 = .088), 
which did not reach significance after Holm’s correction. Reading ordinary proofs had 
no significant effect on students’ estimation of truth (𝐵𝐵 = −.09, 𝑝𝑝 = .537). Further, 
participants who received generic or ordinary proofs were more likely to claim being 
convinced by these arguments than participants who received empirical arguments 
( 𝐵𝐵 = 1.7, 𝑝𝑝 < .001 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 = 2.2, 𝑝𝑝 < .001 , respectively). Students’ self-reported 
proof comprehension differed as well between ordinary and generic proofs. 
Participants who received ordinary proofs reported lower comprehension than 
participants, who received generic proofs (𝐵𝐵 = −.59,𝑝𝑝 < .001). Reading different 
types of arguments seems to not largely influence students’ understanding of the 
generality of statements. Overall, participants who received ordinary (and with a 
smaller effect generic) proofs were less likely to have a correct understanding than 
students who got no arguments ( 𝐵𝐵 = −.41, 𝑝𝑝 = .075 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 = −.32, 𝑝𝑝 = .148 , 
respectively). However, these effects did not reach significance after Holm’s 
correction. Reading any type of argument (in contrast to not receiving arguments) 
decreased the likelihood to answer “I have no idea” regarding the estimation of truth 
and the existence of counterexamples. 
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DISCUSSION 
The goal of the present paper was to investigate how the reading of different types of 
arguments affects students’ self-reported conviction by the arguments and their 
conviction of the validity of the statement, their self-reported proof comprehension, 
and their understanding of the generality of statements. Previous research provided 
ambiguous results regarding differences in students’ comprehension of generic and 
ordinary proof. The findings reported by Lew et al. (2020) based on an experimental 
study suggest that there are no significant differences. In the present study, participants 
showed higher levels of proof comprehension regarding generic proofs than regarding 
ordinary proofs. However, in contrast to Lew et al., the present study relied on students’ 
self-report on their proof comprehension. Thus, the relation between self-reported, 
perceived comprehension of proofs and students’ actual proof comprehension should 
be investigated in future (experimental) studies.  
Through the experimental design of the study, it became apparent that students’ 
conviction of the validity of statements was influenced differently by reading different 
types of arguments than their self-reported conviction by the arguments: Students were 
the most convinced of the validity of the statements by reading empirical arguments, 
followed by generic proofs. Reading ordinary proofs had no significant effect on 
students’ estimation of truth. In contrast, students claimed to be more convinced by 
generic and, even more, ordinary proofs than by empirical arguments, as prior research 
has suggested (e.g., Kempen, 2018; Ko & Knuth, 2013; Weber, 2010). Thereby, it can 
be assumed that their judgement was influenced by the perceived mathematical 
appearance/formality of the arguments, which is in line with prior findings (e.g., Healy 
& Hoyles, 2000; Sommerhoff & Ufer, 2019). My findings indicate that self-reported 
conviction of the validity of statements by arguments does not necessarily reflect how 
different types of arguments actually convince students of the validity of statements. 
Students seem to have an empirical understanding of the validity of statements and the 
relation to the validity of proof may not be sufficiently clear to them. 
The reading of different types of arguments did not significantly influence students’ 
understanding of the generality of statements. Only a negative effect of reading 
ordinary proofs was found (even though not significant after Holm’s correction), which 
seems be related to the finding that more students claimed to be convinced by ordinary 
proofs, without this being reflected in increased conviction in the validity of the 
statement and the (non-)existence of counterexamples. The reading of any type of 
argument influenced students’ responding behavior in that they were less likely to 
answer “I have no idea”. Thus, reading an argument may have positively affected 
students’ self-efficacy in that they at least had the feeling of knowing enough to decide 
on an answer, even though it did not lead to responding more successfully.  
The reported findings can be used to develop future university courses in a manner that 
eases and promotes the transition to proof-based mathematics. In particular, the relation 
between the validity of the statement and the validity of its proof should be explicitly 
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discussed. Empirical arguments and potentially generic proofs can support students’ 
conviction of the validity of statements, but their limitations and the necessity of proof 
should be made clear. There are still very few experimental studies in mathematics 
education and particularly in research on proof and argumentation. To better 
understand relations between proof-related activities, students’ understanding of 
proofs, and the effects of reading different types of arguments, more experimental 
studies are necessary. In this regard, more respective research on students’ self-reports 
and their actual comprehension of and conviction by different types of proofs would 
be very valuable. Finally, future (intervention) studies may want to consider giving 
instructions before the reading of arguments or scaffolding during the reading of 
arguments to support students’ comprehension of (the validity of) arguments and the 
related understanding of the validity of the statements. 
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FORMAL AND LINGUISTIC BREACHES OF CONVENTION IN 
WRITTEN STUDENT PROOFS 

Nathania De Sena Maier and Silke Neuhaus-Eckhardt 
Julius-Maximilians-University Würzburg 

Learning how to prove is difficult. Especially at the beginning of their studies, students 
may have difficulties with the mathematical language, but also with the academic 
language or the formal presentation of a proof. To investigate this, we analyzed 124 
students’ attempts at proofs from 34 linear algebra submissions using qualitative 
content analysis. The analysis aimed to identify potential linguistic and formal 
breaches of convention. Nearly all submissions contained breaches at the level of 
academic language, mathematical language and at the level of the proof structure. One 
reason for this may be that the proofs students see in their lectures may not be model 
proofs. Implications for future research are discussed. 
INTRODUCTION 
Learning how to prove is often considered one of the main challenges for mathematics 
students at the beginning of university. Moore (1994) describes understanding and 
using mathematical language and notation as one of seven major difficulties students 
have when they do proofs. Other studies confirmed that students struggle with 
mathematical language and notation (e.g., Lee & Smith, 2009), as well as academic 
language (Lew & Mejia-Ramos, 2015, Guce 2017). To be able to help students to learn 
how to do proofs, it is important to identify what a student's proof should look like 
especially at the beginning of university and what problems students have regarding a 
written proof presentation. This requires, among other things, to identify the linguistic 
and formal breaches of conventions that students do in their attempts at proofs. 
THEORETICAL BACKGROUND  
Written attempts at proof are only considered acceptable proofs if they are approved 
as such by the mathematical community (Manin, 2012). This assessment is based on 
implicit socio-mathematical norms and rules (Thurston, 1995), which can differ greatly 
depending on the situational context (Lew & Mejia-Ramos, 2020). Writing guides such 
as Beutelspacher (2009), Kümmerer (2016) and Vivaldi (2014) explain norms and 
rules for writing proofs in German and English. Some of these focus specifically on 
student proofs, which we define as proof written by a first-year student in an exercise 
or written exam.  
In addition to these writing guides, researchers identified criteria for grading student 
proofs. For example, Moore (2016) conducted a small expert survey (𝑁𝑁 =  8) to 
identify these. He found criteria which refer to use both mathematical and academic 
language fluently, and to present the proof with clarity. Clarity refers to the explicit 
statement of arguments or reasons, the use of mathematical language in a familiar way, 
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and the organization of the proof to make it readable. Especially being able to organize 
a proof seems to be important because when students understand how to organize a 
proof, they can make better use of their cognitive resources to find a proof idea (Selden 
& Selden, 2013). Ottinger et al. (2016) present five criteria for the formal quality of 
proofs based on existing research on students´ difficulties with mathematical notation 
and symbols, for example using logical symbols correctly. They analyzed the 
relationship between the formal quality of student proofs and their quality of 
argumentation and found that students often struggle for example with the use of 
quantifiers, and with explicating definitions. Furthermore, the quality of arguments 
was correlated with the correct use of logical symbols in proofs (Ottinger et al., 2016). 
This seems to be important, because Guce (2017) found that of the nine categories she 
analyzed, misuse of mathematical symbols was one of the most common writing 
convention breaches in students’ attempts at proof, surpassed only by incorrect 
grammar. Lew and Mejía-Ramos (2015) also identified potential breaches of 
convention based on student proofs of an introductory proof course and found fourteen 
categories of potential breaches, like lacks proper grammar and punctuation, uses non 
statements, uses unclear referents, and uses lay speak. In contrast to Guce (2017) and 
Ottinger et al. (2016) they also identified categories related to the organization of a 
proof, such as fails to make the proof structure explicit. But they did not examine the 
frequency of their breaches. Instead, Lew and Mejía-Ramos (2019) investigated how 
students and lecturers rate those breaches of convention in student proofs in a further 
study. They identified that lecturers and students rated the significance of these 
breaches differently. For example, convention breaches in academic language were 
considered more serious by lecturers than by students (Lew & Mejía-Ramos, 2019). 
Despite this, breaches of convention in academic and mathematical language and 
notation are not necessarily negatively assessed or commented on when lecturers grade 
students’ attempts at proof (Moore, 2016). Additionally, lecturers apply less strict 
conventions to their own blackboard proofs in terms of academic language and proof 
structure than to student proofs (Lew & Mejía-Ramos, 2020). As such, some students 
may not be aware of the conventions that their proofs should follow and therefore may 
not be able to meet them (Thurston, 1995).  
Overall, some possible breaches of convention for student proofs have already been 
identified in the literature to date. However, the various authors emphasize that the 
categories identified are not yet sufficiently defined. Therefore, we want to look at 
linguistic and formal breaches of conventions in student proofs, especially regarding 
academic and mathematical language as well as the structure of a proof.  
RESEARCH QUESTION 
The focus of this article is to examine the linguistic and formal breaches of convention 
in students' attempts at proof. The research question addressed is:  
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What are linguistic and formal breaches of convention that occur in German student 
proofs (first-year students’ attempts at proof) in linear algebra and how frequently do 
they occur?  
METHODS 
It is important to mention that we analyze breaches of conventions, that are not 
necessarily errors. Therefore, a student’s attempt at proof with breaches of conventions 
can still be accepted as a proof and receive full marks in an exercise or exam. 
A qualitative content analysis (Mayring, 2015) was conducted to examine breaches of 
formal and linguistic convention in 124 student proofs from 34 submissions. The 
attempts at proofs were voluntarily submitted by groups of up to three students in the 
fourth week of a linear algebra course for teaching profession (second semester, 
primary or lower secondary school). Students could receive a bonus for their final exam 
if they submitted their exercise solutions. The analyzed proofs are from the subject area 
of real matrices and consist of four independent subtasks, for example: 

Prove the following statement. Let 𝐴𝐴 ∈ 𝕂𝕂𝑚𝑚×𝑛𝑛 and 𝑡𝑡 ∈ 𝕂𝕂, then (𝑡𝑡𝑡𝑡)𝑇𝑇 = 𝑡𝑡𝑡𝑡𝑇𝑇 . 

One way to prove this is: 
Proof: Let 𝐴𝐴 ∈ 𝕂𝕂𝑚𝑚×𝑛𝑛,𝐴𝐴 ≔ �𝑎𝑎𝑖𝑖𝑖𝑖� and 𝑡𝑡 ∈ 𝕂𝕂.  
It is (𝑡𝑡𝑡𝑡)𝑇𝑇 = �𝑡𝑡𝑎𝑎𝑖𝑖𝑖𝑖�

𝑇𝑇 = �𝑡𝑡𝑎𝑎𝑗𝑗𝑗𝑗� = 𝑡𝑡�𝑎𝑎𝑗𝑗𝑗𝑗� = 𝑡𝑡�𝑎𝑎𝑖𝑖𝑖𝑖�
𝑇𝑇 = 𝑡𝑡𝐴𝐴𝑇𝑇. Hence the claim follows.  

The students knew all necessary information for this proof from the lecture notes, for 
example that 𝕂𝕂 symbolizes an arbitrary field.  
For the qualitative content analysis, we created a category system deductively and 
chose clarity and fluency, which were identified by Moore (2016), as super categories 
for the breaches of convention in student proofs. In those super categories we added 
categories and associated subcategories based on previous studies (Lew & Mejia-
Ramos, 2015, 2019, 2020; Moore, 2016; Guce, 2017, Ottinger, Kollar & Ufer, 2016) 
and German and English writing guides (Beutelspacher, 2009; Kümmerer 2016, 
Vivaldi, 2014). While coding the student proofs the category system was revised 
inductively. For example, we noticed that many students did hand in proofs with only 
symbolic expressions and no additional words, which is described as a “bad example” 
of a proof by Vivaldi (2014). Therefore, we added the category purely symbolic 
representation (C21). Afterwards, over 50% of the student proofs were analyzed by a 
second rater. The coding manual was again refined, and a consensus procedure was 
carried out. The final category system comprises 21 categories in clarity and 12 
categories in fluency as well as additional subcategories. To provide an insight, we 
describe parts of the category system in more detail. 
An example for a category of fluency is incorrect use of symbols or mathematical 
notation (F4, Guce, 2017). This category is coded, for example, when an equal sign is 
missing in equations or students wrote 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖 instead of 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖). We also coded 
this category, when mathematical symbols were used in such a way that the common 
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reading of the symbols resulted in a grammatically incorrect sentence (Lew & Mejía-
Ramos, 2020). However, all other breaches in grammar, punctuation, and spelling 
regarding the academic language (Lew & Mejía-Ramos, 2015, 2019, 2020) were coded 
as breaches of convention in academic language (F2, for example incorrect 
punctuation or or grammatically incorrect sentences).  
A category of clarity is breach of convention in presenting the structure of the proof 
(C8, Lew & Mejía-Ramos 2015, 2019, 2020). After coding the first round, we realized 
that we needed to subdivide this into subcategories in order to get a more accurate 
picture. We distinguish between aspects of proof structure that students did not present 
(M1-M5) and inappropriate representation of proof structure (I1-I4). Part of the proof 
structure is to mark the beginning (M1) and ending (M4) of the proof with a symbol or 
a sentence (Beutelspacher, 2009; Kümmerer, 2016; Vivaldi, 2014). It can also be seen 
as a breach of convention when the assumptions (M2; Lew & Mejía-Ramos 2015, 
2019, 2020) are not stated in the proof (or at least near the proof). In addition, a part of 
the proof structure is missing, when arguments are not connected logically (M5) either 
verbally (Lew & Mejía-Ramos, 2015, 2019, 2020) or with a symbol. For example if 
somebody wrote “𝑡𝑡 is an element of 𝕂𝕂. �𝑡𝑡𝑎𝑎𝑖𝑖𝑖𝑖� = 𝑡𝑡(𝑎𝑎𝑖𝑖𝑖𝑖).” we coded M5 because a 
logical connection like “As such” or “⇒ " is missing. Inductively, we also included a 
subcategory when we could not separate the proof steps of a student’s proof at all (M3).  
Besides not presenting parts of the proof structure it can also be presented 
inappropriately. At first, a written proof should reflect linearity (I1,Kümmerer, 2016). 
Therefore, a breach of convention is when the written arguments don’t build on each 
other or don’t lead to the proposition being proved (I13; Konior, 1993; Beutelsbacher, 
2009, Kümmerer, 2016). Additionally, proofs should not contain inserts (I11), like 
well-known definitions (Lew & Mejía-Ramos, 2015, 2019, 2020) or duplications 
(Kümmerer, 2016). Inappropriate references (I12) that do not correspond to a linear 
structure, like linking of arguments by (normal) arrows (Kümmerer, 2016), are also 
coded as a breach of convention. Students also sometimes stated inappropriate 
assumptions (I22, added inductively), for example 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 instead of 𝐴𝐴 ∈ 𝕂𝕂𝑚𝑚×𝑛𝑛, or 
presented arguments in a way that is inappropriate to its original logical status (I4, 
added inductively), for example saying “it is (𝑡𝑡𝑡𝑡)𝑇𝑇 = 𝑡𝑡𝐴𝐴𝑇𝑇” instead of “we have to 
prove (𝑡𝑡𝑡𝑡)𝑇𝑇 = 𝑡𝑡𝐴𝐴𝑇𝑇”. 
RESULTS  
We give an overview of the breaches of convention which occurred in the students’ 
attempts at proof and then look at one proof of a student in detail.  
Nine categories of breaches of convention were found to occur in at least 50% of the 
34 submissions (Tab. 1). Nearly all students handed in at least one proof with breaches 
of convention in the academic language (F2), used symbols or mathematical notation 
(F4) incorrectly or had breaches of convention in the presentation of the proof structure 
(C8). 
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 Clarity Fluency 

Categories C2 C8 C9 C18 C21 F2 F3 F4 F5 

Frequencies 19 34 18 20 23 34 23 30 19 
Table 1: Identified breaches of linguistic and formal conventions in over 50% of the students’ submissions, results in absolute 

frequencies, 𝑀𝑀𝑀𝑀𝑀𝑀 =  34. 

Notes: C2- Mixture of mathematic notation and continuous text, C8- Breach of conventions in the presentation of proof structure, C9- 
Abbreviations and mathematical slang, C18- Inappropriate use of the subjunctive, C21- Purely symbolic representation, F2- Breach of 
conventions in academic language, F3- Term not introduced, F4- Incorrect use of symbols or mathematical notation, F5- Incomplete 
phrases. 

Most of the students who had a breach in the academic language (F2) used the 
punctuation incorrectly, but many also wrote grammatically incorrect sentences. 
Furthermore, some students did not write complete sentences (F5):  

“It applies to 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓,𝑔𝑔, ℎ, 𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙 ∈ ℝ.” (submission 12, translated)  

Also, very often the submissions contained breaches of convention in the use of 
mathematical notation or symbols (F4). For example, students repeatedly wrote 
𝐴𝐴 =  𝑎𝑎𝑖𝑖𝑖𝑖 for a matrix instead of 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖). All submission also had at least one breach 
of convention in the presentation of proof structure (C8). Therefore, we explain this 
category in more detail and distinguish between missing aspects of proof structure 
(M1-M5) and inappropriate representation of proof structure (I1-I4). In Tab. 2 an 
overview of breaches of conventions regarding the proof structure is given. 

  Missing aspects of proof 
structure 

Inappropriate representation of proof 
structure 

Categories M1 M2 M3 M4 M5 I11 I12 I13 I21 I22 I3 I4 

Frequencies 32 26 8 17 24 21 6 18 14 15 8 14 

Table 2: Identified breaches of convention regarding proof structure conventions, results in absolute frequencies, 𝑀𝑀𝑀𝑀𝑀𝑀 =  34. 

Notes: M1- start of the proof not marked, M2- assumption missing, M3- proof steps not separated, M4- end of proof not marked, M5- 
lack of logical connectives, I11-Includes inserts, I12- Inappropriate reference, I13- Proof steps do not build on each other, I21- 
assumptions not marked, I22- inappropriate assumptions, I3- assertions not marked, I4- inappropriate logical status of arguments 

The students often did not make the proof structure explicit, for example they often did 
not mark the beginning (M1) or the end (M4) of their proof with a symbol or a sentence. 
The assumptions (M2) were also often not made explicit, or the students did not 
connect their arguments with logical connectives (M5), like verbal connectives 
“therefore”, “which implies”, or symbolic connectives like “⇒ ".  
In addition to missing aspects of the proof structure they also did present the structure 
inappropriate. Almost all submissions included proofs that did not have a linear 
structure (I1). Many students included comments or insertions (I11) which were 
inappropriate for this proof, for example:  

“The Inverse of the matrix 𝐴𝐴𝑇𝑇 can also be written as  𝐴𝐴−𝑇𝑇.” (submission 30, translated). 
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This comment is not necessary for the proof and the student did not use 𝐴𝐴−𝑇𝑇 afterwards. 
Some students also included inappropriate references (I12) that interrupted the linear 
structure of their proof, for example arrows that refer to earlier arguments. In addition, 
the proof steps of students’ proofs often did not build on each other (I13).  
An example of a student’s proof for the task described above is (submission 14; 
translated): 

𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖  𝐴𝐴𝑇𝑇 = 𝑎𝑎𝑗𝑗𝑗𝑗    𝑡𝑡 is constant 

�𝑡𝑡 ∙ 𝑎𝑎𝑖𝑖𝑖𝑖�
𝑇𝑇 = 𝑡𝑡 ∙ 𝑎𝑎𝑗𝑗𝑗𝑗 

𝑡𝑡𝐴𝐴𝑇𝑇 = 𝑡𝑡 ∙ 𝑎𝑎𝑗𝑗𝑗𝑗 

In several places this student used mathematical notation incorrectly (F4), for example 
it is 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖)  instead of 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖 . In addition, the student mostly uses symbolic 
expressions (C21). Regarding the proof structure, the student did not mark the start 
(M1) or the end (M4) of the proof. The student did not give an assumption like “let 
𝐴𝐴 ∈ 𝕂𝕂𝑛𝑛×𝑚𝑚 , 𝐴𝐴 ≔ (𝑎𝑎𝑖𝑖𝑖𝑖)  and 𝑡𝑡 ∈ 𝕂𝕂 ” either (M2). In addition, there are no logical 
connectives (M5). Finally the proof steps do not built on each other (I13), because the 
second and the third line are not connected. Nevertheless, the student's idea of the proof 
is comprehensible.  
Some of the categories we identified out of literature were not coded in this study. For 
example, no student used unclear references (C3, Lew & Mejía-Ramos, 2015, 2019, 
2020) or inappropriate naming of variables and constants (C12, Kümmerer, 2016).  
DISCUSSION 
We identified linguistic and formal breaches of convention in German students' 
attempts at proof. A total of 33 categories divided in clarity and fluency (Moore, 2016) 
and with additional subcategories were identified out of literature and while analyzing 
students’ proofs.  
As all students’ submissions contain breaches of convention in academic language 
(F2), and more than half of the submissions have breaches of convention in the 
category of incomplete sentences (F5), we can confirm Guce's (2017) results. These 
frequencies may occur, because students think that breaches in academic language are 
of little importance (Lew & Mejia-Ramos, 2019). In addition, these breaches are often 
neither commented on nor assessed by lecturers when grading proofs (Moore, 2016). 
Additionally, not much attention is necessarily paid to correct spelling and punctuation 
on blackboard proofs from the lecturers (Lew & Mejia-Ramos, 2020). This could have 
formed or strengthened the students’ belief, that breaches of academic language in 
proofs are of little importance.  
In the category of incorrect use of symbols or mathematical notation (F4), almost all 
submissions showed breaches of convention. A reason for this could be that students 
seldom receive detailed feedback on their use of symbolic language and mathematical 
notation (Moore, 2016). Again Guce (2017) had similar results. This is alarming, as 
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Ottinger, Kollar and Ufer (2016) found that the use of logical symbols is related to the 
quality of arguments, and knowing mathematical terminology is also relevant for 
understanding mathematics in general (e.g., Thurston, 1995). 
Regarding formal-structural aspects of a proof, breaches of convention in the 
presentation of the structure of the proof (C8) occurred in all submissions. After taking 
a closer look, we realized that many students miss to present their proof structure 
explicitly or do so inappropriately. This may also be due to the fact that proofs in 
lectures cannot necessarily be regarded as model proofs in terms of structure (Lew & 
Mejia-Ramos, 2020), and therefore students are not yet aware of the necessary socio-
mathematical norms of proof structure (Thurston, 1995). Knowing how to present the 
proof structure adequately is not only important for students to write an acceptable 
proof, but also because it can free up cognitive resources while finding a proof idea 
(Selden & Selden, 2013).  
All in all, we see that students’ proofs show breaches in academic language, 
mathematical language, and proof structure. However, some of the identified 
categories were not coded in the students’ proofs we analyzed. Nevertheless, those 
categories remain in the category system for now because those breaches of convention 
may occur only in other proofs. For example, inappropriate naming of variables and 
constants (C12, Kümmerer, 2016) is more likely to happen if the needed variables are 
not given in the task. In addition, only a very small sample has been evaluated so far, 
and there may also be other breaches of convention in different areas of mathematics 
which require further studies. It cannot be ruled out that the students in this study 
copied solutions from other students and thus reproduced errors. In addition, it is 
possible that we have also obtained high frequencies in the categories use of 
mathematical notation and symbols (F4) and academic language (F2) because the 
categories are not yet sufficiently finely structured. It will be our task in further 
research to distinguish them further. In addition, we want to interview experts in order 
to determine which of the identified breaches of convention are considered to be 
particularly important by them, especially in student proofs, before the necessary 
support measures can be developed. 
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Orchestrating high-quality dialogic discourse in primary mathematics classes is a 
considerable challenge for teachers. Research on the design and impact of 
professional development (PD) programs aimed at this challenge is limited. In 
particular, studies examining the trajectory of change in teachers’ quality of discourse 
during and after PD programs are scarce. Our research focused on a specific type of 
discourse named Accountable Talk (AT). In this report we describe the cases of two 
mathematics teachers who participated in a PD program around AT. We followed them 
into their classes, to assess the impact of the PD on the quality of the discourse. 
Findings point to factors that may affect teacher learning and implementation of AT. 

INTRODUCTION  
Research on the quality of discourse in mathematics classrooms has accumulated in 
the past two decades, in light of the general recognition that the quality of discourse - 
measured according to social and epistemic criteria - impacts on various aspects of 
student learning (Resnick et al., 2015). However, maintaining high-quality discourse 
poses a considerable challenge for teachers (Schwarz & Baker, 2016). Supporting 
teachers in acquiring skills to facilitate high-quality discussions in their mathematics 
classes is a multifaceted endeavor. The literature on the design and impact of such 
support is still underdeveloped. To address this gap, a five-year research project was 
implemented, with the goals of (a) designing a PD program aimed at promoting high-
quality discourse in primary mathematics classes; and (b) exploring processes of 
professional learning and development of teachers participating in the program. At the 
heart of the PD was a specific type of discourse, named Accountable Talk (AT) 
(Michaels et al., 2008; details follow). To train teachers to use this discourse in their 
classrooms, a video-based design was utilized, with clips demonstrating AT teaching 
moves. Alongside participation in the PD, the teachers were encouraged to implement 
AT in their teaching. The study examined both settings - the PD and the teachers' 
classrooms - with particular focus on trajectories of change that the teachers have 
undergone throughout the PD year. Additionally, to assess the degree to which teachers 
preserved AT moves and practices, the study included a follow-up in the teachers' 
classrooms about one year after the PD’s conclusion. We report herein on the study of 
two cases, focusing on two research questions: (RQ1) How can trajectories of change 
in the teachers’ talk practices be characterized? (RQ2) To what degree was the 
implementation of the learnt practices sustained, if at all, after one year? In the 
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following, we provide a short theoretical background concerning the two core elements 
combined in our study: AT and video-based PDs.  

THEORETICAL BACKGROUND 
Michaels et al. (2008) defined AT as an argumentative dialogic discourse that takes 
place within a collaborative learning environment through which students learn to 
reason in the context of a field of knowledge. This kind of discourse is characterized 
by three dimensions of accountability: to the community, to reasoning and to 
knowledge. Accountability to the community means that the teacher acts to involve all 
participants in the dialogue as agents. Accountability to reasoning signifies that 
participants utilize logical moves or present evidence for constructing knowledge. 
Accountability to knowledge indicates that, in their arguments, students rely on 
knowledge already constructed and agreed upon. AT offers a set of talk moves such as 
“press for reasoning”, “say more”, and “solicit additional viewpoints”, which provide 
teachers with tangible means for eliciting students’ reasoning, as well as for holding 
students accountable to making their thinking understandable to others (Resnick et al., 
2015). AT intermingles epistemic and social aspects, thus teachers who are not familiar 
with AT need to first experience it in a supportive learning environment around their 
field of knowledge. This is crucial especially since AT, and dialogic teaching in 
general, differs from traditional methods that many teachers experienced as students 
(Ball & Forzani, 2010). However, despite the accumulating evidence affirming the 
effectiveness of dialogic teaching, and the substantial resources dedicated to PD 
programs around it, its implementation in schools remains limited (Schwarz & Baker, 
2016). While research indicates the challenging nature of shifting teachers' practices to 
embrace innovative teaching methodologies (Heyd-Metzuyanim et al., 2019), recent 
efforts have been undertaken to delve into the intricacies of the transition from theory 
to practical implementation (Baor, 2021). Among the methods that have proven 
successful in supporting teacher learning towards implementing innovations are video-
based PD programs (Coles et al., 2019). A video-based PD enables a microanalysis of 
teaching practices as a part of collective reflection (Karsenty & Arcavi, 2017), and 
consecutive video-based sessions alternating with teaching sessions support the 
development of plans to improve practices (Borko et al., 2011). In addition, general 
guidelines recommended in the literature for effective PD include situating the PD in 
teachers' actual classroom realities while inviting collaborative reflection on authentic 
episodes, and also designing the PD as a long-term undertaking (e.g., Putnam & Borko, 
2000). As we show next, our PD design (constituting the first phase of the study) relied 
on these guidelines, enabling a solid ground to explore teachers’ learning and 
implementation trajectories. 
METHOD 
Setting, participants and data sources 
The data for the larger project, including the two cases reported here, were collected in 
2016-2018. A 30-hour elective PD program, centering on AT, was offered to primary 
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mathematics teachers in two cohorts located in two different cities. The PD was spread 
over 10 sessions along one schoolyear and recognized for professional accreditation 
by the Ministry of Education. In total, 45 teachers participated in the PD, with a range 
of 3-23 years of experience. All PD sessions were videotaped and transcribed. Eight 
teachers were selected for an in-depth investigation, based on purposive sampling to 
represent diverse backgrounds. For these teachers, classroom data were gathered in 3 
points during the PD year: before, halfway through and at the end of the PD. At each 
time point a whole lesson was videotaped in each teacher’s class. A fourth lesson was 
videotaped about a year after the end of the PD. In addition, video-based Stimulated-
Recall Interviews (SRIs) were conducted with each teacher after every recorded lesson. 
In this paper, we focus on two of the eight teachers, Jill and Eda (pseudonyms). Jill 
was a novice teacher with 3 years of teaching experience, a graduate of the mathematics 
track in a teacher education college. Eda was a veteran teacher with 23 years of 
teaching experience. As a graduate of a humanities track, she had no formal training in 
mathematics. Both teachers were not enrolled in mathematics education PDs before.  
Data analysis 
Analysis of patterns of teachers’ participation in the PD. Six PD sessions were 
analyzed to determine patterns of participation for each of the 8 selected teachers. We 
coded the level of participation (the number and length of the teacher’s utterances) and 
the quality of participation (explorative, semi-explorative or superficial, reflecting the 
teacher’s reliance on reasoning or evidence when making observations). 
Analysis of the implementation of AT in the teachers’ classes. Two existing coding 
schemes were used: IQA (Instructional Quality Assessment; Boston, 2012), that rates 
the level of cognitive demand and the level of AT on a scale of 1 to 4, and ATC 
(Accountable Talk coding; Heyd-Metzuyanim et al., 2019), a tool for coding AT moves 
during a lesson. Due to space limitations, we present here only the IQA analysis for the 
two teachers. The full details on IQA categories, and how a rate of 1-4 is obtained from 
classroom observations, can be found in Boston (2012). In addition, specific rubrics 
were designed for coding the types of questions asked by the teacher (open/closed), the 
type of student answers (justified/other), and the amount of evaluative feedback.   
Analysis of SRIs. Coding of SRIs employed a specially-developed rubric, comprising 
(1) the quality of the teacher’s participation (explorative/semi-explorative/superficial, 
see above); (2) mathematical aspects (i.e., to what degree did the teacher refer to 
mathematical issues such as solution methods, mistakes, etc.); (3) dialogical aspects 
(to what degree did the teacher refer to social-dialogic issues such as collaboration or 
respectful discourse); (4) indications of the teacher's orientations about what is desired 
teaching (i.e., facilitation of knowledge construction vs. knowledge transmission).  
Based on the various means of coding, a quantitative and qualitative summative 
analysis was performed using methods of descriptive statistics and Micro-scale 
analysis, to identify what changes, if any, occurred throughout the PD year. Individual 
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attributes such as mathematical background and teaching experience were taken into 
account in the analysis, to assess their prominence as possible indicators of change. 

FINDINGS 
Teachers’ pre-PD orientations  
Initial differences between the two teachers’ orientations were found in the individual 
interviews prior to the PD beginning. As the quotes below show, Jill and Eda seemed 
to have different views regarding desirable discourse practices in the mathematics 
class: (notation: ‘Ia-x’ signifies Interview #a, transcript line #x).      

You should embark on an inquiry question […] Give them a task to handle, then, 
let's talk about it together, let's present ways to solve it. (Jill, I1-44)  
First of all, it shouldn’t be […] a Ping-Pong dialogue between me and a student. 
First I need to ask a question, to trigger their thinking […] and have them start 
talking. […] It should reach a state where they talk to each other - ‘you said that, but 
I don’t think so, I think otherwise’, something like that. (Jill, I1-60) 
All these years I taught by imparting knowledge, frontally [...] [Today] I worked for 
almost two lessons in order to explain them, [...] I tried to show them, I brought 
pencils, I brought coins [...] they had a really hard time understanding what I want. 
(Eda, I1-16,48) 
[A good lesson is when] disruption is minor, I'm not taken out of focus […] and they 
succeed in arriving at the conclusions that I am trying to lead them to. (Eda, I1-60) 

Jill’s orientations appear to align with an approach of ‘facilitating knowledge 
construction’, emphasizing collaborative inquiry and recognizing the significance of 
student interaction in developing thinking. Eda's orientations seem to align more with 
a teacher-centered approach of ‘knowledge transmission’, although she also ascribes 
importance to having students arrive at conclusions, in a teacher-led process. 
Teachers’ patterns of participation in the PD  
The teachers differed in the level and quality of their PD participation. In the 6 coded 
sessions, Jill spoke more than Eda (44 and 7 utterances, respectively), with longer 
utterances (average of 19.8 and 16.4 words per utterance, respectively). Jill’s share of 
speech coded as explorative was higher than Eda’s (56% and 14%, respectively). 
Below is an example of an explorative utterance by Eda, about a videotaped episode: 

I liked it that a child explains to a child, that the girl explained to him, and he asked her. 
He didn't ask the teacher [...]. I think the gain of a child explaining to a child is more than 
when the teacher explains, they know how to explain each other sometimes better than us. 

Teachers’ patterns of participation in the SRIs following lessons 2,3 

The analysis of the two teachers’ patterns of participation in the two SRIs following 
lessons 2 and 3 (aggregated together) is summed in Table 1. As can be seen, in all 4 
categories (detailed earlier), substantial differences were found between Jill and Eda.  
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Eda Jill Type of participation 

31% 96% (1) Quality of participation: % of explorative utterances  
16.2% 67% (2) Mathematical aspects: % of the utterances referring to 

mathematical issues  
83.8% 33% (3) Dialogical aspects: % of the utterances referring to 

social-dialogic issues 
 

13.2% 
86.8% 

 
98% 
2% 

(4) Teaching orientation: 
% of utterances indicating ‘knowledge construction’  
% of utterances indicating ‘knowledge transmission’ 

Table 1: Analysis of the two teachers’ SRIs following lessons 2 and 3. 

The examples below illustrate differences found between the teachers in Category (4).    
Example 1. Jill reacts to an observed episode from her class. The discussed issue was 
the equivalence between thirty coins of 10 cents and three dollars: 

It's basically the same thing, but they don't understand each other, so at this point I open 
the question to the whole class, both for making them partners and because it hands it back 
to them, so it helps them understand that they did the same thing and thought the same 
thing. […] Each one looked at it differently, but it’s okay, it’s the same thing. (Jill, I2-46) 

Example 2. Eda reacts to an observed moment from her videotaped lesson, showing 
her summing up what was learned so far:  

Constantly to summarize for them, to arrange for them, to illustrate for them, that’s 
something that I very much work on now. (Eda, I3-17) 

Jill’s quote displays a view of herself as a discussion facilitator, whose role is to foster 
collaboration and transfer authority over knowledge construction to students, as seen 
in her words ‘I open the question to the whole class’, ‘making them partners’, ‘hands 
it back to them’. Eda’s quote illustrates a teacher-centered perspective, underscoring a 
view of the teacher as a knowledge provider. This differs from the PD's agenda about 
the importance of collaborative student-led summaries guided by the teacher. 
Teachers’ change over time in implementing AT  
The IQA analysis for the two teachers is summarized in Figure 1, showing the average 
ranking of IQA components in the four lessons of each of the teachers. 
As clearly seen, Jill showed notable, although non-linear, improvement in IQA scores 
through the 3 lessons filmed during the PD year, which continued in lesson 4 after 
about a year from the PD completion. Eda’s IQA scores improved between lessons 1 
and 2 but declined in lesson 4 after a year, to a level similar to her starting point.  
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Figure 1: Average score of IQA components in four lessons of the two teachers. 
 
Figure 2 presents the analysis of the teachers’ question types and evaluative feedback 
as coded for each of the four lessons.   

Figure 2: Question type and evaluative feedback in four lessons of the two teachers.  

While in lesson 1 both teachers favored closed questions over open ones (in Jill’s case 
this difference was more salient), in lessons 2 and 3 they shifted towards more open 
questions. However, whereas Jill maintained this tendency in lesson 4, Eda reverted to 
a higher number of closed questions. Figure 2 also displays the amount of evaluative 
feedback. Both teachers consistently reduced their use of evaluative feedback across 
the four lessons, with Jill maintaining minimal use from the start.  
Figure 3 presents the types of student answers in lessons 1-4 of both teachers. In lesson 
1, students in both classes provided fewer justified answers compared to other answers. 
Lesson 2 shows an increase in justified answers, yet while in Jill’s class justified 
answers outnumber other kinds of answers – a tendency sustained in lessons 3 and 4 - 
in Eda’s class a smaller number of justified answers remained across all lessons. 
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Figure 3: Number of justified and other answers in four lessons of the two teachers. 

DISCUSSION 
The findings unveil distinctly different learning trajectories: Jill’s journey reflects a 
notable and sustained improvement in implementing AT over time, while Eda's path 
shows limited change. We examine possible factors that may explain this disparity.   
Personal background. Jill majored in mathematics education, while Eda lacked formal 
mathematical training. Since mathematical discourse according to AT combines 
epistemic (mathematical) and social aspects, formal training in mathematics teaching 
may be a crucial factor in effective implementation of AT practices in mathematics 
classes, which can explain some of the differences we found in the teachers’ 
trajectories. Eda’s seniority was not necessarily an asset in implementing AT; practices 
that are deeply ingrained through years of experience can be difficult to change. In 
contrast, Jill, a young teacher with minimal experience, could more easily use the PD 
as a catalyst for improving discourse quality. More research is needed to confirm these 
suggested links between teachers’ background and sustainable AT implementation.  
Patterns of participation in the PD. The two teachers' engagement in the PD aligned 
with their degree of implementation improvement, suggesting that the level and quality 
of PD participation may, to some extent, predict how teachers apply learned practices.  
The pedagogical flexibility of the teacher. By ‘pedagogical flexibility’ we refer to a 
teacher's openness and capacity to cohere between her perspectives and her actual 
practice. The SRIs findings revealed differences in the two teachers’ degree of 
explorative participation and references to mathematical and dialogical elements in 
their lessons. Interestingly, compared to the pre-PD findings, it seems that both 
teachers remained consistent in their perspectives about teaching; simply put, Eda 
stayed with the ‘knowledge transmission’ view and Jill stayed with the ‘knowledge 
construction’ view. What has changed for Jill is the gap between her stated teaching 
orientation and her observed practices: Jill’s first lesson was characterized by practices 
aligned more with knowledge transmission (see Figures 1,2), than with how she 
described a desired discourse. This misalignment parallels findings in Baor's (2021) 
study, where a teacher's adoption of an explorative pedagogical approach did not fully 
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translate into her actual classroom discourse. As Heyd-Metzuyanim et al. (2019) note, 
teachers’ adaptation of actual practices to concur with envisioned ones, is a complex, 
possibly non-linear process. In Jill's case, the gap gradually narrowed over the year. 
We speculate that she was flexible enough to allow herself to try out AT moves that 
she saw in the demonstrative videoclips discussed in the PD. In contrast, Eda’s long-
held views about teaching, which in a sense conflicted with the PD’s agenda, may have 
reduced her openness to implement the discussed strategies in her class. 
Although the two cases we presented cannot describe general trends, they stress the 
complexity underlining changes (or lack thereof) towards high-level talk practices. A 
combination of factors such as prior mathematical backgrounds, patterns of PD 
participation and pedagogical flexibility play a crucial role in the degree of change. It 
is likely that these factors interrelate and that there are more nuances to be found. Our 
findings can be seen as another step on the road to understanding how and why a PD 
program’s effectiveness and long-term sustainability varies across individual teachers.  
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EXPLORING PERCEIVED VALUE DIFFERENCE SITUATIONS 
IN AUSTRALIAN MATHEMATICS CLASSROOMS 

Anni E and Wee Tiong Seah 
Faculty of Education, The University of Melbourne, Australia 

Recent research has highlighted how students might disengage from classroom 
activities when their values and their teachers’ are different. The present study 
examined 625 secondary school students’ perspectives and experiences to better 
understand what these value difference situations look like. Analysis of the 29 identified 
instances of value differences revealed the need to propose a new category - 
mathematical content value – to add to the existing classification of values. The 
findings reveal an issue where students often struggle to appreciate the value of 
learning specific mathematical content, even when teachers emphasise its practical 
usefulness. The results also highlight that teacher’ excessive reliance on textbooks runs 
counter to student’ mathematics educational values, hindering their learning. 

INTRODUCATION 
Previous research  (Seah & Andersson, 2015) revealed how students and teachers bring 
their personal values (that is, regarding what is important) in mathematics education 
into the classroom. Since individuals’ values in mathematics education stem from the 
nature of mathematics as well as their sociocultural and educational experiences (Seah, 
2019), students and their teachers develop and interpret these values in diverse ways. 
This phenomenon becomes more complex in multicultural societies such as in Victoria, 
Australia, where teachers, students and families hail from a diverse ethnic and racial 
profile. It is thus reasonable to assume that interactions in the (Victorian) mathematics 
classroom is characterised by the coming together of a range of teacher and student 
values relating to mathematics, mathematics teaching and learning, and education 
generally. 
Given that decisions and actions (in mathematics education) are driven by values   
(Seah, 2019), the alignment of students’ values with their teacher’s influences the 
quality of classroom interactions, and thus, of the lessons. For instance, a teacher who 
values group work would incorporate collaborative activities in their lessons, but any 
of their students valuing independent work might disengage with or avoid such 
activities. Indeed, students who hold different values from their teachers are likely to 
resist or disengage, negatively affecting their interest and performance in mathematics 
learning (Kalogeropoulos, 2016). Effective teaching thus requires an understanding of 
value differences, as teacher intentions alone are unlikely to ensure successful lessons. 
This calls for a thorough exploration of the attributes valued by students and their 
teachers in mathematics pedagogy. 
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Previous studies assumed that students would express their values through feedback to 
their teachers (Kalogeropoulos et al., 2021). However, students may conceal their 
values for a variety of reasons. Even when students have choices, these choices are 
usually constrained within the classroom context (Clarkson et al., 2019). Thus, to gain 
a more comprehensive understanding of value differences in the mathematics 
classroom, it is important to consider whether students are able to contemplate, 
compare, and express their values during classroom interactions. In this context, the 
current study seeks to address this gap, establishing a comprehensive overview of the 
types of value differences in mathematics classrooms, based on Victorian students’ 
perspectives. 
The Research Question guiding our study here is: What sorts of values espoused by 
students and their teachers most often end up in value difference situations? 

THEORETICAL FRAMEWORK 
Instead of being viewed as an objective body of knowledge awaiting discovery, 
mathematics has been acknowledged as being socialised knowledge (Bishop, 1988). 
Research into values and valuing in mathematics education from the late 1980s (see 
Bishop, 1988, 1996) acknowledges that the discipline and its pedagogy is culture-
dependent. Early research literature in this area reflects a conception of values as an 
affective variable (Bishop, 1996). Seah (2019), inspired by the tripartite model of the 
human mind, later redefined values as being conative in nature. In doing so, Seah could 
explain why people often passionately embrace their values and why values can be 
made visible through decision processes. Hence, this study adopted Seah’s (2019) 
definition of values in mathematics education, in which valuing is concerned with “an 
individual’s embracing of convictions in mathematics pedagogy...[shaping] the 
individual’s willpower to embody the convictions in the choice of actions” (p. 107). 
Since a value directs an individual’s course of action, values can be regarded as being 
motivational (E, 2023). However, motivation might not fully explain persistence—the 
character of will and determination embedded in values empower determination amid 
obstacles (Seah & Andersson, 2015), not just guiding actions but defending them. As 
such, value difference situations arising from interactions between teachers and 
students are characterized not just by motivation, but also involve the will inherent in 
values. 
Bishop’s (1996) categories of values in mathematics education, namely, general 
educational, mathematical, and mathematics educational values, provided a useful 
framework for categorising the types of value differences perceived. Mathematical 
values relate to the mathematics discipline itself, and they have been identified to be 
the three complementary pairs of rationalism and objectism, control and progress, and 
mystery and openness (Bishop, 1988). On the other hand, mathematics educational 
values refer to the objects, experiences, and pedagogies that students and teachers 
consider important to learning and teaching mathematics (Seah, 2019). Last but not 
least, general educational values cover the moral, ethical, citizenship, and sometimes, 
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religious values that a given educational system aims to impart to its students. Unlike 
the first two categories of values, general educational values are part of the educational 
process but are not directly related to mathematics instruction. 

METHODS 
Data were collected online using the ‘What I Find Important Too’ questionnaire, 
accessible at https://www.surveymonkey.com/r/VASstu_v4. The questionnaire draws 
on hypothetical situations to encourage student respondents to delineate instances 
where disparities exist between their own values and those emphasised by their 
teachers during mathematics lessons (E, 2023). Here we focus on the open-ended 
question posed: What was the value differences situation like? 
Participants were chosen via stratified probability sampling of schools across Victoria, 
ensuring diversity in terms of gender, ethnicity, and educational background. The 625 
participants (50% female) were from urban and regional secondary schools located in 
Victoria. Students self-identified their ethnicities as Australian (349), European (116), 
Asian (73), North African and Middle Eastern (17), Americans (9), Indigenous 
Australian (6), Sub-Saharan African (4), and Other (43). 
Students’ responses were analysed using thematic analysis (Braun & Clarke, 2006). 
Initial nodes were generated and coded inductively. For example, “I asked her to teach 
in a way that we could all understand” was coded as understanding to reflect this 
valuing. Subsequently, nodes were organised deductively into value categories, guided 
by a checklist that included three pairs of mathematical values (Bishop, 1988) and 
seven pairs of complementary mathematics education values (Kinone et al., 2020). For 
example, the value nodes understanding and textbook were categorised as 
‘mathematics educational values’. The checklist provided flexibility, allowing for the 
identification of additional value categories. 

RESULTS 
29 instances of value differences were reported. While 10 (34.48%) of these were either 
maths educational or general educational values, a majority could not be located within 
the three value categories which Bishop (1996) identified. Rather, they appeared to 
relate to mathematical content. Bishop’s (1996) three-category system does not seem 
to adequately describe the range of value differences perceived by secondary school 
mathematics learners. As a result, an additional category – mathematical content values 
– is being proposed here. 
Mathematical content value differences refer to those incidents when specific 
mathematical content that is important to the teacher is not important to the students, 
and vice versa. Of the 29 value differences reported, 19 of these were related to student 
and teacher differences in valuing particular mathematical content. Specifically, within 
this category, 11 students referenced they did not find algebra to be important. For 
instance, one student noted, “It [algebra] is just numbers and letters mixed up together; 
it is not reality”. Five students did not specify the name of content, but they also 
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expressed disagreement with their teachers’ view that some specific mathematics 
knowledge was important, noting for instance, “we were learning something in maths 
that we are never going to use in everyday life and my teacher said it was important”. 
The rest of the mathematical content value differences pertained to numerals, 
coordinates, addition/subtraction, geometry, trigonometry, equations, data and stats.  
Our data suggested that these mathematical content value differences often stemmed 
from students’ questions about the usefulness of the specific content. The thought 
process of students revealed that while they would try to assess the value of these 
mathematical concepts based on their perceived usefulness, this approach often fails to 
convince them. For example, one student remarked, “we will never use it [algebra] in 
the future because why would people make people waste their time when there [sic] 
shopping and try and figure out what the hidden number or something.” Another 
student questioned the importance of trigonometry, stating, “but teacher thinks it is 
important. How will we use [this] mathematics in day-to-day scenarios?” Interestingly, 
teachers’ justifications for the mathematical content value, as mentioned in students’ 
responses, also emphasised its usefulness in careers, everyday life, and future. One 
student emphasised, “we were learning something in maths that we are never going to 
use in everyday life and my teacher said it was important, but I didn’t take it seriously 
because it was useless. She [my teacher] gave me a situation of how we would use this 
maths content in everyday life, and it was something that would never happen”. In this 
instance, the concerned teacher attempted to address the disparity in values related to 
mathematical content by highlighting its practical relevance in everyday life, but she 
was not successful in engaging their students in her endorsement. 
Mathematics educational value differences were next most commonly reported by the 
secondary school participants, where the source of difference rooted in the differing 
perceptions of teachers and students regarding approaches to mathematics teaching and 
learning respectively. There were nine of the 29 value differences documented which 
pertained to the nature of mathematics educational values. Specifically, there were 5 
instances which revealed differences in valuing between teachers’ teaching relying on 
textbook questions and students’ embracing of other pedagogies. For example, a 
student pointed out, “My teacher doesn’t listen to us and she thinks by doing textbook 
questions it’ll help us, which isn’t true”. From what a student wrote, “I think that doing 
the same type of questions all the time is unimportant. My teachers make us repeat 
them all the time”, it appears that students interpreted their teachers’ value as repetition 
unnecessarily. Indeed, other students wrote their maths education values that “I want 
constant and different types of problems”, “I asked her to teach in a way we could all 
understand and not just do workbook everyday”, “I have difficulties taking in 
information because as a class we just do book work and other teachers use different 
methods to teach their classes … I told her [my teacher] to use different examples 
and/or teachings skills” and “It becomes boring to do that many questions, which 
means we don’t concentrate well in class”. Notably, these responses reflected 
Kalogeropoulos’s (2016) assertion that students who hold different values from their 
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teachers are likely to resist or disengage from pedagogical activities, negatively 
impacting their interest and performance in mathematics. 
Only one student referred to value differences of the general educational value nature. 
It involved the differing valuing of equity: “We had a deadline and most of us met it, 
but some didn’t, so the deadline was extended. I thought that was unfair to the people 
who had worked hard to meet the deadline”. Perhaps one possible explanation is that 
generally these values are already accepted by the (educational) community, such that 
the chance of any such value being involved in value difference situations was less 
likely. In fact, Seah (2019) suggested that general educational values are already being 
inculcated in students as part of fulfilling the professional and ethical responsibilities 
of teaching. 

DISCUSSION AND CONCLUSION 
Although our data about mathematical content value difference situations suggested 
that some teachers emphasise the importance of mathematical content due to its 
usefulness, it cannot be definitively categorised as valuing application. Application as 
a mathematics educational value refers to “valuing application of mathematics in 
various problematic situations in mathematics learning” (Kinone et al., 2020, p. 44), 
which is more aligned with emphasising pedagogies that can enhance students’ abilities 
to recall factual knowledge and concepts readily and flexibly to find solutions for 
mathematical questions. However, teachers highlighted the importance of 
mathematical content in everyday life and future jobs/careers. This emphasis seems to 
extend beyond mathematical learning and appears unrelated to pedagogy, making it 
incompatible with the mathematics educational value as defined by Bishop (1996). 
In addition to defying categorisation within existing value categories, there are also 
arguments for acknowledging the mathematical content value category. Current 
knowledge about values (Seah, 2005) suggested that cultures construct and develop 
mathematics in different ways, resulting in educational systems that reflect what 
cultures consider valuable, that is, what they value. In other words, mathematics is 
socialised knowledge; knowledge that has been cultivated and developed in response 
to particular needs within cultures, not objective knowledge (Clarkson et al., 2019). 
This implied that mathematical knowledge is selected and organised to become content 
knowledge for teaching and learning, a process inherently embedded with values. 
Illustrating this is the stated aims for revising the Australian mathematics curriculum 
(ACARA, 2021), which highlighted the need to “remove outdated and non-essential 
content, add new content that has been identified as important for students to learn, 
better sequence student learning and give teachers greater clarity and guidance about 
what they are expected to teach” (p. 1). Although this document does not explicitly 
state why certain contents are considered important for teaching and learning, what it 
does highlight is the value attributed to different mathematical content. 
This study has emphasised the need to focus on mathematical content values. It is 
noteworthy to reflect on the fact that prior studies have often approached the body of 
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mathematical knowledge as a whole, emphasising its importance as long as the 
existence of specific content that can be applied in everyday life or future careers can 
be justified. However, clear indications suggest that students may encounter difficulties 
in discerning the value of each piece of mathematical content. This aligns with Atweh 
et al.’s (2010) observation that students persist in believing that some content is largely 
meaningless, particularly when teachers cannot demonstrate how all mathematical 
concepts can be applied to real-life situations. Recently, Rosenzweig et al. (2020) 
emphasised that a more effective way to increase student utility is to help students think 
about the value of course material, which seems to suggest a new trend: a return from 
considering body of knowledge as a fixed whole to a focus on specific content 
knowledge. Therefore, the urgent next step is to concentrate on mathematical content 
values and find a way to respond to situations in which students do not see the value 
of learning particular mathematical content.  
In most value difference situations involving mathematics educational values, teachers 
tend to value practicing problems in textbooks, but students generally do not value this 
way of learning mathematics. Notably, our findings demonstrate how problematic it 
can be with teachers’ heavy dependence on the mathematics textbooks, as students 
appeared to associate textbook use with mechanical or habitual repetition. This result 
may not be surprising given that secondary-level mathematical textbooks are often 
filled with relatively low-level, repetitious exercises (Stephens, 2019). Rather than 
repeatedly solving the same types of problems found in the textbooks, students are 
more likely to seek diverse examples and instructional methods that are aligned with 
their mathematics educational values. What this implies is that educators and teachers 
who rely on textbooks need to consider how to meet their students’ mathematics 
educational values by carefully selecting or redesigning textbook problems (e.g., by 
changing just one or two numbers to extend learning opportunities). Otherwise, these 
students with conflict values from their teachers would exhibit resistance or disinterest 
in pedagogical activities. 
Inherently, repetitive and low-complexity problems are not necessarily bad, because 
students learn procedures through sufficient repetition. However, this pedagogy 
relying on overwhelming prevalence seems to limit students’ opportunities to feel and 
contemplate the value of mathematical content. An example can be found in early 
research; Goldin (2004) expressed concern over the inclusion of activities related to 
solving discrete mathematics problems in the secondary school mathematics 
curriculum. In his words, if these problems were added to standardized achievement 
tests with the intention of evaluating nonroutine problem-solving skills, then routine 
methods for solving them would be explained and utilised in numerous parallel practice 
problems in school workbooks. This means that this particular knowledge is included 
in the mathematics curriculum as a set of information to be memorised and strategies 
to be used routinely, which is exactly the aspect that is not valued by students 
frequently mentioned in mathematics educational value differences situations. More 
importantly, in this way, the potential of discrete mathematics in terms of triggering 
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attributes such as experimentation, logical reasoning, and problem-solving would 
certainly be diminished (Goldin, 2004). This seems to reveal the mathematical content 
value of learning discrete mathematics, but it is obscured by certain pedagogy. It is also 
worth reflecting on the fact that these attributes have been described in previous studies 
as characteristics of the mathematical discipline as a whole, rather than analysing the 
relationship of the individual essential mathematical content to these attributes. The 
question raised here is whether specific mathematical contents containing these 
attributes are the precise reason the discipline of mathematics exhibits these 
characteristics at the macro level. Therefore, it is necessary to unpack the values 
embedded in each mathematical content. 
To conclude, the present study investigated Australian secondary school students’ 
experiences of perceived value differences in mathematics lessons, and identified 29 
perceived value differences in the data collected, which revealed the need to add a new 
category, namely, mathematical content value, to the existing classification. The 
mathematical content category was reported most frequently in this research study, 
further indicating an issue: students do not value particular mathematical content. 
Conversely, the mathematics educational values perceived by secondary students 
nearly all relate to their teachers’ values related to teaching from textbooks. Students 
in Australia often face struggles when their teachers rely solely on mathematics 
textbooks for teaching. This is due to the textbooks being filled with repetitive and 
straightforward problems, which is in conflict with students’ mathematics educational 
values. Thus, the findings of this study could offer teachers inspiration to enhance their 
pedagogy, aligning it with students’ values in mathematics education.  
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ENACTING MULTIPLE POSITIONS IN BECOMING A 
MATHEMATICS TEACHER EDUCATOR 

Andreas Ebbelind1 and Tracy Helliwell2 
1Linnaeus University, Sweden and 2University of Bristol, United Kingdom 

This paper initiates a longitudinal study that explores the growth and development of 
mathematics teacher educators (MTEs), particularly those transitioning from 
mathematics teacher to university-based MTE. While existing research often employs 
self-based methodologies, this study adopts positioning theory as an alternative 
approach, examining Mikaela, a lower primary school teacher transitioning to a 
university-based MTE in Sweden. The paper contributes to the broader understanding 
of growth and development, offering insights into the challenges and strategies 
involved in transitioning from mathematics teacher to MTE. The study marks the 
beginning of a more extensive exploration of this transition process, emphasising the 
need for a nuanced conceptualisations of MTE learning and expertise. 

BECOMING A MATHEMATICS TEACHER EDUCATOR 
With this paper, we mark the starting point of a longitudinal study concerning the 
process of becoming mathematics teacher educators (MTEs).  We consider MTEs to 
be those practitioners who are “engaged in the education or development of teachers 
of mathematics” (Beswick & Goos, 2018, p. 418) and conceptualise ‘becoming’ as an 
ongoing process of professional growth and development that implies agency and 
movement. MTEs as a group include those who work with prospective teachers as part 
of their initial teacher education (ITE) and those commonly referred to in the literature 
as “PD facilitators” (e.g., Prediger et al., 2022) who work with in-service teachers as 
part of their ongoing professional development (PD). Though these groups of MTEs 
overlap, PD facilitators are often experienced school-based practitioners who take on 
the role of leading PD programmes for in-service mathematics teachers whilst MTEs 
who work in ITE settings are more frequently based in universities and teach 
mathematics or mathematics education/methods courses for prospective mathematics 
teachers. Our research concerns this latter group of MTEs who work in university-
based ITE settings. Though it is in no way universal, it is commonly the case that these 
MTEs have been mathematics teachers themselves “and bring a profound professional 
experience to their work with teachers” (Jaworski, 2008, p. 1). For the purposes of our 
research, we focus on university-based MTEs who have made this transition, a group 
who have received modest attention in mathematics education research. We see the 
initial research described in this paper as shaping a more extensive study on the process 
of becoming MTEs in different regions and contexts, over a period of several years. 
This is an important line of inquiry that aims to draw on the journeys of multiple 
individuals to inform a conceptualisation of the multifaceted and complex nature of 
MTE learning and expertise, going beyond a categorisation of MTE knowledge. 
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MTE GROWTH AND DEVELOPMENT 
Research on MTE growth and development more broadly is beginning to receive 
increasing attention from mathematics education scholars, especially those whose 
research relates to the field of mathematics teacher education and who recognise the 
vital role MTEs play in shaping the learning and practices of mathematics teachers. In 
relation to university-based MTEs, this research is often enacted by MTE-researchers 
who utilise self-based methodologies with the purpose of understanding and improving 
their own teaching practices (Suazo-Flores et al., 2021). These self-based 
methodologies include autoethnography (e.g., Ward, 2017); narrative inquiry (e.g., 
Bailey, 2008); or self-study (e.g., Kastberg et al., 2019), where practising MTE-
researchers engage in close-to-practice research, either as individuals or as part of a 
collaborative group. While research on the growth and development of university-
based MTEs is becoming more established within mathematics education, published 
research that utilises alternatives to self-based methodologies (i.e., where the 
researchers are not the participating research subjects), as in this study, are less 
common. Examples include Goos and Bennison’s (2018a; 2018b) work who report on 
a collaborative project between MTEs consisting of mathematicians (from university 
mathematics departments) and mathematics educators (from university education 
departments) across several Australian universities. The authors interviewed 
participating MTEs to identify “interdisciplinary boundary practices” (Goos & 
Bennison, 2018a, p. 255) that led to the co-development of new courses which were 
co-taught by participating MTEs from both disciplines (mathematics and mathematics 
education). In a follow on study (Goos & Bennison, 2018b), the same authors analysed 
the development of MTEs by focussing on interviews with two participants from the 
previous study (one mathematician and one mathematics educator). Along with 
providing important findings in relation to establishing effective cross-disciplinary 
collaborations within mathematics teacher education and insights regarding the growth 
and development of MTEs, Goos & Bennison also provide examples of approaches to 
researching university-based MTEs in ITE settings beyond self-based approaches.  
We situate our more extensive study within the growing body of research relating to 
the growth and development of MTEs, and specifically the ongoing process of 
transitioning from mathematics teacher to university-based MTE (in ITE settings). In 
relation to this process of transitioning, more research exists outside of mathematics 
education. Dinkelman et al. (2006), for example, report on the struggles that two 
beginning teacher educators experienced in becoming teacher educators, a process they 
describe as recasting their teacher identities. Similarly, Amott (2018) discusses the 
problematic nature of the transformation of school teachers who become teacher 
educators, a transition that has been described as “expert become novice” (p. 477).  

THE CASE OF MIKAELA 
Our starting point, and the focus of this paper, is an interview with Mikaela who herself 
is in the early stages of transitioning from working as a mathematics teacher to working 
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at university as an MTE. We intend to use the findings from this initial study to raise 
questions that will form the basis of our more extensive study (see ‘discussion’ 
section). Mikaela is currently working as a lower primary school teacher which she 
combines with a part-time (0.2) position at a university in Sweden where she teaches 
on mathematics education courses for prospective primary teachers. Mikaela is 
currently a teacher in grade one (students aged 6-7 years) and has several other 
responsibilities at school. For instance, Mikaela manages a team of teachers (pre-
school to grade 3), she is a school-based mentor for prospective teachers completing 
their practicum, and she is a mentor for early career teachers. She is also a participating 
teacher in a research project in Sweden called Problem-solving in Preschool 
class/Problemlösning i Förskoleklass (PiF), and is studying a master’s course in 
pedagogical leadership.  

POSITIONING THEORY 
We view the process of becoming an MTE as a relational process that builds from the 
assumption that we know in relation to others and that “knowing through relationship 
to self and others is central to teaching” (Hollingsworth et al., 1993, p. 8). Through the 
process of becoming, MTEs continuously position themselves and others in relation to 
mathematics, mathematics teaching, students, teachers and other MTEs, as well as 
other aspects of their profession. To focus on the relational aspects that Mikaela brings 
forth during the course of the interview, we use positioning theory (Harré et al., 2009). 
Positioning involves individuals situating themselves or being situated by others in 
different situations (Davies & Harré, 1999). Positioning is dynamic and is influenced 
by factors such as familiarity with a situation, experience level, or perceived status. In 
other words, how a person positions themselves evolves and differs based on the 
specific situation or context. This variability can occur almost simultaneously. 
Positioning can also be strategic, with individuals telling different stories about 
themselves depending on how they wish to present themselves. Thus our experiences 
and histories impact our positioning (Davies & Harré, 1999).  
Positioning theory proposes that individuals, by means of their communication, 
actively influence and are influenced by the social positions they assume across 
different contexts. Positions encompass the roles and relationships Mikaela establishes 
that concern others. Through positioning, we can start to appreciate some of the 
complexity of becoming an MTE by observing how Mikaela positions herself in 
various relations to different actors and the counterimages she uses when positioning 
herself in these relations. Harré et al. (2009) claim that positioning theory allows us to 
look at what a person can and cannot do. We can also begin to interpret which acts 
Mikaela values over others and how Mikaela wants to position herself as an MTE in 
the future. Drawing on Harré et al. (2009), we ask the following research questions 
(RQs):  
In what ways does Mikaela position herself and others in the process of becoming an 
MTE?  
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How are these positions negotiated and what acts are valued in these positions? 

METHODS 
The interview with Mikaela was conducted in English by both authors and lasted 
approximately two hours (split across two days). In the first part of the interview we 
focussed on Mikaela’s experiences as a classroom teacher. During this part of the 
interview, Mikaela was asked to talk about her past and present mathematics learning 
and teaching experiences. She also talked about her teaching practice and offered 
descriptions of herself as a teacher. She was asked to describe herself as a mathematics 
teacher and later as a mathematics teacher educator. Because Mikaela raised topics 
relating to her own experiences of teacher education, the second part of the interview 
concerned her experience as a prospective teacher and how she now views her role as 
an MTE. A large part of the interview related to Mikaela as an MTE and how this 
relates to her continuing role as a mathematics teacher. In the final stages of the 
interview, Mikaela described the various challenges and successes she has experienced 
in the process of transitioning from being a mathematics teacher to an MTE.    
To investigate our RQs, we draw on the work of Wagner and Herbel-Eisenmann (2009) 
who suggest a series of questions when investigating classroom positioning within 
mathematics education. We adapt their questions for our own use in investigating 
positioning in relation to the process of becoming an MTE. Firstly, we asked: who 
teaches mathematics/mathematics education to whom? By doing this we were able to 
identify, from the interview transcript, the relevant actors brought forth during the 
interview process. For example, Mikaela as a teacher, teaching students and 
prospective teachers or other teachers or MTEs teaching mathematics or mathematics 
education. Secondly, we asked what processes are these different actors engaged in? 
By doing that, we were able to identify the different teaching actions these teachers 
perform. For example, Mikaela described other teachers’ teaching, and by doing that, 
we can interpret how she values the kind of teaching she describes. Finally we asked: 
Who are these actors doing these things for and why? By doing that, we can discuss 
what is valued by Mikaela and the different roles available those actors in the interview.  

RESULTS 
NVivo (software for conducting qualitative data analysis) was used during the process 
of analysing the interview transcript. Specifically, sections of text relating to specific 
actors were coded, resulting in five different positions being identified: 1) Mikaela as 
a teacher (preschool and lower primary) teaching young children and students of 
mathematics; 2) Other teachers teaching mathematics; 3) Mikaela as an MTE teaching 
prospective teachers; 4) MTEs teaching Mikaela; 5) Mikaela as a mathematics teacher, 
participating in an ongoing research project (PiF). In relation to the first position, 
Mikaela uses the second as a counter position while negotiating her valued acts in the 
classroom. Mikaela negotiates her position as a teacher by using other actors to 
promote herself and explain the position she has taken at the university. She uses 
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teachers to position herself as a teacher who is “up to date” with the national curriculum 
and somebody who is engaged in research-informed teaching. For this reason we 
combine these two positions in the analysis below.  
In relation to the third and fifth positions, Mikaela refers to herself as a learner of 
mathematics education. As a learner of mathematics education, several actors benefit: 
her current students, herself, and the prospective teachers. She uses MTEs from the 
past in contrast to her own positions when negotiating her new role as an MTE. For 
this reason, we also combine these three positions in the analysis below. The following 
two sections present a narrative interpretation of Mikaela's positioning with some 
extract of the interview transcript woven into the text. We address what processes these 
different actors are engaged in, who these actors are doing these things for, and why 
[note, [...] indicates a pause].  
As a teacher teaching mathematics 
As a mathematics teacher, you can do what you want “because no one enters your 
classroom”. Mikaela considers the high expectations from principals in Sweden as 
empty words. However, Mikaela has high expectations of herself and wants to feel 
valued for her work. Mikaela values a problem-solving approach to teaching, and 
thinks that, as a teacher, you should engage and enact teaching using multiple 
representations, multimodal teaching and learning mathematics through the arts. She 
knows this from both research and her own experience. She is giving children ways to 
become learners of mathematics.  
When positioning herself with other teachers, Mikaela highlights her problem-solving 
teaching ability. She promotes teaching in line with this ability to position herself 
against the other teachers. This puts her in a position where she teaches correctly. She 
wants more than “just watching them play” or “keeping on doing the things they did 
for the last 25 years”. Mikaela values educational reform. When the educational 
demands are changing, “you must change [...] it is not okay for teachers to continue 
doing things as they have always been doing”. Mikaela positions these teachers as 
neglecting students’ right to learn and reach their full potential, “it is their character”. 
Mikaela emphasises that she has different character; she wants to make a difference. 
She says, “I am not that kind of person”, and positions herself as a thoughtful teacher 
caring about her students' learning. For Mikaela the means being thoughtful and aware 
of how children learn and acting accordingly, which means changing children’s 
thinking, changing their way of solving problems, and guiding their learning.  
From a participant in PiF to becoming an MTE 
PiF was the starting point for Mikaela’s desire to become an MTE. When she got the 
opportunity to teach prospective teachers she found it rewarding; the positive response 
from the prospective teachers had a long-lasting impact on her. Mikaela positions 
herself as having a real impact on the prospective teachers and that both her teaching 
experience and her teaching are valued as being “up-to-date”. In educating prospective 
teachers, Mikaela feels she can foster discussion; “everyone is relaxed and allowed to 
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speak”. PiF has contributed to her development as a group leader, and she has 
“developed a leadership personality” by facilitating a problem-solving classroom in 
PiF that she now enacts as an MTE. She does not view herself as teaching differently 
as an MTE when comparing that to her teaching in schools; “teaching is teaching, there 
is no difference, only different content”. For Mikaela, prospective teachers value MTEs 
who are engaged, interested and settled in the teaching profession. This supports them 
in developing an ability to relate to practice. PiF has also given her a teaching context 
and content to elaborate on when she teaches prospective teachers. She positions 
herself as a facilitator, and by doing that, she is a competent MTE with inclusive and 
respectful communication with those she teaches. 
The main difference between being a mathematics teacher and an MTE is the level of 
demand that she feels from the prospective teachers and her new colleagues at the 
university. She values these demands, but it is “a little uncomfortable”. Mikaela 
concludes, “as a teacher educator, you have a lot of responsibility and high expectations 
from others”. Mikaela positions herself again in relation to others, this time other 
MTEs. Her teaching applies to today’s school system, and prospective teachers need 
proper teaching because they may end up being future colleagues a few years from 
now. She bridges two practices; she gives practical examples of theoretical ideas as a 
way of linking theory and practice, even when the content and context are new to her:      

I must read the literature very closely and understand it myself before teaching it. That 
has been in areas where I have no experience, like Variation Theory. I was new to that 
and became a teacher educator in that area. I had to educate myself first to feel 
comfortable myself. However, when I had done that, I could see how my teaching was 
connected with it. I could give students practical examples of how they could work. 
However, I had not thought about it before then. 

Mikaela is aware of all the different positions she has at the moment. She concludes 
the interview by saying:  

It will be fun when I, as a teacher, get one of my students from the university on their 
internship, and then one of my colleagues from the university comes to visit. Because 
then they have been students at the university and have seen me both in the classroom 
with children and as a teacher educator. Maybe I can get some feedback on my different 
roles. 

DISCUSSION 
We now look forward to following Mikaela and the other MTEs through their journeys 
in becoming MTEs. At the time of the interview, Mikaela seems to be acting out 
multiple positions simultaneously (Davies & Harré, 1999) as she transitions from being 
a mathematics teacher in school to becoming a university-based MTE. Moving forward 
we ask ourselves whether Mikaela’s positioning will evolve and in what ways. 
In this paper, we have explored Mikaela’s current positioning as a starting point from 
which to study her process of becoming an MTE as an ongoing process of professional 
growth and development. We view the use of positioning theory (Davies & Harré, 
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1999) as an analytical framework to enrich our understanding of the relational 
dynamics involved in this transition. By departing from self-based methodologies, we 
argue that this paper and study contribute a promising perspective to understanding the 
learning and expertise of university-based MTEs in ITE settings. 
In Mikaela's roles as a mathematics teacher, an MTE teaching prospective teachers, 
and a participant in a research project, she strategically emphasises the teaching of 
problem-solving and promotes educational reform through her positioning. By 
focusing on relational aspects of becoming an MTE we see ways in which “I” is 
positioned in relation to the “other”. How will the counterimages used by Mikaela 
change over time? The results of this study begin to reveal the nuanced shifts in 
responsibilities and expectations, which seem important to Mikeala as a beginning 
MTE. Mikaela’s journey from a participant in PiF to teaching prospective teachers at 
university, underscores the challenges associated with this transition, from our point of 
view, offering valuable insights into the complexities of becoming an MTE. As 
Mikaela reflects on her various roles, it opens up avenues for her to explore her own 
process of transitioning and the impact that former MTEs have on her unfolding story. 
Her self-awareness and anticipation of feedback add another layer to the study. How is 
being affirmed guiding her in future positions?  
As intended, this initial study raises questions that will form the basis of our more 
extensive study, for instance, what is the role of personal gain and self-affirmation in 
the process of transitioning from classroom teacher to university-based MTE? How is 
this personal gain reflected in our actions in mathematics teacher education and how 
does this change over time? How is past teaching experience transformed in the process 
of becoming an MTE? In summary, this paper contributes to the research on MTE 
growth and development by examining the relational aspects of transitioning from 
mathematics teacher to university-based MTE. Mikaela’s case serves as a compelling 
starting point, paving the way for further inquiries into the multifaceted nature of MTE 
learning and expertise in diverse educational settings. 

REFERENCES 
Amott, P. (2018). Identification – a process of self-knowing realised within narrative practices 

for teacher educators during times of transition. Professional Development in Education, 
44(4), 476–491.  

Bailey, J. (2008). Using narrative inquiry to explore mathematics curriculum. Curriculum 
Matters, 4, 147–163. 

Beswick, K., & Goos, M. (2018). Mathematics teacher educator knowledge: What do we 
know and where to from here? Journal of Mathematics Teacher Education, 21, 417–427. 

Darragh, L. (2016). Identity research in mathematics education. Educational Studies in 
Mathematics, 93, 19–33.  



Ebbeling & Helliwell 

PME 47 – 2024 2 - 199 

Davies, B., & Harré, R. (1999). Positioning and personhood. In R. Harré, & L. van 
Langenhove (Eds.), Positioning theory: Moral contexts of intentional action (pp. 32–51). 
Blackwell 

Dinkelman, T., Margolis, J., & Sikkenga, K. (2006). From teacher to teacher educator: 
Experiences, expectations, and expatriation. Studying Teacher Education, 2(1), 5–23.  

Gee, J. P. (2004). Situated language and learning. Routledge. 
Goos, M., & Bennison, A. (2018a). Boundary crossing and brokering between disciplines in 

pre-service mathematics teacher education. Mathematics Education Research Journal, 
30(3), 255–275.  

Goos, M., & Bennison, A. (2018b) A zone theory approach to analysing identity formation 
in mathematics education. ZDM Mathematics Education, 51(3), 405–418.  

Harré, R., Moghaddam, F. M., Cairnie, T. P., Rothbart, D., & Sabat, S. R. (2009). Recent 
advances in positioning theory. Theory & Psychology, 19(1), 5–31. 

Holland, D., Skinner, D., Lachicotte, W., & Cain, C. (1998). Identity and agency in cultural 
worlds. Harvard University Press. 

Hollingsworth, S., Dybdahl, M., & Minarik, L. (1993). By chart and chance and passion: The 
importance of relational knowing in learning to teach. Curriculum Inquiry, 23(1), 5–35.  

Jaworski, B. (2008). Mathematics teacher educator learning and development. In B. Jaworski, 
& T. Wood (Eds.), International handbook of mathematics teacher education: The 
mathematics teacher educator as a developing professional (Vol. 4, pp. 1–13). Sense.  

Kastberg, S., Lischka, A., & Hillman, S. (2019). Exploring mathematics teacher educator 
questioning as a relational practice: Acknowledging imbalances. Studying Teacher 
Education, 15(1), 67–81. 

Lloyd, M. (2022). Teacher educators’ general beliefs and personal identifications related to 
mathematics. Mathematics Education Research Journal.  

Potter, J., & Wetherell, M. (1987). Discourse and social psychology. Beyond attitudes and 
behaviour. Sage. 

Prediger, S., Roesken-Winter, B., Stahnke, R., & Pöhler, B. (2022). Conceptualizing content-
related PD facilitator expertise. Journal of Mathematics Teacher Education, 25(4), 403–
428. 

Suazo-Flores, E., Kastberg, S., Grant, M., Ward. J., Richardson, S. E., & Chapman, O. (2021). 
Using self-based methodologies to unpack mathematics teacher educators’ work. In D. 
Olanoff, K. Johnson, & S. Spitzer (Eds.), Proc. 43rd Conf. of the North American Chapter 
of the Int. Group for the Psychology of Mathematics Education (pp. 1907–1910). PME 
NA. 

Wagner, D., & Herbel-Eisenmann, B. (2009). Re-mythologizing mathematics through 
attention. Educational Studies in Mathematics, 72(1), 1–15. 

Ward, J. (2017). Early childhood mathematics through a social justice lens: An 
autoethnography. [Doctoral thesis, University of South Florida]



 

 

 2 - 200 
2024. In T. Evans, O. Marmur, J. Hunter, G. Leach, & J. Jhagroo (Eds.). Proceedings of the 47th Conference of 
the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 200–207). PME. 

VICARIOUS LEARNING SCRIPTED VERSUS UNSCRIPTED 
VIDEOS: PROBLEM-SOLVING BEHAVIORS 

Michael Foster 
Rochester Institute of Technology 

Vicarious learning research is a growing area of inquiry examining the learning of 
students who observe video-/audio-taped students engaged in learning (Mayes, 2015). 
To date, several projects have reported on the learning gains of indirectly participating 
in dialogue. However, an important question remains about the influence the nature of 
the dialogue—whether it is scripted or unscripted—has on viewers. For this study, two 
sets of dialogic videos were created capturing the inquiry process of students engaged 
with either unscripted or scripted dialogue. Each video type was shown to a pair of 
students over five research sessions. Using thematic analysis, patterns and differences 
between how each pair used their respective set of videos were identified. Preliminary 
findings suggest a difference in the pairs’ problem-solving behaviors. 

INTRODUCTION 
The use of instructional videos has grown rapidly, particularly videos covering 
mathematical content. This is evidenced by the breadth and popularity of instructional 
videos available online for mathematics education (e.g., Khan Academy) and the 
growing use of instructional videos in educational settings (e.g., flipped classrooms). 
As a result, there is a need to understand how instructional videos should be formatted 
to best serve our students and how videos are being used by students to learn. One 
promising style of instructional videos stems from the literature positioning its viewers 
as vicarious learners (VLs), or indirect participants in another’s learning process. 
The goal of this study was to identify what problem-solving behaviors emerged from 
VLs as they engaged with the mathematics within a series of dialogic videos centered 
on the construction of the sine function and to determine if the VLs’ problem-solving 
behaviors differed when the videos they viewed contained scripted versus unscripted 
dialogue. Following Schoenfeld (2016), problem-solving behaviors includes the 
cognitive processes or strategies used to identify, consider, and solve novel problems. 
During the research sessions, the VLs were given novel problems and videos 
containing students (i.e., the talent) working on the same problems. One set of videos 
contained the unscripted dialogue of the talent’s progression toward the construction 
of the sine function. A second set of videos were filmed following a scripted dialogue 
written to reproduce the unscripted dialogic videos using the solutions and emergent 
difficulties from the unscripted dialogue. While working on the novel problems, the 
VLs had autonomy in their use of their videos, and they could choose to watch the 
videos and work on their tasks as they saw fit. As such, viewing and engaging with the 
dialogic videos were integral to the VLs’ problem-solving behaviors. 
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LITERATURE REVIEW 
Following Mayes (2015), vicarious learning is defined as the indirect participation in 
a process of learning mediated by technology. A VL is then the individual that is 
indirectly participating in learning. According to McKendree et al. (1998), one of the 
affordances of indirect participation is VLs’ opportunity to listen in on and observe 
explicit connections made within a dialogue. Observing dialogue allows students to see 
connections others are making, ones they may have missed, and the process of making 
connections, serving as a model for learning for the VLs. 
A substantial portion of the vicarious learning literature has focused on comparing the 
learning gains on pre/post-test measures from vicarious learning treatments who 
engaged with dialogic material to treatments who used monologic material (e.g., 
Muller et al., 2007). For example, Muller et al. (2007) conducted a pre/post-test 
comparison of students who viewed scripted monologic videos versus scripted dialogic 
videos. In constructing the two forms of videos, both videos covered the same content. 
The difference between the videos was the presence of scripted questions and 
alternative conceptions presented by a tutee and resolved by a tutor in the dialogic 
videos. In their study, Muller reported a statistically significant difference in the 
learning outcomes in favor of the students who viewed the dialogic videos. 
In addition to improved learning outcomes of VLs, indirect participation has also been 
found to produce modeling of observed behaviors (e.g., Gruver et al., 2022). In their 
study, Gruver and colleagues reported on two ways in which their VLs took ideas 
contained within a series of unscripted dialogic videos and made use of them for their 
work, a process Gruver’s team called ventrilloquation.  
Across the growing body of literature on vicarious learning, two gaps have been 
identified. Foremost, an emphasis has been placed on comparisons of monologic versus 
dialogic videos (Gruver et al., 2022). Within these studies, the nature of the dialogue 
has varied (i.e., some studies implemented scripted dialogue and others have used 
unscripted). What is missing, then, is a comparison of how the nature of the dialogue 
influences VLs’ experiences. Additionally, inquiry into what students do while 
watching instructional videos and how the videos are being used to learn is an 
understudied area (Weinburg & Thomas, 2018). 

METHODS 
Participants and Research Context 
Over five research sessions, two pairs of VLs viewed dialogic instructional videos that 
contained unscripted or scripted dialogue. In total, four participants were recruited for 
this study. Each participant was assigned a partner, creating two pairs. Each pair was 
then assigned a video type, scripted or unscripted. The pair of students watching the 
unscripted videos (henceforth referred to as the Unscripted VLs, U-VLs) were Sarah 
and Osiris and the pair watching the scripted videos (henceforth referred to as the 
Scripted VLs, S-VLs) were Camila and Alex (pseudonyms used). 
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The mathematics contained within both sets of dialogic videos centers on a sequence 
of tasks where the students are asked to consider a point moving around a shape. Within 
this context, the problem the students are solving is to construct a graph that relates the 
distance traveled by the point to the height of the point. The tasks provide a sequence 
of n-sided polygons whose graph approaches the sine function as n increases. 
Fundamental to the task progression is the integration of rich covariational reasoning 
that incrementally increases in complexity for each subsequent task. This sequence 
culminates in the development of covariational reasoning for the resultant function. 
To illustrate the VLs’ problem-solving behaviors, their work on Square Task 1 and the 
Octagon Task (Figure 1) was analyzed. These tasks were identified because they 
captured the treatments’ work on the same task, the pairs have a similar starting and 
ending position for both tasks, and the episodes are characteristic of both pairs’ 
behaviors across all their respective research sessions. Furthermore, these tasks mark 
significant milestones in students’ covariational reasoning toward their construction of 
the sine function. For example, Square Task 1 requires the students to coordinate three 
different changes in height (i.e., height increasing, decreasing, or constant) with a 
continuous increase in distance traveled.  
 

 

Figure 1: Square Task 1 and the Octagon Task. 
 
Thematic Analysis 
Thematic analysis (TA), as systematized by Braun and Clarke (2006), was used to 
identify and describe patterns of meanings or themes within the VLs’ problem solving. 
Braun and Clarke delineated six phases within TA. Phase 1 begins with the 
familiarization of oneself with the data. Phase 2 calls for the generation of initial codes. 
Phase 3 entails the creation of general themes and subthemes. Phase 4 involves 
reviewing and clarifying themes created in Phase 3. Phase 5 requires defining and 
naming themes. Phase 6 involves the production of the research report. Through this 
iterative process, three themes were identified related to the VLs’ use of the videos as 
a tool for their problem solving: (a) patterns of use, (b) idea justification, and (c) idea 
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management. Exploration of all three of these themes, and their constitutive subthemes, 
is beyond the scope of this report. As such, we focus on the theme of idea justification. 

RESULTS 
The theme of idea justification captured the VLs’ problem-solving behavior of 
providing support for mathematical claims while working on novel tasks and engaging 
with dialogic videos. The Common Core State Standards for Mathematics (2010) state, 
“One hallmark of mathematical understanding is the ability to justify … why a 
particular mathematical statement is true or where a mathematical rule comes from” 
(p. 4). This suggests that the ability to justify a solution is an important mathematical 
activity. Thus, when justifications were presented by the VLs, insight into their 
mathematical understandings (e.g., their covariational reasoning) were identifiable. 
Furthermore, given the expectation that the VLs’ would explain their work to the 
researcher, idea justification emerged as a part of their expected problem-solving 
behavior. In total, two sub-themes of idea justification were identified: (a) appeal to an 
authority and (b) substantive justification. 
Appeal to an Authority 
Appeals to an authority occurred when a claim was supported by an external source. 
In their work on proof schemes, Sowder and Harel (1998) identified appeals to an 
authority as a part of externally based proof schemes. A proof that relied on an appeal 
to an authority was identified when support for a claim relied on another person, 
typically a teacher or another source of knowledge (e.g., a textbook). During the 
research sessions, only the S-VLs offered an appeal to an authority as a justification. 
One of Camila’s and Alex’s appeals to an authority occurred during their work on 
Square Task 1 when they appealed to the authority of the talent. Before their work on 
the task, the S-VLs watched the accompanying video, and after watching the talent 
complete the task, Camilia and Alex worked on the task. During their work, Camila 
claimed that the starting height of point A was 0 meters. Her justification for this claim 
came at the end of a lengthy back-and-forth, that included an intermediary justification 
for the chosen starting height based on the presence of negative values. Then Camila’s 
justification for this intermediary claim relied on an appeal to the authority of the talent. 
After Camila completed her graph (Figure 2), Alex claimed that Camila’s graph was 
wrong, despite seeing the talent make the same graph, because “a graph doesn’t always 
have to start at 0.” Camila then attempted, but struggled, to justify her starting location: 

Alex:  Would it be 0 right here [points to the point opposite point A on the left side 
of the square, Figure 2]? 

Camila:  That’s also 0 because we have this [points at -5 on y axis]. So the -5 would 
be down here [gestures from the midpoint on the left side of the square to 
the bottom left corner labeled -5 in Figure 2]. 
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Figure 2: Camila’s square and graph for Square Task 1. 
Within this exchange, Alex attempted to explore the implication of calling the starting 
height of point A 0 meters. In response, Camila claimed that “[the height is] 0 because 
we have [negative values].” Here, Camila has suggested that the presence of the 
negatives is a justification for the starting height being 0. In response, the researcher 
asked the pair a clarifying question about what the VLs thought was positive and what 
was negative. In response, Camila clarified what was negative and appealed to the 
authority of the videos as justification for her negative values: 

Researcher: What’s negative and what’s positive here? 
Camila:  The negative is the down, and the positive is the up. 
Alex:  Below this line [traces a midline across the square in Figure 2 with his 

finger] it’s negative. 
Researcher:  What’s negative? 
Camila:  The number. The height. Because he [the talent] said it was [points at 

laptop]… 

In clarifying what the VLs were discussing, both Alex and Camila indicated the bottom 
half of the square represented negative values. Furthermore, Camila clarified that the 
negative quantity was the height. She then justified this claim by appealing to the 
authority of the talent when she said, “[the talent] said it was.” In sum, Camila first 
justified her claim that the starting height of point A is 0 meters by appealing to the 
presence of negative values on her square. Then, she justified her negative values by 
appealing to the authority of the talent. Thus, Camila’s justification for her claim that 
the starting height of point A is 0 meters was an appeal to the authority of the talent. 
Substantive Justification 
A substantive justification is one that included support for a claim ranging from the use 
of an example, a fact, or deductive reasoning. This form of justification captured the 
VLs’ attempts to create a justification that leveraged mathematical facts or concepts in 
support of their claims. Importantly, the VLs’ substantive justifications were not 
always mathematically correct, and their justifications may not have validity in all 
mathematical contexts. Instead, these justifications captured the VLs’ attempts to 
create arguments centered on their current mathematical understandings.  
For example, the U-VLs, Sarah and Osiris, leveraged a substantive justification in 
support of the claim that the starting height for point A on Square Task 1 is arbitrary 
and that it is acceptable to have negative heights. While working on Square Task 1, 
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Sarah and Osiris produced a graph (Figure 3a) that differed from the graph produced 
by the talent in the video (Figure 3b).  
 

 

Figure 3: (a) the U-VLs graph for Square Task 1 and (b) the graph produced in the 
unscripted videos for Square Task 1. 

Initially, the VLs struggled with the difference between the graphs and argued that the 
talent were wrong because Sarah and Osiris believed it was incorrect to claim the 
starting height of point A was 0 meters. Furthermore, Sarah claimed, “I don’t think you 
can really go negative,” suggesting she did not believe you can have negative heights. 
Osiris disagreed with Sarah and was able to construct a substantive justification for his 
idea that the talent’s starting height of 0 meters and the presence of negative values are 
valid. Osiris stated, 

Actually, I think there’s no actual reason, I don’t think it matters that much. I don’t think 
it matters at all. If you were to assume this [points to the starting point on Square Task 
1] was 0, imagine this was 0. This would be 0 on this side too [points to midpoint on 
left side of Square Task 1]. So, if they go up 5 [sweeps from the starting point to top right 
corner], go here 10 [sweeps across top of the square] go down 5 [points to the midpoint 
on the left side the square] it would be 0 still. Go down -5, which is not wrong if they’re 
measuring by that [points to starting point] being 0. Because there is no exact point 
that says point A has a starting point of 5 [points at task statement]. 

In this excerpt, Osiris claimed that the starting height of point A was arbitrary for 
Square Task 1 and that assuming the starting height was 0 implies the use of negative 
heights. Osiris substantively justified his first claim by pointing out that the problem 
statement did not provide an initial “starting point of 5” or 0. In fact, Osiris pointed out 
that this is just an assumption. Finally, he provided a substantive justification for the 
presence of negative heights by describing the point’s journey around the square, based 
on the assumed starting height of 0 meters. This description leveraged his covariational 
reasoning to describe the simultaneous change in distance with the change in height of 
the traveling point. 

CONCLUSION 
Justifications are an important part of problem solving, and the different ways in which 
the VLs attempted to create justifications for their claims have implications about their 
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mathematical understandings of those claims. When the U-VLs constructed 
justifications, it was substantive. This means that the claims they made were rooted in 
their mathematical understanding (i.e., supported by examples, facts, or deductive 
reasoning). This was evidenced by Osiris’s ability to reason covariationally about both 
his and the talent’s graph. Although the S-VLs produced similar substantive 
justifications, they also produced justifications rooted in appeals to an authority. This 
latter type of justification was not grounded in their mathematical understanding of 
covariational reasoning, and instead evidenced Camila’s struggle to defend her graph. 
To explore the difference between the U-VLs and the S-VLs, thematic analysis was 
used to identify themes in the VLs’ uses of the videos to complete Square Task 1 and 
the Octagon Task. While an exploration of all identified themes was beyond the scope 
of this report, each of the three identified themes (patterns of video use, idea 
justification, and idea management) indicated important features of the VLs’ problem-
solving behaviors and differences between the treatments’ problem-solving behaviors.  
The U-VLs’ problem-solving behaviors appeared to be driven by the goal of 
constructing a solution, and the S-VLs’ problem-solving behaviors appeared to be 
driven by the goal of having a solution. Foremost, the U-VLs’ process of constructing 
a solution was evidenced in their problem-solving behavior of creating substantive 
justifications and their lack of appeals to an authority. Through the creation of 
substantive justifications, Sarah and Osiris demonstrated an understanding of their 
work. Beyond constructing a solution that was true because the videos said it was (i.e., 
an appeal to an authority), the solutions that Sarah and Osiris found could be supported 
mathematically. Additionally, the U-VLs’ patterns of use and their idea management 
reinforced their constructive process. The S-VLs, on the other hand, appeared to focus 
their problem-solving behaviors on possessing a solution. This was evidenced in 
Camila’s and Alex’s patterns of use, the justifications they created, and the way they 
managed ideas from the videos. During the justifications the pair created, this was 
demonstrated through their appeal to an authority. This form of justification showed 
Camila and Alex had a lack of understanding of the solutions they had produced and 
were content to have an answer they knew was write because it aligned with the video. 
We end with a consideration of the limitations of this work. As previously mentioned, 
the scope of this research report narrows the reporting of our findings to one of our 
identified themes. Additionally, we are limited by our sample size. While we begin to 
explore and identify a set of problem-solving behaviors, our claims cannot extend 
beyond the behaviors of our VLs and the difference in their uses of the scripted and 
unscripted videos. Finally, this study is limited in its ability to connect the identified 
differences, found through a qualitative analysis, to measures of learning outcomes. 
Future work will fully present our identified themes, and explore the connection 
between learning outcomes and the identified problem-solving behaviors. 
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USING TASK VARIATION TO SUPPORT ARGUMENTATION IN 
COLLABORATIVE PROBLEM SOLVING 

John M Francisco 
University of Massachusetts  

There is a need for more research on how to support argumentation in mathematics 
classrooms. This study describes how task variation can be used to support 
argumentation in mathematics classrooms. The study uses data from an NSF-funded 
longitudinal study on how students reason while working collaboratively on 
challenging mathematical tasks. Findings show that variation of the structure and 
implementation of tasks can help students build valid arguments. 

INTRODUCTION 
Argumentation is an important disciplinary practice that should be promoted in 
mathematics classrooms. The Principles and Standards for School Mathematics 
(NCTM, 2000) emphasize reasoning and proof as well as communication, three 
essential components of argumentation. The Common Core State Standards for School 
Mathematics (CCSSM, 2010) state that students should be able to “Construct viable 
arguments and critique the reasoning of others” (p.7). The CCSSM further assert that 
being able to justify or derive mathematical statements, essential in mathematical 
argumentation, is an indication of mathematical understanding. However, research 
shows that teachers find it challenging to support argumentation in mathematics 
classrooms and more research is needed on teacher knowledge and practice of 
argumentation. This study shows that task variation can be used to support 
argumentation in classrooms. 

THEORETICAL BACKGROUND 
Argumentation and teaching 
According to Toulmin’s scheme of argumentation, an argument consists of three 
essential parts. A claim is the assertion of which an individual is trying to convince 
others. The data are the evidence that the individual presents to support the claim. The 
warrant is the explanation of why the claim follows from the data. Members of a group 
may not be convinced that a claim follows from the data and may question the validity 
of the warrant and the individual may present a support or backing for the warrant. The 
scheme has two additional components: a modal qualifier, which refers to the degree 
of confidence about a claim, and a rebuttal, which refers to the conditions under which 
conclusions may or may not hold. These components provide a more comprehensive 
description of individuals’ argumentation and reasoning processes and help investigate 
arguments similar to those made by mathematicians (Inglis et al. 2007). However, there 
is a general consensus that arguments produced by students in schools are different 
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from arguments of advanced mathematics students and it is not necessary to use the 
full scheme to analyze the arguments (Knipping and Reid, 2019, p.5).  
Krummheuer extended Toulmin’s notion of argumentation from an individual to a 
collective notion distinguishing between situations where one individual tries to 
convince an audience about the validity of a claim and situations where two or more 
individuals interact to establish a claim, which he called collective argumentation. This 
makes collective argumentation an interactional accomplishment. An argument can no 
longer be analyzed only by considering a sequence of statements that are made. The 
functions that various statements serve in the interaction of participating individuals 
become critical to making sense of argumentation that develops. What constitutes data, 
warrants, and backing is no longer predetermined, but negotiated by participants in 
interaction. Collective argumentation is also a useful construct for analysing teacher’s 
role in supporting argumentation in interaction with students (Yackel, 2002). 
Teachers play a key role in supporting argumentation. They can negotiate classroom 
norms that foster argumentation, support students as they interact with each other to 
develop valid arguments, and supply argumentative supports (data, warrants, and 
backing) that are omitted or left implicit in students’ arguments (Yackel, 2002). They 
can implement tasks that support conceptual understanding and learning about 
argumentation (Kosko et al., 2014), prompt students to critically consider arguments, 
present what constitutes acceptable arguments, and model ways of constructing and 
confronting arguments (Ayalon & Hershkowitz, 2017). However, teachers find it 
challenging to incorporate argumentation into classroom practice (Conner et al, 2014) 
and often have interpretations of facilitating argumentation that are not aligned with 
what reformers in mathematics education envision such as thinking that argumentation 
can occur with relatively little scaffolding (Kosko et al., 2014) or only the smartest 
students can engage in rigorous justification (Bieda, 2010). This suggests that more 
research is needed on teacher knowledge and practice of argumentation.  
Tasks and support of argumentation 
Tasks play an important role in mathematical learning and teaching. The quality of 
instruction depends on whether "teachers select cognitively demanding tasks, plan the 
lesson by elaborating the mathematics that the students are to learn through those tasks, 
and allocate sufficient time for the students to engage in and spend time on the tasks 
(Kilpatrick, 2001, p.9)”. Challenging tasks help promote productive struggle which is 
an essential component for learning mathematics with understanding (Hiebert et al, 
2007). Zasvlasky (2005) studied the use of “uncertainty-evoking tasks” to support 
learning of both students and mathematics educators. She noted the dual nature of such 
tasks in “facilitating both mathematical and pedagogical understandings.” She 
distinguished among different kinds of uncertainty and showed that it is dynamic, 
subjective, and can stem from tasks as well as social interaction over tasks. She argued 
that using uncertainty-evoking tasks to support learning is consistent with Dewey’s 
(1933) notion of reflective thinking, which entails both “(1) a state of doubt, hesitation, 
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perplexity, mental difficulty in which thinking originates, and (2) an act of searching, 
hunting, inquiring, to find material that will resolve the doubt, settle and dispose of the 
perplexity” (p. 12). This suggests that such tasks can support argumentation by 
promoting reflective thinking about argumentation, creating doubts in students’ 
arguments and/or prompting them to resolve the doubts and improve their arguments. 
Variation theory 
Variation theory focuses on explaining why variation in experience exist and using the 
knowledge to improve teaching and learning. In variation theory learning is viewed as 
a change or expansion of a learner’s structure of awareness of a phenomenon as the 
learner comes to see the phenomenon in new, more complex ways deemed more 
appropriate by the teacher (Orgill, 2012). This requires simultaneously discerning 
critical features or aspects of a phenomenon that help the learner see the phenomenon 
in a particular way. However, discerning a feature requires experiencing variation in 
dimensions of the feature. This makes experiencing variation a necessary though not 
sufficient condition for learning. It makes learning possible, but does not guarantee it. 
In Variation theory what is to be learned by students is referred as the object of learning 
and is examined from three different perspectives. The intended object of learning is 
what instructors think students should learn about the object of learning and it answers 
to the question “What was intended to be learned?” The enacted object of learning is 
what is possible for students to learn about the object of learning based on how teachers 
structures learning experiences and it is answer to the question “what is made possible 
to learn in this classroom?” The lived object of learning is what students actually learn 
about the object of learning and answers the question, “What was learned?”  
Variation theory distinguishes among four different patterns of variation (Marton 
2015). Contrast involves comparing an object of learning with something that it is not. 
Generalization involves comparing similar instances of the same object of learning. 
Separation involves varying only the feature of interest while holding all other features 
constant or invariant. Fusion is variation in which several features of an object of 
learning vary simultaneously. Different patterns of variation result in different types of 
learning and variation theory has been used to study how systematic variation can 
support learning in mathematics. Findings show that “a wisely planned variation, for 
instance in a task or set of examples, can make certain aspects noticeable for the learner 
(Watson and Mason 2006, p. 109). The research question can be cast as follows: How 
can task variation help students build mathematical arguments in collaborative 
problem solving?  

METHOD 
Research context 
This study used data from an after-school, classroom-based longitudinal research 
project on how students reason while working collaboratively on challenging 
mathematical tasks selected from several content strands. During research sessions 
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students encouraged to always justify their solutions based on whether they were 
convinced that they made sense. Follow-up interviews helped gain an in-depth 
understanding of students’ reasoning. Debriefing meetings were held at the end of 
research sessions to discuss how to support students’ reasoning. Data for this study 
came from videos of research sessions involving the following tasks: 
The Tower Problem: You have two colors of unifix cubes available to build towers. 
Make as many different looking towers as possible, each exactly four cubes high. Find 
a way to convince yourself and others that you have found all possible towers and that 
you have no duplicates. 
The World Series Problem: In a World Series two teams play each other in at least four 
and at most seven games. The first team to win four games is the winner of the Series. 
Assuming that the teams are equally matched, what is the probability that a World 
Series will be won in: a) four games? b) five games? c) six games? d) seven games? 
Analysis – Analysis followed Powell et al’s (2003) video methodology. Iterations of 
three sequential and interrelated steps were involved: (1) viewing selected videos of 
research sessions several times to have a sense of the data as a whole; (2) parsing the 
videos into episodes of argumentation in which students were building arguments to 
support their reasoning, and (3) analyzing the episodes for how task variation helped 
improve arguments. This involved (3.1) coding for elements of arguments (data, claim, 
warrant, backing) that students were trying to build (Intended object of learning), (3.2) 
describing task variation used to help improve arguments (enacted object of learning) 
and, (3.3) examine if it actually helped improve argument (Lived object of learning).  

RESULTS 
Build claims and warrants 

Students tried to solve the World Series Problem by listing game combinations (e.g. 
AAAA, ABAAA, and ABABAA), but quickly found it challenging to list 
combinations for series ending in a higher number of games. Jeff suggested 
determining game combinations as “two to the seventh”, but the students were not sure 
whether to use “two to the nth power” or “two to the seventh,” and why method was 
valid. Ankur said for a five-games series, they could use “two to the fifth” to determine 
all possible game combinations but would have to list winning game combinations:  

Jeff: Before we do that. How do you get to that point in the first place? Cause 
there’s a lot of combinations – Is that two to the seventh? 

Romina:  Isn’t it–yeah, two to the n? 
Jeff:  Yeah. All right, so say it’s two to the seventh.  
Ankur: For this you gotta find all possibilities. They have eight ways of winning 

but it’d be over the total possibilities of two, like two colors and five things.  

Analysis. The students needed to justify using either “to the fifth” or “two to the 
seventh” to determine game combinations (intended object of learning). Ankur 
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suggests using “two to the fifth” for a five-game series.  The expression “like two colors 
and five things” suggests that he was using his previous experience with the Tower 
Problem in which they came up with “two to the nth power” as the general solution. 
The Tower Problem and the problem of finding all possible game combinations for the 
World Series Problem introduce variation changing or varying the context of the 
problem but keeping a similar or invariant (exponential) mathematical structure. This 
opened the possibility of students seeing the similarity or isomorphism and using it to 
justify using the same method on both tasks (enacted object of learning). Ankur noticed 
similarity and used it to justify using “two to the fifth” to calculate all possible game 
combinations in a five-game series (lived object of learning). Task variation helped 
build a valid warrant (isomorphism) to support a claim (“two to the fifth”). 
Challenge data and reduce uncertainty 
In the previous episode, students eventually and came up with the solution: 
p(4) = 2/16, p(5) = 8/32, p(6) = 20/64, and p(7) = 40/128. They said they were 
confident in their solution but admitted that they were not sure they had listed all 
winning game combinations. Researchers asked the students to compare their solution 
to an alternative “solution” proposed by another group of students: 
p(4) = 2/70, p(5) = 8/70, p(6) = 20/70, and p(7) = 40/70. The students noticed the 
“seventy” but quickly figured out that it represented the sum of all ways of winning the 
series. They also noticed that in the alternative “solution” p(6) and p(7) were different 
which they liked since they believed it was easier to win in seven than six games. 
However, all students except Mike insisted they liked their solution better even though 
they could not say why the alternative solution was not valid. Mike insisted that he 
liked in the alternative “solution” better and said “that’s just my opinion.” The other 
students tried to convince Mike to continue believe in their initial solution but were not 
successful. The researcher pointed at p(7) = 40/70 and asked what it was a probability 
of. The students said that the probability made no sense because no sample space had 
seventy games. Ankur suggested that the alternative solution answered a different 
question. Mike disagreed saying “Ours is wrong’ and “We answered the same 
question.” The researcher asked if the seventy games were equally likely. The students 
immediately said they were not equally likely. Ankur said “if it’s an equal chance to 
win, winning four game in arrow is much harder than winning four games and losing 
three.” Jeff added “Because that gives you a lot more room for error ‘cause you could 
slip up there.” Mike started to change his position: 

Researcher: Michael, you’re nodding. what do you think?  
Michael: I don’t know which one [is right] but the thing where, like, each one of 

those seventy’s has a different probability if coming up and that’s – if that 
was the case- I don’t know, but if, if that—I don’t know. If that was the 
case, then, yes, their [alternative solution] probability is faulty. 

Analysis. The students believed in their solution but needed an argument to support its 
validity (intended object of learning). The argument in support of their solution can be 
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modelled using the completed Toulmin’s scheme with a qualifier indicating their high 
level of confidence in the solution. Asking the students to compare the two solutions 
introduced task variation keeping the context of the problem invariant but varying the 
approach as reflected in two solutions. This problematized the sample space of World 
Series Problem (“two to the nth” vs “seventy”) opening the possibility of students 
realizing that one solution could not be valid because the sample space was not valid 
(Enacted object of learning). The students realized the “seventy” was not a valid sample 
space and rejected the alternative solution (lived object of learning). The “seventy” as 
a value of a sample space can be coded as data in an argument supporting the alternative 
solution (claim). Task variation helped challenge data and reject the claim. Rejecting 
the alternative solution did not establish the validity of the students’ solution, but 
helped reduce the uncertainty about its validity by comparison to an incorrect solution. 
Build warrants and eliminate uncertainty 

One reason Mike was not sure about the students’ solution was that it did not explain 
why p(6) and p(7) were the same, which he found counter-intuitive. Researchers 
organized a separate session in which Mike revisited the World Series problem and 
worked with another student. Mike finally explained why the probabilities were the 
same and when asked which solution he now believed in he said the initial solution: 

Mike:  You know how it doubles from 20 to 40? I was thinking when you have six 
and if you didn’t win at six, what you’re going to have is three and three. 
You’re going to have three wins and three losses, whichever way they are. 

Researcher:  Got you. Ties. 
Mike:  Yeah, ties, 20 ties. And when you go another game, it can either be a win 

for one team or a win for the other. So, that’s why it would be like— 
Researcher:  The tiebreaker. 
Mike:  That’s a tiebreaker. You would either have 20 different ways that A would 

win or 20 different ways that B would win. That’s probably why the 
probability of winning in six is the same, being a tie in six, and when you 
go another game, it just doubles. 

Analysis. Mike was looking for a warrant to justify why the probabilities of the series 
ending in six and seven games were the same (Object of learning). Variation was in 
the implementation of the task as Mike worked with another student who brought in a 
different way of thinking and helped problematize several aspects of the problem 
showing that uncertainty can stem from tasks as well as social interaction over tasks 
(Zasvlasky, 2005) and a more expansive view of a task can include how it is 
implemented. 
Empirically challenge warrants  

In a session on the Tower Problem, Gabe built four groups of four towers (Figure 1) 
and said that there are sixteen towers in total “because 4x4 is sixteen.” Asked “Why 
are you saying 4x4?” he said “you can divide the sixteen towers into groups of four 
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towers each.” Suspecting that Gabe was suggesting that the total number of towers was 
equal to “height times itself,” researchers designed a plan to challenge Gabe’s thinking 
in the following session: They would ask students to predict the number of towers 
three-tall choosing from two colors. If students said, “nine” they would ask them to 
build the towers. Since students would not find nine towers and could discover that the 
number of towers had to be even, they hoped that students would abandon the “height 
x height” inference rule by contradiction. The session unfolded as they predicted. 

 

Figure 1.  Gabe (on the left) built four groups of four towers 
Analysis. In terms of argumentation, “height x height” can be considered a warrant to 
support the claim that there are 16 towers and students needed to understand that it was 
not valid (object of learning). Working on the three-tall two-colors problem introduced 
task variation in the form of a counter-example that challenged the “height x height” 
inference rule opening the possibility of students seeing that it was not valid (lived 
object of learning), which they did (Lived object of learning). However, just asking 
students to predict the answer to the three-tall two-color problem did not help them see 
the contradiction. Asking them to build towers did help them see the contradiction as 
results did not match prediction. Task variation helped challenge a warrant empirically.  

DISCUSSION 
The results provide insights into how task variation can support argumentation. They 
show task variation can help build as well as challenge arguments. Teachers are 
encouraged to provide supports left implicit in students’ arguments (Yackel, 2002). 
The results show that task variation can help students build supports. The results 
suggest types of variation that support argumentation including sequence of 
isomorphic tasks, competing solutions, counterexamples, collaboration over tasks, and 
promoting empirical reasoning. Three types of actions that help teachers support 
argumentation include direct contributions to arguments, asking questions, and other 
supportive actions (Conner et al, 2014). Task variation is an example of other actions. 
The results highlight the importance of using Toulmin’s complete scheme to analyze 
arguments and viewing the purpose of argumentation as reducing and not only 
eliminating uncertainty (Inglis et al, 2007). The results show that the scheme is useful 
for analyzing arguments of school students and qualifiers help analyze the development 
of the arguments.  
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SUPPORTING LOWER SECONDARY STUDENTS’ FUNCTIONAL 
THINKING WITH SPECIFIC LEARNING ENVIRONMENTS 

Kerstin Frey1, Ute Sproesser1, Sabine Kowalk,1 and Marios Pittalis2 
1Ludwigsburg University of Education, 2University of Cyprus 

Functional thinking is relevant in mathematics education and everyday life. Despite its 
relevance, difficulties related to this topic are empirically well documented. Within the 
project FunThink, learning environments were developed along the four design 
principles, situatedness, inquiry-based learning, embodiment, and (digital) tools to 
foster students’ functional thinking from primary to upper secondary education. Three 
learning environments were implemented within the teaching unit of linear functions 
in two grade eight classes (N=52). Results derived from a pre-post-test study indicate 
a marginally significant effect on the targeted facets of students’ functional thinking 
concerning the correctness of answers and little changes in students’ reasoning. 

INTRODUCTION 
Functional thinking as thinking in relationships, dependencies, and changes is 
considered a prototype of a fundamental idea of mathematics education and is relevant 
from primary to upper secondary education and in everyday life (Vollrath, 1989). 
Despite its relevance, student difficulties related to this topic are empirically well-
documented (Sproesser et al., 2022). So far, various approaches to foster functional 
thinking have been developed and empirically investigated (e.g., Lichti & Roth, 2018; 
Stephens et al., 2017) but functional thinking still appears to be challenging for 
students. Against this background, the Erasmus+ Project FunThink aimed to support 
students’ functional thinking by developing learning environments for different grade 
levels from primary to upper secondary school along four design principles. These 
design principles have shown in prior studies, separately or in smaller combinations, 
to be beneficial for student learning (e.g., Drijvers, 2019; Duijzer et al., 2020) and were 
now implemented in combination. The present study investigates the effects of learning 
environments developed for grade 8 on specific facets of student’s functional thinking. 
By facets of functional thinking, we refer to the used operationalization of functional 
thinking that was developed based on theoretical considerations. The underlying 
theoretical background and the conceptional background of the implemented learning 
environments will be described in the following. Subsequently, we present the methods 
and results of this study and discuss them. 

THEORETICAL BACKGROUND  
Functional thinking is characterized as a typical way of thinking when dealing with 
functions (Vollrath, 1989). The close connection of functional thinking and functions 
is also highlighted by Stephens et al. (2017) who describe functional thinking “as the 
process of building, describing, and reasoning with and about functions” (p. 144). 
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Hence, students are required to develop different perspectives – the so-called aspects 
of functional thinking – to understand and solve tasks related to this field. These aspects 
of functional thinking encompass the input-output aspect, the covariation aspect, the 
correspondence aspect, and the object aspect (Pittalis et al., 2020; cf. Vollrath, 1989). 
The input-output aspect focuses on a rather operational view of functions, as the 
manipulation of an input results in a specific output while the underlying relationship 
is not necessarily focused (Pittalis et al., 2020). The covariational aspect describes the 
simultaneous variation of two related variables and focuses on a rather dynamic view 
of functions. In addition to their framework for covariational reasoning, Thompson and 
Carlson (2017) describe a framework for variational reasoning (i.e., focusing only on 
one variable while exploring functional relationships). Variational reasoning can be 
seen as a precursor for covariational reasoning concerning functional thinking and 
involves recursive strategies, e.g., identifying patterns and extending them (Pittalis et 
al., 2020). The third aspect, the correspondence one, focuses on the type of relationship 
between two variables which creates a certain dependency. This aspect is often used 
for the formal introduction of functions in school (Vollrath, 1989). The object aspect 
considers functions as mathematical objects that are used for higher-order processes 
like differentiation or composition (Vollrath, 1989). This indicates that this aspect is 
often acquired later in the course of schooling whereas the other three aspects are 
already accessible for students in primary and lower secondary education.  
In addition to these four aspects, Pittalis et al. (2020) point out that representing 
relationships and using these representations in problem-solving situations is important 
for functional thinking. This is comprehensible, as representations are crucial to access 
mathematical objects as functions. Such function representations include inter alia 
graphs, tables, formulas, and situational descriptions. The abstract character of 
functions, the need of mastering corresponding aspects and representations in 
combination with an often rather inner mathematical focus in teaching might be 
reasons for student difficulties in this field (Sproesser et al., 2022) and highlight the 
importance of comprehensive support of students’ functional thinking. In the next 
section, we sketch how the FunThink project aimed to support functional thinking. 

CONCEPTIONAL BACKGROUND OF THE LEARNING ENVIRONMENTS 
In the context of the FunThink project, learning environments were developed along 
four design principles to support students’ functional thinking from primary to upper 
secondary school. These design principles, namely situatedness, inquiry-based 
learning, embodiment, and (digital) tools, have proven themselves as supportive in 
student learning and will be described in the following.  
The design principle of situatedness implies the use of situations that are meaningful 
for students as an entry point for learning (Gravemeijer & Terwel, 2000). This framing 
enables students to build on prior knowledge. The design principle of inquiry-based 
learning refers to a working and learning habit similar to research (Dorier & Maass, 
2020). Students are encouraged to propose hypotheses, find ways to test them, and 



Frey, Sproesser, Kowalk, & Pittalis 

  

2 - 218 PME 47 – 2024 

discuss their results, which support meaningful learning and communication. The 
design principle of embodiment highlights the close connection between the body and 
cognition. Hence, learning can be supported if a learner performs movements that are 
related to a cognitive learning goal, e.g., with a finger on a tablet (Duijzer et al., 2020). 
The latter example shows that embodiment can be connected to the design principle of 
(digital) tools. Tools and especially digital ones can extend a person’s scope and can 
therefore support mathematics learning (Drijvers, 2019).  
With these design principles in mind and with respect to the curricula, three learning 
environments were developed for the teaching unit linear functions. In this unit, the 
concept of function itself, as well as linear functions are introduced in grades 7, 8, or 
9. These learning environments consider evidence from prior research (e.g., Duijzer et 
al., 2020; Lichti & Roth, 2018) and will be sketched in the following. Walking graphs 
focuses on distance-time situations and supports covariational reasoning as well as 
representational changes between situations and graphs. The learning environment 
filling vessels deals with the relationship of volume and height when filling water in 
vessels. The learning environment temperature focuses on the definition of functions 
including their uniqueness and the direction of the dependency.  

RESEARCH QUESTION 
The theoretical background and the developed learning environments lead to the 
following research question: What impact does the intervention (including the three 
described learning environments) have on specific facets of students’ functional 
thinking? This research question will be investigated with regard to the scored points 
of students’ answers and students’ reasoning. 

METHOD 
Sample 
The three above-described learning environments were implemented within the 
teaching unit linear functions in two eighth-grade classes (secondary school, medium 
track) to investigate the research question. This led to a sample of 52 students (31 
female, 21 male; age: M = 13.38 years, SD = 0.53) in the intervention group. The other 
lessons of this unit were also developed along the described design principles but with 
less emphasis (not all design principles were included in every lesson). The entire unit 
was taught by a member of the research team. A third grade eight class at the same 
school was recruited as control group (N =24; age: M = 13,58 years, SD = 0,65). The 
control group used their regular school book and was taught by their mathematics 
teacher. The number of teaching hours and the topics did not differ between the 
intervention and control groups. 
Test Instrument 
A test with three items was used in a pre-post design to measure different facets of 
functional thinking. These items were adapted from earlier studies investigating 
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functional thinking and focused on the above-mentioned aspects of functional thinking. 
They were not specifically chosen to fit the presented learning environments but rather 
to evaluate all learning environments within the project. Item 1 refers to a ride of a 
remote car in which context students are asked to interpret and construct graphs. This 
item is based on Duijzer et al. (2020) and is displayed in Figure 1. A total of three 
points were coded if all parts were answered correctly. This item especially focuses on 
the covariational aspect as students need to describe changes in the graph by 
coordinating the covariation of distance and time.  

 

Figure 1: Item 1 of the test instrument (derived from Duijzer et al. (2020, p. 35))  
Item 2 was derived from Stephens et al. (2017) and is displayed in Figure 2 (left). 
Students are asked to find the number of people that can be seated at 8 and 20 tables 
and the corresponding rule. The questions for concrete pairs of values and the 
underlying rule suggest referring to the correspondence aspect, yet other strategies are 
also possible for solving this item. Altogether, one point was scored if both values were 
indicated correctly. The central element of Item 3 is a function machine that highlights 
the input-output aspect of functional thinking. This item is based on ideas by Ng (2017) 
and can be seen in Figure 2 (right). Students are asked to calculate input and output 
values (one point each) and to find the underlying rule of the function machine. Similar 
to Item 2, this item can be approached in different aspects. 

Figure 2: Item 2 (adapted from Stephens et al. (2017, p. 151)) and Item 3 of the test 
instrument (based on ideas by Ng (2017)) 
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A coding scheme developed within the FunThink project and adapted for this sample 
was used for analysis. A total of 6 points could be scored according to the descriptions 
above. In addition, for each item, the used strategies such as recursive or covariational 
reasoning were coded. The coding was done by two independent coders. Cohen's kappa 
for interrater reliability was between 0.81 and 1.00. Differences in coding were 
discussed until consent was reached. 

RESULTS AND DISCUSSION  
Scored points 
In the following, results concerning scored points and reasoning will be presented and 
discussed. A one-way ANCOVA was conducted to analyze the difference between the 
intervention and control group on post-test scores controlling for pre-test scores. All 
prerequisites were met with no significant differences in pre-test scores between the 
two groups (t(74) = -0.44; p = 0.66). After adjusting for pre-test scores, post-test scores 
differ marginally significant between the two groups (F(1, 73) = 2.87, p = 0.095, 
partial η² = 0.038). Table 1 shows the means and standard derivations for the scored 
points for the intervention and control group (unadjusted).  
 Intervention group Control group 
 Pre-test Post-test Pre-test Post-test 
 M SD M SD M SD M SD 
Total 2.23 1.50 2.73 1.52 2.06 1.48 2.10 1.57 
Item 1  1.32 0.86 1.68 0.91 1.02 0.89 1.08 0.95 
Item 2  0.38 0.43 0.48 0.46 0.48 0.48 0.38 0.47 
Item 3 0.52 0.82 0.57 0.83 0.56 0.78 0.65 0.88 

Table 1: Statistics of the scored points in pre- and post-test  
Table 1 shows a comparably large increase in points for Item 1 for the intervention 
group with only a small increase for the control group. Therefore, a one-way ANCOVA 
was conducted for this item separately. Again, all prerequisites were met (t-test: 
t(74) = 1.41; p = 0.164). For item 1, after adjusting for pre-test scores, post-test scores 
differed statistically significant between the intervention and control group 
(F(1, 73) = 4.74, p = 0.033, partial η² = 0.061) with a medium effect. The significant 
difference for Item 1 might be explained as a comparable context was given in the 
learning environment walking graphs. This is in line with prior research (Duijzer et al., 
2020) which highlighted the effects of a similar embodied learning environment. In 
contrast, the textbook used by the control group also thematizes comparable contexts 
but with less emphasis and without the use of the described design principles (which 
might explain the small changes for the control group). Tasks similar to the other two 
items were not specifically focused during the intervention nor in the textbook which 
might explain the corresponding non-significant effects.  



Frey, Sproesser, Kowalk, & Pittalis 

 

PME 47 – 2024 2 - 221 

Reasoning 
In addition to the scored points, students’ reasoning was investigated and 
corresponding results will be presented in the following. As most changes in terms of 
scored points could be observed for Item 1 of the test, students’ reasoning will be 
analyzed for this item in detail. For Items 2 and 3, only selected findings will be 
complemented. Starting with Item 1, the reasoning for parts a and b of this item was 
coded separately and, in both cases, the number of referred variables (out of the 
variables “time”, “distance”, “direction of the line”, “speed”, “slope”) was coded as 
single variable (use of one of the mentioned variables) or multivariable (use of 2 or 3 
of the mentioned variables to justify the answer). The use of one variable can be 
considered variational reasoning and the use of multiple variables as covariational 
reasoning respectively (Thompson & Carlson, 2017). The number of answers for each 
category can be seen in Table 3. 
 Intervention group (N=52) Control group (N=24) 
 Pre-test Post-test Pre-test Post-test 
Part a:     
Single variable 28  30  8  13  
Multi variable (2) 9  8  7  2  
Multi variable (3)  -  1  -  -  
Wrong/missing answers 15  13  9  9  
Part b:     
Single variable 11  12  3  5  
Multi variable (2) 17  23  8  8  
Multi variable (3)  - 1  - - 
Wrong/missing answers 24  16  13  11  

Table 3: Absolute frequencies of answers for each category in pre- and post-test  
The biggest change in reasoning was observed for the intervention group in Part b; the 
multi variable reasoning (2) increased and the wrong / missing answers decreased from 
pre- to post-test. In addition to the analysis of frequencies, a Chi-square test was 
conducted for each part and each group separately but did not show any significant 
changes in reasoning from pre- to post-test.  
Similar to the reasoning in Item 1, the reasoning for Items 2 and 3 did not show any 
significant changes for both groups. For Items 2 and 3, reasoning was coded along the 
aspects of functional thinking. Moreover, recursive/variational reasoning was added as 
an additional category. The use of the object aspect was not expected to be observed 
in the present grade level as it often develops later in the course of schooling (Pittalis 
et al., 2020). For the intervention group, the results indicate a slight increase in 
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recursive and correspondence reasoning, as well as a slight decrease in covariational 
reasoning and incorrect reasoning from pre- to post-test. In the control group, there was 
a slight increase in recursive reasoning and a decrease in covariational and 
correspondence reasoning from pre- to post-test. Regarding Item 3, the results show an 
increase in correspondence reasoning for the intervention group, while for the control 
group, the reasoning barely changed. A possible explanation for the increase in 
correspondence reasoning for Items 2 and 3 could be that both items refer to linear 
functions, which were the focus of the researched teaching unit. The use of the 
correspondence aspect (e.g., use of function equations) may be an efficient way to 
solve these items.  

CONCLUSION 
The presented results indicate a positive effect of the developed learning environments 
on solving mainly one of the items related to functional thinking. More particularly, 
this could especially be observed in terms of scored points for Item 1. The changes 
indicate an improvement in covariational reasoning, an important aspect of functional 
thinking (Pittalis et al., 2020). In addition, these results confirm previous studies that 
investigated effects of the design principles in learning environments individually (e.g., 
Digel & Roth, 2022; Duijzer et al., 2020). The observed development of functional 
thinking can be seen as positive itself and in addition, it might also be important as a 
baseline for following topics like quadratic functions. The presented results suggest 
that a beneficial effect of the learning environments along the design principles can be 
expected for functional thinking but have also transfer potential for other subject areas. 
However, the results also show that the change was at most moderate and that 
significant effects were only recorded if the test items were related to a certain degree 
to the learning environments. To validate these results and to gain further insights into 
students’ reasoning, the results of further classes, which were also taught by other 
people, will be evaluated soon. Moreover, the analysis of a more specific test will be 
complemented and compared to these results, which might give insights into possibly 
more profound learning gains from the intervention. 
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STUDENTS’ BELIEFS CONCERNING THE NATURE OF 
MATHEMATICS – ARE THEY DIFFERENT WITH REGARD TO 

SCHOOL AND UNIVERSITY MATHEMATICS? 
Sebastian Geisler  

University of Potsdam, Germany 

Students’ beliefs concerning the nature of mathematics are considered to play a crucial 
role for a successful transition from school to university mathematics. As school and 
university mathematics differ considerably, distinguishing between students’ beliefs 
regarding school and university mathematics seems necessary. In this paper, a new 
questionnaire differentiating beliefs between both facets of mathematics is presented 
and analysed. Confirmatory factor analysis with data from N=153 students shows that 
students’ beliefs can be distinguished empirically and that students hold significantly 
different beliefs regarding the nature of school and university mathematics. 

INTRODUCTION 
High dropout rates from mathematics university programs in the first year reveal that 
the transition from school to university mathematics is challenging for many students 
(Dieter & Törner, 2012). Several scholars have argued that students’ beliefs concerning 
the nature of mathematics could have an important impact on students’ learning 
behaviour and thus may be a relevant factor for a successful transition. Moreover, 
beliefs that are incongruent to the mathematics students face at university may enhance 
the risk to drop out (Daskalogianni & Simpson, 2001).  
However, empirical studies have reported inconsistent results regarding the beliefs that 
undergraduate students hold at the beginning of their mathematics programs (e.g., 
Törner & Grigutsch, 1994). In addition, no or only small effects of students’ beliefs on 
students’ achievement and dropout behaviour have been reported (e.g., Geisler, 2023). 
One reason for these inconsistent results could be the differences between school and 
university mathematics and that – using questionnaires – it is not clear whether students 
have school or university mathematics in mind, when reporting about their beliefs. In 
this paper, I present a questionnaire distinguishing between beliefs concerning school 
mathematics and concerning university mathematics in order to give a differentiated 
insight which beliefs students hold when entering university mathematics courses. 

THEORETICAL BACKGROUND 
Beliefs concerning the nature of mathematics 
Philipp (2007, p. 259) defines beliefs as “psychologically held understandings, 
premises, or propositions about the world that are thought to be true”. Beliefs are more 
cognitive than other affective constructs like emotions and are often described as 
subjective knowledge (cf. Liebendörfer & Schukajlow, 2017). Beliefs influence 
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learning processes in multiple ways as they shape how mathematical tasks are 
approached and how much effort is put into them. Moreover, they function as filter 
regulating which information is learned (Philipp, 2007).  
Beliefs are always referring to a certain beliefs object which can be mathematics in 
general but also specific objects like proofs or a topic like geometry (Grigutsch & 
Törner, 1998). In this paper, I focus on beliefs concerning the nature of mathematics 
(what one believes how mathematics as a discipline is characterized). 
Different systems to classify beliefs regarding the nature of mathematics have been 
proposed. I follow the approach of Grigutsch and Törner (1998) who describe four 
main views or aspects of mathematics. The formalism aspect highlights the formal 
rigour and strength – as it appears in formal definitions and proof – as a main 
characteristic of mathematics. This aspect also stresses the role of abstraction and 
logical thinking. The schema aspect pays attention to schematic and algorithmic facets 
of mathematics. Persons, holding this belief in an extreme way, see mathematics as a 
rather static system of (unconnected) rules and formula and as a toolbox containing 
schematic procedures to solve tasks. In the sense of the application aspect, 
mathematics has practical relevance like applications in other sciences, society and 
everyday life. The process aspect portrays mathematics as a vivid and creative field of 
research in which it is possible to gain (subjectively) new insights on one’s own. 
Moreover, people with strong process beliefs pay more attention to the process of 
solving tasks than on the products of these tasks and acknowledge that complex tasks 
can be solved in multiple ways. According to Grigutsch and Törner (1998) these 
aspects can be seen as independent dimensions of persons’ beliefs and agreeing to all 
of them to a certain degree is possible. Thus, the aspects have no normative character. 
Differences between school and university mathematics 
It is a well-known fact that mathematics at school and advanced mathematics at 
university differ in many facets (for an overview see Engelbrecht (2010) and Gueudet 
(2008)). New concepts in school are often learnt rather intuitively with many examples 
and yield on an intuitive understanding while formal definitions are less relevant. 
Moreover, proofs are only seldom learned at school (in Germany). Typical tasks at 
school involve rather schematic calculations or the application of concepts and 
procedures to solve real world problems. Complex problem-solving tasks are used 
rather seldom (OECD, 2020). In contrast, in university courses new concepts are 
introduced via formal definitions and a major focus is on rigorous deductive proofs. 
Moreover, schematic calculations and real-world problems do not play a role in typical 
tasks. Instead, most tasks are proof related and cannot be solved using schematic 
procedures (Weber & Lindmeier, 2020). 
Following these considerations, beliefs highlighting the formalism as well as the 
process aspect seem to fit well to university mathematics and could be less relevant for 
school mathematics. In contrast, the application and schema aspect can be considered 
more appropriate with regard to school mathematics than to university mathematics. 
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Students’ beliefs during the transition from school to university mathematics 
Given their influence for learning processes, beliefs that fit to the mathematics students 
get to know at university are considered beneficial for a successful transition. Sticking 
to beliefs established at school that are incongruent with the characteristics of 
university mathematics can be problematic (Daskalogianni & Simpson, 2001).  
However, previous studies reported inconsistent results concerning the beliefs first-
year students hold (Crawford et al., 1994; Geisler & Rolka, 2018; Törner & Grigutsch, 
1994). Moreover, while Crawford et al. (1994) report that students with schema beliefs 
were less successful in their exams, Geisler (2023) reports only small relations between 
students’ beliefs and their achievement as well as dropout behaviour. One reason for 
these inconsistent results could be that in these studies, the rather general beliefs object 
“mathematics” was addressed. Due to the differences between school and university 
mathematics one can argue that the beliefs object changes during the transition and that 
school mathematics respectively university mathematics constitute different beliefs 
objects. Therefore, questionnaires should distinguish between both beliefs objects – 
otherwise it is not clear which beliefs object students have in mind. Recent studies 
concerning other affective variables like interest and self-concept show that students 
clearly distinguish between both objects and that variables focusing university 
mathematics are better predictors for a successful transition (Rach et al., 2021; Ufer et 
al., 2017). Thus, distinguishing between school and university mathematics could be a 
valuable approach regarding beliefs too.  

THE CURRENT STUDY 
To enable differentiated insights in students’ beliefs regarding the nature of school and 
university mathematics, new questionnaire scales have been developed and analysed. 
Operationalization of the new beliefs scales 
Most questionnaires that are based on Grigutsch and Törner’s (1998) conceptualisation 
of beliefs regarding the nature of mathematics are shortened versions of their original 
questionnaire with subscales for the four proposed aspects and the rather general 
beliefs object “mathematics” (with items like “Mathematics helps to solve daily tasks 
and problems.”, e.g., Liebendörfer & Schukajlow, 2017). To operationalize 
differentiated scales for the beliefs objects school and university mathematics, the 
items from the shortened scales of Liebendörfer and Schukajlow (2017) have been 
adapted and rephrased, resulting in items that explicitly refer to “school mathematics” 
respectively “university mathematics”. Thus, every item exits in two versions. Table 3 
on page 7 gives an overview of the developed scales and example items. 
Research questions 
The purpose of the study at hand is twofold: On a rather methodological level the 
dimensionality of the developed scales and thus the structure of students’ beliefs seems 
particular relevant. In order to get a more differentiated insight in students’ beliefs, 
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possible differences in the beliefs students hold regarding school and university 
mathematics can be identified. This leads to the following research questions: 
1. Which structure do students’ beliefs concerning the nature of school and university 

mathematics have? Is it possible to differentiate the formalism, schema, application 
and process aspect empirically regarding the beliefs objects school and university 
mathematics? 

Given that the proposed aspects are (theoretically) differently relevant for school and 
university mathematics (e.g., process and formalism aspect more related to university 
mathematics and application as well as schema aspect more relevant with regard to 
school mathematics), I expect that students will hold different beliefs regarding both 
beliefs objects. Thus, their beliefs will be structured in eight dimensions and a model 
differentiating all aspects between school and university mathematics will best 
describe the data (H1). 
2. Which beliefs regarding the nature of school and university mathematics do first 

year students hold and which differences between both sets of beliefs can be found? 
Based on the aforementioned characters of school and university mathematics, I expect 
that students will hold stronger schema and application beliefs regarding school 
mathematics than regarding university mathematics (H2). Contrary, the formalism 
aspect as well as the process aspect will be stronger regarding university mathematics 
than regarding school mathematics (H3). 
Methods 
153 first-year students (M(age)=20; 58 % male) attending real analysis lectures at two 
public German universities filled out the new questionnaire during the second week of 
the winter term. These students were enrolled in pure mathematics bachelor programs 
or a bachelor program for upper secondary pre-service teachers. All items have been 
answered on a 5-point likert scale ranging from 1 = not true at all to 5 = totally true. 
Item analysis and confirmatory factor analysis (CFA) have been used to inspect the 
developed scales and to answer research question 1. The item analysis let to the 
deletion of two items from both intended schema scales due to low reliability as well 
as a low item-total correlation in the possible models. Moreover, both items caused 
convergence problems in the CFA models.  
Four possible models (see figure 1 for an overview, possible correlations among factors 
are not visualized to enhance readability) have been tested with CFA in Mplus 8. As 
not all items were normally distributed, robust maximum likelihood estimation was 
used. Model 1 contains eight independent factors: formalism, schema, application and 
process aspect each differentiated regarding the two beliefs objects school and 
university mathematics – as proposed in H1. Model 2 pays attention to the possibility 
that the four aspects proposed by Grigutsch and Törner (1998) do not differentiate in 
different factors for school and university mathematics. Model 3 tests the possibility 
that beliefs can be differentiated in those regarding the beliefs objects school and 
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university mathematics but without paying attention to the four proposed aspects. In 
model 4, a single factor containing all items regardless the aspects and the beliefs object 
(school vs. university mathematics) was modelled. To answer research question 2, 
eight scales (as intended in model 1) have been formed and the means have been 
compared using paired t-tests. 

 

Figure 1: Overview of the tested models for the structure of the beliefs questionnaire 

RESULTS 
Model χ2 p χ2/df RMSEA CFI SRMR AIC BIC 

1 837 <.001 1.48 0.056 0.81 0.083 14486 14468 
2 1520 <.001 2.59 0.102 0.36 0.155 15137 15121 
3 1291 <.001 2.18 0.088 0.52 0.118 14919 14905 
4 1615 <.001 2.72 0.106 0.30 0.137 15233 15219 

Table 1: Overview of the model fit for the tested models (BIC sample-size adjusted) 
The CFAs reveal that the intended model with eight factors (model 1) differentiating 
each aspect (formalism, schema, application, process) for both beliefs objects (school 
and university mathematics) best fits the data, having the lowest AIC and BIC values 
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(see table 1). Moreover, model 1 has better descriptive fit values than the concurrent 
models, confirming H1. However, the fit of model 1 is not perfect. Whereas RMSEA 
and SRMR indicate a good or acceptable fit, the CFI value is rather low (Schermelleh-
Engel et al., 2003). The chi-square test is still significant which could be due to the 
small sample size. In this case, Schermelleh-Engel et al. (2003) suggest to interpret the 
proportion of the chi-square value and the degrees of freedom. χ2/df < 2 indicates a 
good fit for model 1. All factor loadings are significant with p<.001. 
The intended eight-dimensional model seems to be most appropriate to describe the 
structure of students’ beliefs and shows that students at the beginning of their studies 
already differentiate between school and university mathematics, when rating their 
beliefs. Therefore, eight sub-scales have been formed with four scales referring to the 
beliefs object university mathematics and four scales referring to school mathematics. 
Both subscales for the schema aspect have rather low reliability while all other scales 
have satisfying reliability (see table 2 for reliability and descriptive statistics). 

Beliefs Object: University Math  School Math  

 M SD α M SD α Cohen’s d 

Formalism 3.97 0.69 .78 3.16 0.72 .69   0.89*** 

Schema 3.12 0.85 .55 4.12 0.62 .58   0.91*** 

Application 2.78 0.88 .79 3.50 0.82 .80   0.62*** 

Process 3.81 0.70 .76 3.57 0.76 .76 0.23** 

Table 2: Descriptive statistics, reliability (cronbach’s α) and results of the paired t-
tests, **p<.01, ***p<.001, answers between 1 = not true at all and 5 = totally true 

With regard to research question 2, the paired t-tests revealed clear differences in 
students’ beliefs concerning the nature of school mathematics and the nature of 
university mathematics. Confirming H2, students agreed significantly stronger to the 
schema and application aspect regarding school mathematics than regarding university 
mathematics with middle to strong effect size (table 2). As expected in H3, students 
agree more to the formalism and process aspect with regard to university mathematics 
than regarding school mathematics. The differences in the formalism aspect reveal a 
strong effect, whereas the effect size for the process aspect is small (table 2).  

DISCUSSION 
The results of the confirmatory factor analysis show that it is possible to empirically 
differentiate students’ beliefs regarding school and university mathematics in all four 
proposed aspects. This result is similar to previous results of studies differentiating 
other affective variables like interest and self-concept regarding school and university 
mathematics (Rach et al., 2021; Ufer et al., 2017). Thus, students seem to hold different 
beliefs concerning the two beliefs objects school and university mathematics. This is 
also confirmed by the strong differences especially for the formalism and schema 
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aspect. These differences in students’ beliefs fit to the theoretical considerations that 
formalism plays no central role in school mathematics but is mandatory for university 
mathematics and reflect, that students clearly notice these differences. Moreover, 
students seem to see school mathematics stronger related with schematic calculations 
than university mathematics. This is in line with empirical results that schematic tasks 
are frequently used in school (OECD, 2020) but loose importance in university 
mathematics courses (Weber & Lindmeier, 2020).  
Limitations of the study lie in the rather small sample as well as the used items. The 
model fit is not perfect which could be due to the rather small sample. Specially the 
items for the schema aspect should be rephrased because some had to be excluded and 
the resulting scales have rather low reliability. Thus, the results concerning the schema 
aspect should be interpreted cautious and replicated within a larger sample. 
Not differentiating between school and university mathematics in former 
questionnaires could be a reason for inconsistent results regarding the beliefs that first-
year students hold. The new developed questionnaire enables more nuanced insights 
in students’ beliefs. Moreover, differentiating between beliefs regarding school and 
university mathematics could be valuable for predicting success in mathematics 
programs in future studies - as differentiating other affective variables was in previous 
studies (e.g., Rach et al., 2021).  

Beliefs Object: University Math  School Math 
 #  Example Item #  Example Item 
Formalism 5 Of major importance for 

math, as it is done at 
university, is its logic 
rigour and precision. 

5 Mathematical thinking in 
school is characterized by 
abstraction and logic. 

Schema 5/3 Nearly all math problems 
in university can be solved 
by directly using known 
rules, formula and routines. 

5/3 Math, as it is done in 
school, contains learning, 
remembering and 
application. 

Application 5 Many aspects of university 
math have a practical 
benefit or direct 
applications. 

5 In school math one works 
on tasks that have a 
practical use. 

Process 5 Mathematical tasks and 
problems at university can 
be solved correctly in 
different ways. 

5 Doing school math means 
understanding facts, seeing 
relations and having ideas.  

Table 3: Overview of the developed scales with number of items (Schema: 5 items 
developed, 2 items excluded due to low reliability and low item-total correlation) 
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MATH FOR TEACHING OR UNIVERSITY? - PRESERVICE 
TEACHERS’ MOTIVATION IN THEIR FIRST STUDY YEAR 

Lara Gildehaus and Michael Liebendörfer  
University of Klagenfurt & Paderborn University 

Many preservice teachers lose their motivation in mathematics during their first year 
of study, displaying an unfavorable view of not being interested in mathematics. Given 
the evidence that they are not only interested in mathematics, but teaching as well, we 
operationalized career- and subject-specific dimensions in their motivation for 
mathematics, using expectancy-value-cost theory. Findings based on 209 higher-
secondary and primary preservice teachers show a great fit between the theoretically 
anticipated model and the empirical data. The motivational development based on 
those dimensions shows a decrease for subject-specific interest but an increase for 
subject-specific relevance, indicating a shift from intrinsic to extrinsic motivation, 
while career-specific values remain stable in the first year. Practical implications how 
to address career-specific values in mathematics teacher education are being 
discussed.   

PRESERVICE TEACHERS MOTIVATION IN MATHEMATICS 
Motivation is a crucial factor within teacher education. Among other things, motivation 
is a predictor of study retention (Schnettler et al., 2020), study satisfaction (Rach, 
2014), and later learning success (Biermann et al., 2019), as well as the quality of 
preservice teacher’s (PST) future teaching (Biermann et al., 2019). In mathematics, 
however, many PST seem to quickly lose their motivation during the first year (Rach, 
2014). While such cooling-out effects have been discussed for all mathematics students 
who are facing cognitive challenges in the transition to mathematics at university 
(Rach, 2014), PST take up a specific role: Higher-secondary PST (teaching grades 5-
13, students ages 10-19) for example more strongly lose their interest during the 
transition, compared to major students (Rach, 2014). They report being less satisfied 
with their overall studies and claim most of the mathematical contents as irrelevant for 
them (Gildehaus & Liebendörfer, 2022). They report copying homework more often 
and using more surface learning strategies (Gildehaus & Liebendörfer, 2022). Similar 
findings are evident for primary PST (teaching grades 1-4, students ages 6-10). They 
report a high level of dissatisfaction and a lack of perceived relevance of the content 
as well (Coppola et al., 2012). 
Current approaches explain those findings by further differentiating PST interests and 
motivation e. g., by differentiating interest in the subject they study from pedagogical 
interest in teaching in general. In such operationalizations, primary PST for example 
report higher interest for pedagogy, and teaching in general than for mathematics, 
while higher-secondary PST report equal interest for both dimensions (Fray & Gore, 
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2017; Gildehaus & Göller, 2023). Such general differentiations of career- and subject-
specific dimensions seem promising to better describe and understand PST motivation 
in mathematics and subsequent variables, e.g., lower interest in mathematics is related 
to lower study satisfaction (Kosiol et al., 2019). 
Current differentiations of students’ motivation, however, do not take up a 
mathematics-specific perspective. This may be of relevance as the object of 
mathematics changes for many students during the transition to university. In the 
subject-specific dimension, interest may thus most naturally change if the object of 
interest is changed (Ufer et al., 2017). Qualitative findings suggest that also the career-
specific dimension may relate specifically to the subject: PST of different subjects may 
value different actions as relevant for them and their teaching, e. g., music PST report 
high value for orchestra management, while mathematics PST report explaining 
mathematics to someone as important and motivating for them (Gildehaus et al., 2023). 
We thus assume that differentiating mathematics-specific dimensions of motivation 
could help to better understand students' motivation and its connection to their learning 
and participation. In the following, we aim to operationalize PST motivation by 
differentiating career- and subject-specific dimensions specifically for mathematics. 
We further aim to analyze meaningful variations in PST motivation across these 
dimensions: their development throughout these different dimensions, as well as 
possibly differences between higher-secondary and primary PST. 

THEORETICAL BACKGROUND 
We frame our operationalization within Expectancy-Value-Cost theory, which has 
been well approached to frame multidimensional motivational aspects into one 
coherent model (cf. Fray & Gore, 2018).  
Expectancy-Value-Cost Theory (EVC)  
The EVC assumes that a person’s motivation is directly related to three beliefs (Barron 
& Hulleman, 2015): the person’s expectation of success (Can I do this?), the 
importance or value that the person attaches to different options (Do I want to do this?), 
and the perceived disadvantages (“Costs”) of the option (What is stopping me?). Since 
we mainly aim to investigate PST motivation in terms of what they value around 
mathematics, we are focusing on values in the following: Individuals may value an 
option because it is known to be fun (intrinsic value; e.g., studying mathematics in a 
teaching degree program is fun). Likewise, an option can be perceived as significant 
for one’s identity (attainment value; e.g., if one sees oneself as a mathematics teacher 
and therefore values the mathematics teaching degree program). Furthermore, an 
option can be perceived as useful for current or future goals (utility value; e.g., studying 
to become a mathematics teacher as useful for the future). While intrinsic and 
attainment value are usually associated with intrinsic motivation, utility value is related 
to extrinsic motivation (Barron & Hulleman, 2015).   
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We further assume that motivation is directed towards various objects (Schukajlow et 
al., 2023). These objects can be of different types and located at different hierarchical 
levels. Thus, PST can report motivation for mathematics in general but also for objects 
around mathematics teaching, such as explaining mathematics to someone (Gildehaus 
et al., 2023). In the following, we outline the state of the art on current differentiations 
of objects in PST motivation in mathematics, from an EVC perspective. 
Motivation for becoming a teacher and studying mathematics at university  
For intrinsic value, Kunter et al. (2013) differentiated enthusiasm for mathematics and 
mathematics teaching, indicating that a general differentiation of mathematics and 
mathematics teaching can be operationalized. However, they did not operationalize 
different objects of mathematics. This was done by Ufer et al. (2017), who empirically 
distinguished interest in mathematics as known in school and interest in mathematics 
as known in university. The same authors further analyzed mathematics students’ 
interest development throughout the first year: While interest in school mathematics 
mainly remained stable, the interest in university mathematics significantly dropped, 
specifically for PST (Kosiol et al., 2019). This distinction between school and 
university mathematics also seems revealing in qualitative research, where PST 
themselves distinguish between enjoyment of school- and university related 
mathematics (Gildehaus et al., 2023).  
For attainment value, no operationalized differentiations around mathematics exist to 
our knowledge. Thus, we conducted a preliminary study indicating that PST identify 
themselves with different practices than major students and thus value them differently 
(Gildehaus & Liebendörfer, 2022). In a subsequent analysis, a differentiation between 
well explaining and delivering mathematics to someone (as important for one’s identity 
as a future mathematics teacher) and deeply understanding complex mathematics (as 
important for one’s identity as a current mathematics student), was identified 
(Gildehaus et al. 2023). Piloting studies showed that these two dimensions may also be 
operationalized (Gildehaus & Göller, 2023).  
Utility value for mathematics has been well discussed in terms of the perceived 
relevance of mathematical content for future teachers. Eichler and Isaev (2023), for 
example, operationalized mathematics teaching-specific utility value and analyzed 
how this strongly decreased during the first study year. In addition, Hernandez-
Martinez and Vos (2018) described that mathematical content can also be considered 
highly relevant for the exams and the formal degree while being perceived as not 
relevant for the future career. Guse et al. (2023) operationalized such a distinction, 
differentiating between the perceived short-term (for exams) and long-term (for the 
future career) relevance of content. Such distinctions can also be found in qualitative 
studies, being brought up by the PST themselves (Gildehaus et al., 2023).  
Given these findings around different objects in PST motivation for mathematics, we 
aim to frame and operationalize PST motivation within a career- and subject-specific 
dimension the following and thus pose two research questions:  
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Research Questions 
RQ1: Can career- and subject-specific dimensions in PST values for mathematics be 
operationalized, empirically differentiated, and reliably measured?  
RQ2: How do the differentiated career- and subject-specific values develop throughout 
the first study year and how do higher-secondary and primary PST differ in them? 

METHOD 
Our sample was recruited at a medium-sized public university in Germany. The PST 
were enrolled in mathematics teacher education programs for either higher-secondary 
school or primary school. A total of n = 209 PST (73.7% female, 30.6% higher-
secondary PST, mean age 19.9) participated in the first questionnaire in the middle of 
the first semester (T1). In total, n = 81 of these PST could be matched with the second 
questionnaire they filled out in the middle of the second semester (T2; 71.6% female, 
22.2% higher-secondary PST).  
The PST were surveyed during their main lectures using an online questionnaire. Based 
on the current findings stated earlier, we anticipated a career- (C) and subject-specific 
(S) dimension for each value (intrinsic, attainment, utility). Three to four items for each 
dimension were developed. Intrinsic value was differentiated towards mathematics as 
known from school (IV-C) and mathematics as known in university (IV-S; based on 
Ufer et al. 2017). Attainment value was operationalized in terms of different values and 
practices relating to different identities: The value of explaining mathematics to 
someone (AV-C) and the value of deeply understanding mathematics (AV-S). Utility 
value was not differentiated in terms of the object but in terms of the relevance 
anticipated to the object of the mathematical contents at the university. This could be 
perceived as relevant either for the future career as a teacher (UV-C) or the upcoming 
exams at university (UV-S). All items were answered on a six-point Likert scale (“1 - 
strongly disagree”, “6 - strongly agree”). Both questionnaires were identical at both 
time points. Examples can be found in Table 1.  

Value Example Items α T1 α T2 
Intrinsic Value 
Career (IV-C) 

I enjoy the mathematics in school. 4 .95 .96 

Intrinsic Value 
Subject (IV-S) 

I enjoy the mathematics at university. 4 .89 .85 

Attainment Value 
Career (AV-C) 

I want to be someone who is very good 
at explaining mathematics. 

4 .92 .89 

Attainment Value 
Subject (AV-S) 

I want to be someone who deeply 
understands mathematics. 

4 .90 .87 

Utility Value 
Career (UV-C) 

The mathematical content of my studies 
is useful for my later career. 

3 .89 .90 
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Utility Value 
Subject (UV-S) 

The mathematical content of my studies 
is only useful to pass the exams. 

3 .71 .68 

Table 1: Operationalized Values, Examples, and Cronbach’s α 
The data analysis for RQ1 focused on confirming the assumed structure of two 
dimensions for each of the three values based on a confirmatory factor analysis of the 
data of T1. As it is not possible for us to examine all theoretically conceivable models 
in confirmatory factor analyses, an exploratory factor analysis was also carried out in 
order to identify any models that had not yet been theoretically considered (Kaplan, 
2004). For the scale evaluation, discriminatory power (corrected item-scale 
correlation) and internal consistency (Cronbach's α) were used. For RQ2, repeated 
measures ANOVAs were conducted to investigate differences between T1 and T2 as 
well as between the two study programs. 

RESULTS 
For RQ1, the confirmatory factor analysis provided acceptable to good model fit values 
of the theoretically assumed 6-factor model (𝜒𝜒2(194) = 353, p <. 001, CFI = .96, 
TLI = .95, RMSEA = .06, SRMR = .05). With regard to explorative factor analysis, the 
Kaiser-Meyer-Olkin measure with 0.87 showed good suitability of the sample (Kaplan, 
2004). The parallel analysis identified six factors corresponding to the theoretically 
assumed scales. All items loaded with at least .57 on the respective factors. Cross-
loadings greater than .30 were not present. The scale definition along the identified six 
dimensions also provided good internal consistency for T1 as well as T2 (for 
Cronbach’s α, see Table 1). The discriminatory power was also higher than .50 for all 
items and thus spoke in favor of six one-dimensional scales (Kaplan, 2004).  
 All students (n=81) HSecond. PST (n=18) Primary PST (n=63) 
 T1 T2 T1 T2 T1 T2 
 M SD M SD M SD M SD M SD M SD 
IV-C 4.32 1.41 4.31 1.35 5.65 0.54 5.65 0.44 3.95 1.26 3.93 1.27 
IV-S 3.31 0.98 2.90 1.00 3.66 0.89 3.44 0.75 3.21 0.98 2.75 0.98 
AV-C 5.44 0.71 5.30 0.74 5.69 0.57 5.63 0.48 5.38 0.74 5.21 0.79 
AV-S 3.84 1.01 3.64 1.01 4.19 0.86 3.74 0.97 3.74 1.01 3.61 1.02 
UV-C 3.47 1.31 3.46 1.29 3.96 1.54 3.41 1.25 3.35 1.18 3.47 1.26 
UV-S 3.80 1.20 4.46 1.15 3.02 1.30 4.42 1.08 4.05 1.01 4.47 1.16 

Table 2: Means and Standard Deviation for Values at T1 and T2 differentiated by 
Study Programs 

Regarding RQ2, Table 2 displays the means and standard deviation for the Values at 
T1 and T2. The differences in the means of the Values between T2 and T1 are 
illustrated in Figure 1. Numbers below zero indicate a decrease in this Value from T1 
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to T2, and numbers above zero indicate an increase of the respective Value from T1 to 
T2. The ANOVA showed no significant effect of Time for Intrinsic Value Career 
(p = .74), but a significant effect of the Study Program (F(1,73)  =  28.6, p < .001): 
Higher-Secondary PST report higher Intrinsic Value Career with big effect size 
(𝜂𝜂𝑝𝑝2=.28). For Intrinsic Value Subject, both, effects of Time (F(1,71) = 11.8, p < .001) 
and Study Program (F(1,71) = 5.1, p = .027) are significant: Intrinsic Value Subject 
decreases with medium effect size from T1 to T2 (𝜂𝜂𝑝𝑝2 = .14) and Higher-Secondary 
PST report higher Intrinsic Value Subject than Primary PST, but with low to medium 
effect size (𝜂𝜂𝑝𝑝2 = .07). For Attainment Value Career, only the Study Program shows a 
significant effect (F(1,74)  = 4.2, p = .045), but not the Time (p = .196): Higher-
Secondary PST report higher Attainment Value Career (𝜂𝜂2  = .05). For Attainment 
Value Subject, as well as for Utility Value Career, we could not find any significant 
effects (p > .126 in all cases). The ANOVA for Utility Value Subject showed a 
significant effect of Time (F(1,63) = 6.5, p = .013), indicating that this Value increased 
from T1 to T2 with low effect size (𝜂𝜂2 = .10). There is no effect of the Study Program 
(p = .082), but a significant interaction effect of Time and Study program 
(F(1,63) = 4.08, p = .048), indicating that this Value increases for Higher-Secondary 
PST more over time than for Primary PST (𝜂𝜂2 = .06).  

 
Figure 1: Mean-difference from T2 to T1: Below zero indicates decrease from T1 to 

T2 and above zero indicates increase from T1 to T2 

DISCUSSION 
PST seem to often lose their motivation for mathematics during their first year, 
displaying an unfavourable view of not being interested in mathematics and 
participating less engaged (Guse et al., 2023). Following the evidence that they are not 
only interested in mathematics but mathematics teaching as well, we aimed to 
operationalize career- and subject-specific dimensions in their values for mathematics 
(RQ1). We further analyzed their motivational development and differences between 
higher-secondary and primary PST (RQ2) to see if our instrument may uncover 
meaningful variations.  
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Findings for RQ1 showed that such a mathematics-specific differentiation of career- 
and subject-specific dimensions in PST values could be operationalized and 
empirically confirmed for our sample in all values (intrinsic, attainment, utility). This 
corresponds to existing differentiations of career- and subject-specific interest (Fray & 
Gore, 2018; Guse et al., 2023) but shows that the operationalization of mathematics-
specific values is possible as well as going beyond interest and intrinsic value.  
Findings for RQ2, showed a decrease in subject-specific intrinsic value but not in the 
career dimension, what is in line with current research (Kosiol et al., 2019). In contrast, 
we did not find significant decreases in attainment values. Specifically, for subject-
specific attainment value this indicates that PST still value deeply understanding 
mathematics, even when enjoying it less. Contrary to Eichler and Isaev (2023), we 
found no significant decrease in career-specific utility value, but a descriptive one for 
the higher-secondary PST. This would be in line with Eichler and Isaev (2023), who 
reported decreases in relevance mainly for higher-secondary PST. We further observed 
an increase in subject-specific utility value, indicating that PST may, while not being 
interested in the contents at university, still perceive them as highly relevant to pass 
their exams. While this suggests a (probably problematic) shift from intrinsic to 
extrinsic motivation, it does, in contrast to current findings, not indicate a general loss 
of motivation. Given the differences between study programs, higher-secondary PST 
reported higher intrinsic value for career and subject, which is in line with current 
findings (Gildehaus & Göller, 2023). However, higher-secondary PST also report 
higher attainment value career, what highlights the importance of the mathematics-
specific operationalization used in this study, since, in general, pedagogical interest 
was found to be higher for primary PST in other studies (Fray & Gore, 2017). We may 
note though, that our study shows clear limitations given the overall small sample at 
T2 and specifically the very small subgroup of higher-secondary PST, which restricts 
the meaning of our findings for RQ2. From a descriptive point of view, it seems that 
specifically higher-secondary PST do actually also lose their motivation in attainment 
value subject, as well as utility value career.  
Our findings underline the current discussion around motivation in mathematics 
education: it is the object of motivation that matters (Schulkajlow et al., 2023). The 
observed shift in PST motivation for the subject may possibly explain their somewhat 
disengaged participation, what future studies may analyze concretely. Yet, it seems 
promising, that PST overall intrinsic motivation for career remains rather stable. 
Practical implications could for example address the attainment value career, by using 
the valued action of explaining things to each other in university mathematics teaching. 
Current approaches showing intersections between school and university contents also 
seem promising, given our findings.  
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STUDY SATISFACTION, PROGRAM CHANGE, AND DROPOUT 
INTENTION OF MATHEMATICS PRESERVICE TEACHERS 
FROM AN EXPECTANCY-VALUE THEORY PERSPECTIVE 

Robin Göller and Lara Gildehaus  
University of Klagenfurt & Paderborn University 

In this paper, we aim to better understand the relations of mathematics preservice 
teachers’ mathematics-specific expectancy, values, and costs with their intention to 
drop out or change their study program as well as with their study satisfaction. Based 
on data from 209 mathematics preservice teachers, we analyze a structural equation 
model that highlights the importance of students’ expectancy for success as well as the 
mediating role of students’ emotional cost for dropout intention, study program change 
intention, and study satisfaction. These findings have theoretical and practical 
implications, which are discussed. 

INTRODUCTION 
Mathematics teachers are currently in high demand in Germany (Klemm, 2020). At the 
same time, study dropout is comparatively high in mathematics-related study 
programs, often already in the first year of study (Geisler, Rach, et al., 2023; 
Neugebauer et al., 2019). This means that understanding students’ decision to drop out 
of mathematics preservice teacher study programs is of theoretical and practical 
interest to society. Besides performance difficulties, a lack of motivation is one of the 
main reasons being interdisciplinary discussed for study dropout (Chen, 2013; Geisler, 
Rach, et al., 2023; Neugebauer et al., 2019). One common conceptualization of 
motivation is that of expectancy and values. Accordingly, study dropout intention has 
recently also been studied from an expectancy-value theory perspective (Eccles & 
Wigfield, 2020), whereby values, especially intrinsic and attainment value, as well as 
costs, have been shown to predict study satisfaction and dropout intention (Messerer 
et al., 2022; Schnettler et al., 2020). 
While most of these studies focused on mathematics students and their motivation in 
general, less is known about mathematics preservice teachers’ specific motivation and 
its relation to study satisfaction and dropout intention. Recent studies indicate that cost, 
e.g., in terms of frustration (Göller & Gildehaus, 2021), as well as utility, e.g., in terms 
of perceived relevance of the mathematical contents for their teaching profession 
(Eichler & Isaev, 2022; Gildehaus & Liebendörfer, 2021), may play a significant role. 
Furthermore, qualitative studies suggest that preservice teachers may value actions 
around mathematics that are directly related to the teaching profession, such as 
explaining mathematics to someone (Gildehaus et al., 2023). If we aim to understand 
preservice teachers’ dropout intentions or study satisfaction, it seems relevant to 
consider these specific dimensions of their motivation. In the following, we thus 
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investigate mathematics preservice teachers’ dropout and program change intention as 
well as their study satisfaction from an expectancy-value perspective, conceptualized 
and operationalized with regard to the subject-specific characteristics of mathematics 
teacher training, in particular by distinguishing a mathematics mathematics-related 
attainment value as well as a mathematics teaching-related attainment value. 

THEORETICAL FRAMEWORK 
We draw on Eccles & Wigfield’s (2020) situated expectancy-value theory as a 
theoretical framework and situate it in the field of university mathematics teacher 
education (in Germany) to better understand preservice teachers’ intention to dropout 
or change their study program as well as their study satisfaction. By dropout intention, 
we mean preservice teachers’ concrete thoughts or plans of quitting their university 
studies; by program change intention, their concrete thoughts or plans to change their 
study program, which for preservice teachers (in Germany) might mean to switch 
subjects (e.g., choosing another subject instead of mathematics but stay in a similar 
teacher training program) or choose another teacher training program (e.g., choosing a 
primary school teacher program instead of a secondary school teacher program). In 
contrast, study satisfaction is rather thought as an indicator of staying in the respective 
program (Geisler, Rach, et al., 2023).   
Expectancy-value theory (Eccles & Wigfield, 2020) states that individuals’ expectancy 
for success, subjective task values, and costs are important determinants for choosing 
tasks or activities as well as for performance and engagement in the chosen tasks and 
activities. Expectancy is defined as individuals’ beliefs about how well they will do on 
an upcoming task (Eccles & Wigfield, 2020). Regarding a mathematics preservice 
teacher study program, expectancy can be seen as students’ forecast of how well they 
can master the mathematical knowledge and skills that are taught at university. 
Expectancy has been shown to influence preservice teachers’ dropout intention and 
study satisfaction (Geisler, Rach, et al., 2023; Geisler, Rolka, et al., 2023). 
Values and costs are further subdivided, as described in the following. Intrinsic value 
is the anticipated enjoyment individuals expect to gain from doing a task (Eccles & 
Wigfield, 2020). Regarding a mathematics preservice teacher study program, this 
might mean that students enjoy working on the mathematical contents or tasks of their 
mathematics study. Intrinsic value influences preservice teachers’ intention to dropout 
or change their study program as well as their study satisfaction (Geisler, Rach, et al., 
2023; Geisler, Rolka, et al., 2023; Schnettler et al., 2020). Attainment value is the 
relative personal or identity-based importance attached by individuals to the task 
(Eccles & Wigfield, 2020). Regarding a mathematics preservice teacher study 
program, on the one hand this might mean that students value understanding 
mathematics contents as important for them (mathematics-related attainment value). 
On the other hand (and possibly simultaneously), this might mean that students value 
being able to teach mathematics contents well as essential for them (teaching-related 
attainment value; Gildehaus et al., 2023). Mathematics-related attainment value was 
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shown to be associated with study dropout in former studies (Schnettler et al., 2020). 
For teaching-related attainment value, this question is still open. Utility value is the 
perceived usefulness of how well a task fits into an individual’s plans (Eccles & 
Wigfield, 2020). Regarding a mathematics preservice teacher study program, this 
might mean that students value the university mathematics contents as relevant for their 
future profession as teachers. Such relevance appraisals were shown to be correlated 
with study satisfaction and program change intention (Eichler & Isaev, 2022). 
Individuals will avoid tasks that cost too much relative to their benefits (Eccles & 
Wigfield, 2020). Regarding a mathematics preservice teacher study program, we 
consider emotional and effort costs to be particularly relevant (Gildehaus & 
Liebendörfer, 2021; Göller & Gildehaus, 2021). Emotional cost subsumes an 
individual’s sense of potential negative psychological and emotional consequences 
associated with a task (Wigfield et al., 2017). Regarding studying mathematics, 
students’ negative emotions such as frustration, helplessness (Göller & Gildehaus, 
2021), fear of failure, or (performance) anxiety are emotional costs (Wigfield et al., 
2017). Effort cost is the individual’s sense about the amount of effort needed to 
complete a task and whether this perceived effort is worth it (Wigfield et al., 2017). 
Regarding a mathematics preservice teacher study program, this might refer to 
students’ sense of how much effort is needed to complete their study successfully. 
Costs have been shown to predict students’ dropout intention (Schnettler et al., 2020). 
In line with Barron and Hulleman (2015), we conceptualize cost as a distinct 
component from values. More concretely, we assume that costs mediate the effects of 
expectancy and values on students’ intention to dropout or change their study program 
as well as their study satisfaction, i.e., we assume that on the one hand e.g., dropout 
intention is affected by students’ perceived cost (Schnettler et al., 2020), and on the 
other hand, students’ sense of how costly their study feels is affected by their 
expectancy and values regarding their study program (cf. Figure 1). 

RESEARCH AIM AND RESEARCH QUESTIONS 
This study aims to better understand mathematics preservice teachers’ intentions to 
dropout or change their study program and their satisfaction with their studies, 
particularly the role of students’ expectancies, values, and costs therein. Following our 
theoretical considerations, we hypothesize that the effect of expectancy and values is 
mediated by students’ perception of (effort and emotional) costs accompanying their 
mathematics study (cf. Figure 1). As these effects might differ for different groups and 
might be influenced by their prior mathematics knowledge, we aim to control for 
different study programs, genders, and high school grades in mathematics. Concretely, 
we investigate the following research question: 

• How are preservice teachers’ mathematics-specific expectancy, values, and costs related to their 
intention to dropout or change their study program as well as to their study satisfaction? 
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METHODS 
In Autumn 2021, a total of n = 209 (154 females, 53 males, two without specification, 
Mage = 19.9) preservice teachers of two different study programs - 145 primary school 
preservice teachers (teaching pupils aged 6-10) and 64 secondary school preservice 
teachers (teaching pupils aged 10-19) - with mathematics as a study subject, took part 
in an online survey which was carried out in two first-semester lectures of a German 
university. Dropout intention, program change intention, and study satisfaction were 
measured by single items each (cf. Table 1). Expectancy was operationalized by a self-
efficacy scale (Ramm et al., 2006). Values and cost were measured with a recently 
developed instrument (Gildehaus & Göller, 2023) which operationalizes intrinsic 
value, mathematics content-related attainment value, mathematics teaching-related 
attainment value, utility value, as well as effort and emotional cost (Table 1). We 
controlled for study program, gender, and high school grade in mathematics. 
 Items ω Example 
Dropout intention 1 - I am seriously considering dropping out of 

my university studies. 
Program change 
intention  

1 - I often think about changing my subject of 
study. 

Study satisfaction 1 - Overall, I am very satisfied with my 
studies so far. 

Expectancy 3 .84 I am confident that I can master the 
mathematical skills that are taught 

Intrinsic value 4 .89 I like mathematics at university 
Attainment value 
mathematics-related 

3 .91 It is important for me to understand 
mathematics content very well 

Attainment value 
teaching-related 

4 .92 For me, it is important to be able to 
explain mathematics well 

Utility value 4 .90 The mathematical content studied is useful 
for my later career 

Effort cost 3 .77 Sometimes, I am not sure if I have the 
energy to study mathematics successfully. 

Emotional cost 3 .92 The mathematical contents of my studies 
depress me. 

Study program 1 - 0 = primary, 1 = secondary school PST 
Gender 1 -  1 = female, 2 = male 
High school grade math 1 - 15 = best, 0 = poorest 

Table 1: Overview of the analysed variables, numbers of items, and McDonald’s ω. 
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A structural equation model was conducted for data analysis with dropout intention, 
program change intention, and study satisfaction as dependent (endogenous) variables 
using the R package lavaan (Rosseel, 2019). According to our theoretical 
considerations, we modelled costs as mediators and controlled for the study program, 
gender, and high school grade in mathematics. A schematic visualization of this 
structural equation model is given in Figure 1. 

 

Figure 1: Schematic visualization of the structural equation model 

RESULTS 
The considered structural equation model has a satisfactory model fit (𝜒𝜒2 = 447.15, 
df = 305, p < .001, CFI = .95, TLI = .94, RMSEA = .05, SRMR = .05). Figure 2 shows 
the significant standardized direct effects of the structural equation model. 
Direct effects 
In the considered model, mathematics preservice teachers with higher expectancy 
rather have a lower program change intention, higher study satisfaction, and lower 
effort and emotional costs. Students with higher emotional costs tend to have a higher 
dropout intention. Students with higher intrinsic value rather have lower emotional 
costs, students with higher teaching-related attainment value tend to have lower effort 
costs. There were no significant direct effects of values on dropout intention, program 
change intention, or study satisfaction (cf. Figure 2). 
Mathematics secondary school preservice teachers rather intend to change their study 
program and tend to have lower study satisfaction than mathematics primary school 
preservice teachers. They tend to have a lower expectancy to master the mathematical 
knowledge and skills taught at university but higher intrinsic and mathematics-related 
attainment values than mathematics primary school preservice teachers. Students with 
better mathematics grades in high school rather intend to change their study program. 
No significant gender effects were found (cf. Figure 2). 
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Figure 2: Visualization of the significant (*p < .05, **p < .01, ***p < .001) direct 

effects (standardized 𝛽𝛽) of the considered structural equation model. 
Indirect and total effects 
Expectancy has a significant indirect effect on dropout intention (𝛽𝛽 = −0.12, p = .038) 
fully mediated by emotional cost and a fully mediated significant total indirect effect 
on dropout intention via (effort and emotional) cost (𝛽𝛽 = −0.17, p = .017). The indirect 
effect of intrinsic value on dropout intention via emotional cost is not significant 
(𝛽𝛽 = −0.11, p = .066), like all other indirect effects of the analysed values. 
Expectancy has significant total (direct and indirect via cost) effects on dropout 
intention (𝛽𝛽 = −0.34, p = .002), program change intention (𝛽𝛽 = −0.30, p = .004), and 
study satisfaction (𝛽𝛽 = 0.37, p <. 001). Utility value has a significant total effect on 
study satisfaction (𝛽𝛽  = 0.18, p = .039) and a slightly not significant total effect on 
dropout intention (𝛽𝛽  = 0.18, p = .073). Mathematics-related attainment value has a 
slightly not significant total effect on study satisfaction (𝛽𝛽 = −0.19, p = .062). All other 
total effects of the considered values are not significant (𝑝𝑝 > .10). 

DISCUSSION 
The results highlight the great importance of mathematics preservice teachers’ 
expectancy to what degree they can master the mathematical knowledge and skills 
taught at university for their intention to dropout or change their study program, their 
study satisfaction, as well as their perceived effort and emotional cost. These results 
suggest that this subjective expectancy plays a more prominent role here than prior 
knowledge measured by the mathematics high school grade. However, other studies 
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also document the importance of prior knowledge and achievement during the study 
(Geisler, Rach, et al., 2023; Geisler, Rolka, et al., 2023). Unlike findings from other 
studies (e.g., Geisler, Rolka, et al., 2023; Messerer et al., 2022; Schnettler et al., 2020), 
no significant effect of intrinsic and attainment values on dropout intention was found. 
However, intrinsic and teaching-related attainment values were significantly related to 
emotional and effort costs, respectively, indicating their importance for students’ well-
being. Although no direct effects of utility value were found, utility value had a total 
effect on study satisfaction, backing the correlation found by Eichler & Isaev (2022). 
The effect of cost on dropout intention was also found by Schnettler et al. (2020); 
beyond that, our study highlights the importance of emotional cost and the connections 
of costs to expectancy and values. This joint consideration of the links between all 
these variables situated in mathematics teacher education in one model is the strength 
of the present study. 
Theoretically, the results imply that regarding costs as being affected by expectancy 
and values and as a mediator for the prediction of dropout intention may be considered 
further which might contribute to a better understanding of the relationship of 
expectancy, values, and costs. Practically, increasing students’ expectancy that they 
will be able to master the mathematical knowledge and skills taught at university seems 
to be key when designing interventions for decreasing study dropout.  
Limitations and Outlook 
When interpreting the results, the comparatively small sample from only one university 
with its specific institutional context should be considered. Due to the study’s cross-
sectional design, all effects we report should be understood in a correlative and not a 
causal sense. Nevertheless, this study’s results encourage further investigation of study 
dropout, program change intention, and study satisfaction designed for and situated in 
mathematics teacher education for a better theoretical understanding and to support 
students’ valued participation in university mathematics to prevent study dropout. 
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STUDENTS’ CHANGING METARULES DURING AND AFTER 
WATCHING DIALOGIC INSTRUCTIONAL VIDEOS 

Alicia Gonzales and John Gruver 
Michigan Technological University 

Dialogic instructional videos feature authentic conversations of students as they 
engage in complex mathematical problems. Because these videos show students 
engaging in rich mathematical interactions students might use them as models for how 
they should engage in such interactions. In this study, we investigated how watching a 
dialogic video that showed two students creating pictures to illustrate mathematical 
relationships shaped what two pairs of students thought was necessary to include in 
their own pictures. We found that while the video the students watched did indeed 
shape what they thought was necessary to include in their pictures, the degree to which 
they felt they needed to mirror the pictures in the video varied considerably. 

INTRODUCTION AND PERSPECTIVE  
Instructional videos are appealing because they can flexibly offer additional 
instruction. Students can view them on their own time at their own pace or instructors 
can integrate them directly into classroom instruction. While the convenience and 
access to additional instruction that videos provide is compelling, educators should 
critically reflect on the quality of that instruction. Many instructional videos feature an 
expert explaining a concept or procedure (Bowers et al., 2012), essentially providing a 
lecture experience. However, a meta-analysis of classroom studies comparing lecture 
to alternatives suggests that the alternatives can be more productive (Freeman et al., 
2014).  
One way video creators have begun to go beyond recreating lecture on video is to create 
dialogic videos, those that feature the authentic dialogue of students as they engage 
with complex mathematical problems (e.g., Lobato et al., 2019). These videos have 
great potential because they allow students to indirectly participate in negotiating 
mathematical meanings, evaluating and critiquing the reasoning of others, and 
comparing peers’ ways of reasoning to their own (Lobato et al., 2023). These practices 
mirror the types of rich interactions researchers and educators advocate for in 
classroom settings (National Council of Teachers of Mathematics, 2014). To 
investigate how viewing these videos shaped students’ ways of interacting, we adopted 
a commognitive perspective (Sfard, 2008). 
The commognitive perspective asserts that thinking is “an individualized version of 
interpersonal communicat[ion]” (Sfard, 2008, p. 81). Thus, instead of conceiving of 
learning as the acquisition of concepts, skills, and procedures, learning is defined as 
being able to participate in an expanding set of discourses. This requires learning the 
rules of these discourses. 
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Sfard suggests that students learn two types of rules: object-level rules and meta-level 
rules. In general, “object-level rules are narratives about regularities in the behaviour 
of objects of the discourse, whereas meta-level narratives or meta rules define patterns 
in the activity of the learners trying to produce and substantiate object-level narratives.” 
(Sfard, 2008, p. 204). For example, 2+3 = 5 is an object-level rule in arithmetic because 
it is a narrative about the relationship between the objects 2, 3, and 5. However, the 
rule “You can add the addends in either order (e.g., 2+3 or 3+2)” is meta-level because 
it governs how to produce object-level rules. Meta-level rules help us substantiate our 
claims. As such, the development of meta rules is important because they can help us 
to “become aware of new possibilities and arrive at a new vision of things” (Sfard, 
2007, p.577).  
While meta rules can seem firm because they govern how to endorse object-level 
narratives, they can change over time. This is because they are a result of patterned 
activity among a community’s interlocutors. In this way, they are a product of, often 
tacit, social negotiation. This means the rules themselves are often tacit. However, this 
is not always the case. At times, participants in the community will make explicit the 
rules for arriving at object-level narratives. For this reason, Sfard distinguishes between 
enacted meta rules, the rules that seem to be governing interlocutors’ actual behaviour, 
and endorsed meta rules, those that are explicitly stated as rules and agreed upon by 
the community members. 
Our research seeks to provide insights into how viewing dialogic videos might shape 
students' development of meta rules. This led to the following research question, “As 
secondary students solve tasks and view dialogic videos of students solving similar 
tasks, what meta rules were developed and what changes occurred after watching the 
videos?” 

METHODS 
Data were collected through four one-hour semi-structured interviews with four pairs 
of secondary students (grades 11 and 12). Conducting interviews in pairs allowed for 
meaningful interactions between students, not just student and interviewer. During the 
sessions, the pairs were tasked with solving a problem, followed by questions about 
their thought processes. They then watched a segment of a dialogic video featuring two 
students, Josh and Arobindo, solving a similar problem, and were given the option to 
revise their work. 
The video the students watched showed Josh and Arobindo in the bottom right corner 
of the screen, with their work in the upper left. Viewers could choose to show or hide 
captions (see Figure 1). While the teacher's voice can be heard as he assigned tasks and 
prompted explanations from Josh and Arobindo about their solution paths, 
mathematical reasoning, and how they showed mathematical relationships, his 
presence was not visible. The video unit was on exponential functions, totalling 34 
videos across 7 lessons. Throughout the unit Josh and Arobindo explored the 
exponential growth of magical beanstalks. 
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Figure 1. A screenshot of the video the interviewees watched during their interview. 
Data analysis proceeded with us first creating descriptive accounts of the videotaped 
interviews. After reviewing across the accounts, we chose to focus our analysis on two 
of the pairs’ responses to the first task we posed in the interview (Figure 2). This task 
was selected because the participants seemed to actively negotiate the meta rules for 
the interview session. Our focus on these two pairs is driven by the observation that 
the pairs reflect ends on a spectrum of how these videos can influence meta rule 
development. 

 

Figure 2. The interview task. 
We began analysis by perusing the descriptive accounts to generate hypotheses about 
the students’ meta rules. We focused on what seemed to count for the students as 
showing mathematical relationships, including showing the tripling in their pictures. 
The initial hypotheses were further refined by re-watching the videos and generating 
transcripts. Once we felt confident that we had inferred meta rules consistent with the 
students’ actions and dialogue, we looked for changes in their meta rules before and 
after viewing the instructional video. Finally, we examined how those changes were 
related to the actions of dialogue of the students in video, Josh and Arobindo. 

FINDINGS: METARULES BEFORE AND AFTER 
Our findings suggest that the video shaped the development of meta rules for both pairs 
of students, but in different ways. For Celina and Olympe the video seemed to make 
them more confident in their initial idea that drawing a graph or writing an equation 
counted as “showing a mathematical relationship.” This is because Celina felt that her 
initial drawing showed the same relationships as Josh and Arobindo’s and was thus 
sufficient. On the other hand, Olympe recognized that her drawing was quite different 
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from Josh and Arobindo’s, but she felt that it was still sufficient because it made sense 
to her and she understood what Josh and Arobindo were saying. In contrast, Daniel and 
Peter wanted to change their picture after watching the video. They originally focused 
on using their picture to find the height of the beanstalk on Day 2. However, after 
watching the video, they revised their picture to be more similar to Josh and 
Arobindo’s. We provide more detail about our analysis that supports these claims 
below. 
Olympe and Celina 
Alicia, the interviewer for Olympe and Celina, asked them to engage in the task by 
saying, "I’d like for you to talk to each other…yeah… let me know when you’re done 
and I’ll ask you questions about your work." Olympe began by inquiring of Celina, 
"What do you want to do?" Celina responded, "So, should we…” as she drew a long 
vertical line on the paper. Olympe responded with, “Wait, can we do, erm…, can 
we…?” and drew the axes to a graph. Alicia replied, "You can do whatever you want." 
Celina then decided to continue with her line, while Olympe decided to create a graph. 
After she finished her graph, Olympe asked Alicia, "Does that work?" Alicia replied, 
“Yeah, yeah, yeah, it’s up to you, like I said, no right or wrong answers; just wanted to 
see how you’re thinking about it.” 
In the above exchange we see evidence for the metarule (MR) that Olympe and Celina 
first appeared to operate with, MR 1: The objective of this task is to show our thinking, 
but we’re not sure what counts and we seek approval. Olympe and Celina grappled 
with uncertainty about the task, negotiating their drawings and settled on different 
pictures (Figure 3). Olympe's seeking approval from Alicia suggested a perceived need 
for approval of the solution path, yet the specific requirements remained unclear. This 
reinforced the idea of seeking approval for acceptability. Olympe continued with her 
drawing, seeking Alicia's approval once more, with Alicia reiterating her freedom of 
representation. 

 

Figure 3. Celina's picture on left, Olympe's on right 
After she had finished her drawing, Celina re-read the task statement, which asked 
them to mark in the math relationships they saw. Alicia then asked them to explain 
those relationships, but backtracked as she realized they were still grappling with the 
question. Celina said to Olympe, “Okay, we’re not done, mark in math relationships 
that you see. You just drew something. That’s not a math relationship.” Olympe 
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responded by trying to find an equation. She said, “Well I put x at the third or whatever, 
and that wouldn’t work because one, one exponential three, would be one, so that 
doesn’t work, oh wait, no…” Celina then joined her in trying to find an equation. 
Eventually, Alicia said “You don’t have to put it into an equation, we want to see sort 
of what your pictures sort of look like. But it’s fine if you want to.” Celina stopped, 
and said “Well, yeah, that’s my picture then, I guess (see Figure 3).”  
During this exchange we believe Olympe was initially operating under the meta rule, 
MR 2: Drawing a graph is acceptable as a solution. However, it seems Celina was 
operating under a different meta rule, MR 3: Drawing a graph is does not count as 
marking in mathematical relationships. Together, they seemed to develop a new meta 
rule, MR 4: An equation counts as a math relationship. Olympe had stopped writing 
before Celina’s comment, “Okay we’re not done, mark in math relationships that you 
see. You just drew something. That’s not a math relationship.” This suggests that 
Olympe thought her graph was sufficient (MR 2), while Celina did not (MR 3). Olympe 
then started to create an equation (MR 4) as she said, “Well I put x at the third whatever, 
and that wouldn’t work because one, one exponential three, would be one, so that 
doesn’t work, oh wait, no…” This meta rule may have been stunted as Alicia again 
suggested that she does not have to put it into an equation and a drawing is sufficient.  
Olympe and Celina then watched a clip from a dialogic instructional video that showed 
Josh and Arobindo drawing a picture that showed the height of the beanstalk on Day 
0, Day 1, and Day 2 and illustrated mathematical relationships. They represented the 
height of the beanstalk with vertical lines and showed mathematical relationships by 
drawing ovals next to those lines. Specifically, they showed that the height increased 
by a factor of three from Day 0 to Day 1 by drawing three ovals that were each the 
same height as the vertical line representing Day 0 next to the line representing Day 1 
(see the screenshot in Figure 1). Similarly, they drew three large ovals, each with three 
smaller ovals inside them, next to the line representing Day 2. This showed that the 
Day 2 height was equivalent to 3 groups of 3 copies of the Day 0 height. Notably, these 
drawings were the result of some negotiation with the instructor (John) around what 
counted as “showing a mathematical relationship.” 
After Olympe and Celina summarized what happened in the video in their own words, 
Alicia asked, “How does your picture compare to theirs?” Celina responded, “I think 
that mine is pretty similar.” In contrast, Olympe said, “I think mine is pretty far away.” 
Alicia then asked if they thought their pictures showed the same relationships, and they 
both responded “Yeah.” Alicia then asked if they wanted to change their picture, but 
neither did. Olympe said, “Well my drawing makes sense to me, but I probably 
couldn’t explain it to someone. So, if I had to teach it to someone else I would probably 
use that [Josh and Arobindo’s picture] because it’s very clear. But in my head, it’s very 
clear.” While Celina responded, “Yeah I think I would probably use that one [Josh and 
Arobindo’s], but I think mine is understandable.” 
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After watching the video of Josh and Arobindo, Celina and Olympe’s MR1 seemed to 
change to MR 5: The purpose of the task is to explain Josh and Arobindo’s reasoning 
and compare our drawing to theirs. As such, we don’t need approval anymore. 
Furthermore, Celina seemed to develop a new metarule, MR 6: My quantitative 
explanation was sufficient and showed the same relationships as Josh and Arobindo’s 
as did Olympe, with MR 7: My drawing is a useful tool for my thinking, but for 
explaining to someone else, Josh and Arobindo’s explanation is clearer. Evidence for 
MR 6 includes Celina’s statement “mine is pretty similar” and evidence for MR 7 
includes Olympe choosing not to revise her picture and stating her thinking was “very 
clear.” 
Daniel and Peter 
John interviewed Daniel and Peter. After he posed Task 1, Daniel and Peter worked 
together to draw the picture shown in see Figure 4. Peter, after asking Daniel if they 
“should also label the height,” then asked, “wouldn’t it be nine?” With some 
reassurance from John of “you’re doing great, you’re doing great,” they continued with 
Peter asking Daniel “would you cube it to triple it?” 

 

Figure 4. Daniel and Peter’s initial picture 
The first rule Daniel and Peter seemed to operate under was MR 1: The purpose of 
engaging in this task is to solve the task accurately. Because Daniel asked Peter 
“wouldn’t it be nine?” and Daniel responded hesitantly with “yeah?,” we inferred that 
the two interviewees were taking seriously the task of finding mathematical 
relationships, which supports our interpretation for MR 1. 
After creating a line graph showing the beanstalk’s height Days 0, 1, and 2, they began 
expressing and illustrating math relationships they saw by writing “x3” between the 
days. Daniel explained, “From each day, there's a multiple of three. After one day, after 
another day passes, it's a multiple three, so it increases by that much.” John then asked 
for other math relationships, telling them the first one they found was “a great one.” 
Daniel noticed that one could also say that, going in the opposite direction, the height 
was by divided by three over each day and wrote “/3” between the lines representing 
the beanstalk’s heights. Peter then questioned if exponential growth qualifies as a 
relationship, showing uncertainty about the criteria.  
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In this episode, Daniel and Peter provided evidence they were operating under MR 2: 
We think that a graph annotated with multiplication and division symbols counts as 
showing mathematical relationships, but we’re not sure. At this point the students had 
drawn a graph and marked in the factors by which the height changed. After some 
exchange, Daniel and Peter appeared to feel satisfied with their work, with Daniel 
indicating they were finished by saying, “Okay.”  
Daniel and Peter then watched the same clip that Olympe and Celina watched of Josh 
and Arobindo illustrating mathematical relationships by drawing sets of ovals. John 
then asked Daniel and Peter to explain what Josh and Arobindo’s drawing showed. 
They pointed out the Josh and Arobindo showed the tripling from one day to the next 
with the ovals that they drew. They explained that the ovals showed, as Daniel put it, 
“how each segment of the previous day is built within the next height.” Peter then 
elaborated, explaining that the ovals were showing the tripling from one day to the 
next. Daniel and Peter were then asked to redo the task and compare the picture they 
drew with the picture of Josh and Arobindo’s. They redrew the three vertical lines 
representing the heights on Days 0, 1, and 2, similar to what they had drawn before, 
but this time they annotated the Day 1 picture with three segments to the side and the 
Day 2 picture with nine segments to the side. These segments seemed to serve the same 
purpose as Josh and Arobindo’s ovals as Peter explained how they showed the tripling 
from one day to the next. In fact, when asked to compare, Peter made the connection 
explicit saying they were “like the ovals.”  
From their response we inferred they had developed two new meta rules, MR 3: Josh 
and Arobindo’s drawing, particularly the subdivision of the heights on each day, is an 
acceptable way to show the tripling relationship and MR 4: Our drawing should be 
more similar to Josh and Arobindo’s. We infer these meta rules from the fact that they 
revised their picture to show the same relationships that Josh and Arobindo showed.  
DISCUSSION 
The dialogic instructional video the interviewees watched featured the authentic 
dialogue of two students as they worked together to draw a picture illustrating 
mathematical relationships. We hypothesized that having students watch videos that 
showed an example of creating a picture that showed mathematical relationships would 
shape the development of their own meta rules regarding how to communicate 
mathematical relationships. Our findings illustrate that our hypothesis was correct, 
though the meta rules the two pairs developed were quite different. Daniel and Peter 
developed meta rules that suggested they draw pictures that mirrored Josh and 
Arobindo’s, ones that showed similar relationships in similar ways. In contrast, the 
video seemed to give Olympe and Celina confidence that their original pictures were 
sufficient. Since their original thinking was broadly consistent with Josh and Arobindo, 
they did not feel the need to revise their pictures to look like Josh and Arobindo’s. This 
may be related to what they saw as the meta rules related to the purpose of the task, as 
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Olympe articulated that if she had needed to explain to another student, she might use 
Josh and Arobindo’s representation. 
These results suggest that dialogic instructional videos shape the development of 
students’ meta rules. Both pairs of students seemed to attend to the videos and use Josh 
and Arobindo’s work as a cue for what type of picture and explanation satisfied the 
task requirements. However, if teachers want to use dialogic videos to develop 
particular meta rules or establish particular expectations for drawings or explanations, 
they should be aware that they will need to go beyond simply showing the videos. This 
could include being explicit about what they found productive about the pictures and 
explanations featured in the videos. Similarly, they may want to consider intentionally 
eliciting and responding to students’ developing meta rules. 
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In this paper, we analyse the use of applications by instructors with different 
backgrounds teaching first-semester calculus in engineering programmes. Adopting 
the perspective of the Anthropological Theory of the Didactic (ATD), we investigate 
the teachers’ sources of these applications, as well as the teachers’ rationales for using 
or not using them. Our results indicate that while teachers may draw on their 
professional experience as a source of real-world applications, some opt to adhere to 
examples provided in the course textbook. Moreover, other constraints, such as the 
perceived size of the syllabus, the heterogeneity of classes, and the students’ lack of 
advanced knowledge may hinder teachers’ use of applications. 

INTRODUCTION 
The teaching of mathematics to engineering students has been a topic of interest at 
conferences and among researchers in mathematics education for more than a century. 
Slaught (1908) writes that at the Chicago Symposium on Mathematics for Engineering 
Students in December 1907, concern was expressed over the need to anchor 
mathematics courses to concrete applications: 

There is no better place than the mathematics classroom to develop logical thinking, but 
this must be done in connection with well-selected concrete problems, and not in the 
domain of abstract and theoretical considerations (Slaught, 1908, p. 281). 

Although this issue dates to the beginning of the last century, it remains a concern in 
engineering education today. In their pioneering work, Kent and Noss (2003) 
interviewed mathematicians who teach mathematics in engineering programmes, as 
well as engineers who teach other courses. The authors point out that although 
mathematics are an important element of engineers’ education, a fundamental issue 
concerns the type of mathematics needed and the point at which they should be taught 
within an engineering programme; they also note the importance of modelling and 
applications in these programmes. In this vein, López-Díaz and Peña (2022) claim that 
in the first year of a STEM degree it is essential to engage the class by teaching 
mathematics using real-world problems, since this can help students develop 
mathematical thinking for practical applications and strengthen their ability to draw 
connections between mathematics and the engineering disciplines. The mathematics 
taught in engineering programmes have been described as disconnected from the 
practices of professional engineers. For instance, Quéré (2017) sent an anonymous 
online questionnaire to practicing French engineers to ascertain their mathematical 
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needs in the workplace. Only 47% of the 267 respondents declared that they have a 
real need for university mathematics in their daily work, and their most frequent use of 
mathematics involved simulations, modelling, data analysis, and calculations. 
More recently, with respect to the training of engineers, Peters (2022) and Faulkner et 
al. (2020) also advocate for a teaching of mathematics that is more integrated and 
contextualized to the needs of engineering students. Complementing this argument, 
Castela and Romo-Vázquez (2022) argue that there is a need for more research into 
mathematics used in the workplace, in order to provide mathematics teachers with a 
better understanding of the professional contexts (engineering in particular) that use 
mathematics in non-academic ways. 
We are interested in exploring the use of applications in the teaching of mathematics 
to engineering students, with a particular focus on calculus courses. Teachers in 
engineering programmes usually come from a variety of professional and academic 
backgrounds, yet there is scarce research on how their backgrounds influence their 
teaching practices. Our study focusing on two teachers with different backgrounds and 
professional experience (González-Martín & Hernandes-Gomes, 2020) suggests that 
this experience may provide justifications for their teaching practices and use of 
mathematics. In another project (González-Martín & Hernandes-Gomes, 2021) we 
went further, analysing a case of teachers teaching the same content. We saw 
indications that teachers with different backgrounds may use different applications 
when teaching calculus, with varying degrees of real-world usefulness. We dive deeper 
into this issue in the present study, investigating what types of applications are used by 
calculus teachers with different academic and professional backgrounds in engineering 
programmes, as well as how the teachers’ professional and academic backgrounds 
influence their use of these applications. 

THEORETICAL FRAMEWORK 
Our study focuses on the practices employed by teachers as they prepare and deliver 
calculus courses for engineering students, and how these teachers select and use 
applications. It is appropriate to take an anthropological approach to better understand 
the reasons that support these practices. We therefore use Chevallard’s (1999) 
Anthropological Theory of the Didactic (ATD). 
Praxeologies are a key notion of ATD that allows for the modelling of human activity. 
A praxeology is composed of four components: the types of tasks to be carried out, a 
technique that allows these tasks to be completed, a rationale (or technology) that 
explains and justifies the technique, and a theory that explains and justifies the 
rationales. One important principle of ATD is that institutions influence and put 
constraints on the learning that happens within them, which has an impact on 
individuals operating within the institution. Furthermore, the position that an individual 
occupies in an institution also influences their behaviour. For instance, in a secondary 
mathematics class, when addressing functions, the teacher and students perform 
different tasks and have different responsibilities because they occupy different 
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positions. In our case, we look at teachers who currently occupy the same position 
(teaching a calculus course in an engineering programme), but who have previously 
occupied different positions in other institutions. Consequently, they may approach the 
tasks related to preparing and teaching a calculus course in different ways. 
This large task can be subdivided into various sub-tasks, each with its own technique. 
One sub-task involves preparing and using practical applications to supplement the 
course content, and we are interested in analysing how this sub-task is carried out by 
teachers with different backgrounds. The lens offered by ATD allows us to explore the 
techniques used to accomplish this sub-task; more specifically, we identify and 
investigate the differences in the teachers’ practices, pinpoint the rationales behind the 
teachers’ choices, and determine whether these rationales are influenced by the 
teachers’ previous experience in other institutions. 

METHODS 
In May 2023, we interviewed six calculus teachers on faculty in engineering 
programmes at a private university in São Paulo, Brazil. Each teacher has a different 
academic background (see Figure 1). All interviews took place in Portuguese and lasted 
between 60 and 90 minutes. They were recorded and transcribed, with excerpts 
translated into English for this paper. The interview questionnaire was comprised of 
four parts: 1) demographic questions, which aimed to obtain information about each 
teacher’s academic and professional background; 2) general questions about how the 
teachers prepare for their calculus courses; 3) questions about the applications the 
teachers use involving limits, derivatives and integrals; and, 4) questions on specific 
exercises from the class textbook. 

 

Figure 1: Profile of the six university teachers (B: bachelor, M: master, D: doctorate, 
IP: in progress; NF: not finished) 

Our analyses are ongoing. For this paper, we focus on the interviews with teachers T4, 
T5 and T6, because although all three teachers have a bachelor’s degree in 
mathematics, they each have a different graduate degree, which is more likely to result 
in clear dissimilarities in their practices. We previously provided preliminary data from 
T1 and T3 in González-Martín & Hernandes-Gomes (submitted). 
T4, T5, and T6 teach first-year calculus to engineering students. This course 
(Calculus I) is included in the Basic Curricular Components, a set of courses common 
to all engineering programmes at the teachers’ university. Calculus I is a semester-long 
course that covers functions, limits, and derivatives, and concludes with rate of change 
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and optimisation problems. T4 has been teaching at the university level since 2000 
(24 years) and has taught calculus courses throughout his career. He also worked at a 
bank for three years and as a programmer for two years, which is what led him to study 
mathematics. T5 has been a university teacher since 2018 (six years) and has taught 
calculus for four years. She has eight years of professional experience as a systems 
analyst and six years of experience in analytics, working on big data analysis and 
building statistical models for fraud prevention and credit granting purposes. T6 has 
been teaching at the university level since 2001 (23 years) and has taught calculus 
courses since 2003. Although she does not have professional experience outside 
university, she has taught other courses in engineering (e.g., operational research, 
software for production engineering), in addition to supervising a number of 
production engineering students’ capstone projects. 
After the interviews were transcribed, the teachers’ responses were coded in terms of 
tasks, techniques, and rationales, allowing us to organise the data for analysis. We paid 
special attention to the presence of applications in the teacher’s practices, the repertoire 
of applications at their disposal and their knowledge of the applications they use, the 
reasons behind their decision to use (or avoid) these applications, and the difficulties 
they face in selecting and using applications. Finally, we also attempted to connect 
these issues and the teachers’ choices to their training and professional experience. 

DATA ANALYSIS 
All three participants see their background as a major influence on their approach to 
preparing a calculus course for engineers (Figure 2). 

T4 

Practice 
(Pr.) 

“In my administration courses, when I teach the chain rule, I don’t give a function composed with 
another function, composed with another function… There’s no need. However, here in 
engineering, I do give [the students] a function composed with another function, composed with 
another function, composed with another function. I try to strike a balance, based on the types of 
students in my class.” 

Rationale 
(Rat.) 
Source 
(So.) 

“I know because I did applied mathematics […] and I had to work with differential equations. 
[…] I know that to solve all that, I had to use a lot of maths and I needed complex stuff. I didn’t 
have to deal with easy derivatives like those in the Calc I book.” 

T5 
Pr. “I try to take [the students] beyond the textbook, since I notice that both in calculus and in statistics 

[…], how does that course connect with the real world?” 

So. “I think that having professional experience, mainly in statistics, offers me this possibility of 
bringing that experience to Calculus.” 

T6 Pr. 
[After citing some examples of applications] “How can we leverage our experience so [students] 
can also be exposed to a bit of it, together with maths? […] It’s a bit of this experience that I often 
turn to, at appropriate moments, which makes the class more interesting.” 

So. “I think that my training has helped me develop this ease to recognize applications in engineering.” 

Figure 2: The participants’ views on their background’s influence on their teaching 
practices. 

All participants point to the fact that they are teaching future engineers as a rationale 
for using applications; they feel the need to relate the course content to real-life 
situations. We also observe that T4 uses part of his experience (dealing with 
complicated differential equations) as a rationale for tackling demanding calculations 
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and extensive techniques. In what follows, we provide an overview of how the 
participants materialise this rationale (they teach engineering students, therefore 
connections to real-world scenarios are important) when teaching specific calculus 
content. Figure 3 summarises the participants’ responses regarding limits. 

T4 

Pr. 
So. 

“I provide a very simple model, which is the timing of parking [meters…]. What happens at the top of 
each hour? Then, when you study continuity, it has to do with limits. […] I’d like a lot, but I don’t do it, 
to show examples with pollution in water, which is related to cost. And the purer you want the water, 
the more the cost increases and that tends to infinity. […] I have many examples of applications like 
that, but we have that issue of time and the syllabus.” 

Rat. 
“We are in the first semester, and we end up prioritising procedures. […] We have a huge syllabus […] 
we have to prioritise more key points. […] If I showed several applied examples of limits in engineering 
[…], what’s the cost? The cost may be that I don’t have time for the techniques in derivatives.” 

T5 
Pr. 

“I present some very superficial examples […] Finally, I end up saying ‘[…] besides those simple and 
silly applications, derivatives come from limits.’ And then, when we get to derivatives, I get to show 
some applications that they may grasp.” 

Rat. “Limits, for me… they need to improve, it’s very poor. […] It’s quite complex, you can’t even set an 
example.” 

T6 

Pr. 
“I usually tell them: ‘imagine we have a system, and it depends on a certain value, let it be tension, or 
current, and then I have to get very close to that, without overtaking since then the system could be 
unstable’. I use that intuitive idea a bit, but it is not a very developed application.” 

Rat. 
So. 

“Engineers need that interpretation a lot, not just algebra. […] This comes from my own training. […] I 
saw a lot of that in electronics, in general electricity, electromagnetism, part of microwaves, there’re a 
lot of things. […] You need to analyse […] if the system is stable or unstable.” 

Figure 3: The participants’ use of applications in limits. 
We can see that T4 believes the density of the syllabus places constraints on the number 
of practical examples that he can share from his own experience. At several points 
during the interview, he mentions the pressure to cover all the content in the syllabus, 
which is his rationale for not exploring applications in depth. In a similar vein, due to 
the amount of content she must cover, T5 seems to see limits as a necessary evil to be 
addressed before proceeding to derivatives. T6 manages to provide students with a few 
applications that seem intended to distract from the number of algebraic procedures 
present in the chapter on limits. We can also see how her experience leads her to believe 
in the importance of providing examples to her students. In Figure 4 we summarise the 
participants’ responses concerning derivatives. 

T4 Pr. 

“I start with a profit function. It’s important to know if your profit is increasing or decreasing. […] You 
make a graph, and we observe it. It’s increasing, your profit is increasing here. […] But how do you 
know at a point? I start with the tangent line. […] In engineering, instead of profit, I use a distance 
function […] and talk about speed.” 

So. “Those applications are drawn from [various] books that I work with.” 

T5 

Pr. 

“We start with tangent lines, normal lines, this is physics, used in optics: reflexion, refraction… […]. 
Then we use the first derivative to see growth; then, second derivative to see concavity. Then, this 
application is a bit fake, since it is an application of calculus [used to solve more] calculus. […] But after 
they see in physics… I have a distance as a function of time, you differentiate and get the speed, 
differentiate and get the acceleration. […] This semester, since I was in chemical engineering, I got an 
example from chemistry, from [the book Stewart].” 

So. 

“These applications come from the physics book. […] Let me make a confession. Optimisation 
problems, I get very uncomfortable, since they are like about spherical cows in a vacuum. It’s a thing 
that is not real, there’s a lot like that in the book. […] It’s different than statistics, when I give an example 
[derived from statistics], it makes sense. Ok, let’s study the average consumption of vehicles.” 

T6 Pr. 
Rat. 

“When I tell students that the next concept is in the part about optimization […] you use applications 
from physics. […] And our syllabus is coordinated with that of physics. Then, they see it in physics and 
in calculus. […] [regarding the use of realistic applications], there’s quite some distance [from reality]. 
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What happens is that, to do a realistic application, we’d have to go deeper. We’d need to have more 
physical, mechanical tools. To be able to talk about electricity, for instance […] why do they study it 
much later? [to support the idea that students need more content]” 

Rat. 
So. 

“Groups are heterogeneous now, they’re not only production or only mechanical [engineers] […] This 
makes things harder. […] The applications are drawn a bit from my training, from my experience, from 
the book.” 

Figure 4: The participants’ use of applications in derivatives. 
T4 and T5 rely mostly on textbooks for applications, drawing less on their experience. 
This seems consistent with the study by Mesa and Griffiths (2012), which shows the 
influence of textbooks at the university level. It is possible that the perceived 
importance of textbooks puts pressure on teachers to use them. In the case of T5, it is 
also possible that because her professional experience was more centred around 
statistics, this may explain her hesitancy to provide applications other than those 
present in the textbooks she uses. As for T6, her experience with electricity had little 
to do with derivatives, which could also explain her reliance on the textbook. We also 
identify two rationales related to organisational decisions made by the faculty of 
engineering: the students represent a mix of engineering specialties, and the teachers 
are reluctant to present applications that may interest only a portion of the class. In 
addition, because calculus is a first-semester course, T5 feels that she cannot use many 
real-world applications, given the students’ lack of advanced knowledge. In Figure 5, 
we summarise the participants’ responses concerning integrals. 

T4 Pr. “I basically teach techniques of integration, calculation of areas, improper integrals, arc length.” 
Rat. “I think they see [applications] in physics.” 

T5 
Pr. 
So. 

“The fact that it is an area. […] In some exercises, we do the rotation of the axes, and there’s an exercise 
where I demonstrate the volume of a sphere. […] The strongest application that I mention […] is 
probability, which is my area of knowledge. Then, it’s quite easy to talk about probability […] and there 
are many examples, many estimations […] and you are constantly calculating integrals. […] For them, 
it’s okay. I don’t think that there is much diversification in terms of applications of integrals.” 

So. The book is a resource for applications, and she draws on her experience when talking about probability. 

T6 

Pr. “In integrals, I talk a bit about what I know concerning electronics. There are many [applications] I can 
use, but in this course, we mostly calculate arc length, volume, areas…” 

So. 

“The other day, a production engineer sent me the design for a company’s packaging […] They needed 
to calculate the maximum volume for a certain product. […] [She] just had to calculate the integrals, 
then add everything and you get the total volume. […] I mean that, in practice, they also use [integrals].” 
“Many [applications] come from the book. I remember a few applications in electricity, right? But many 
come from books and physics.” 

Figure 5: The participants’ use of applications in integrals. 
T4 uses another rationale to explain why he does not use applications when teaching 
the chapter on integrals: students will encounter these applications in another course 
(physics). This rationale is likely connected to his previous one about the density of the 
syllabus and the lack of time to cover the content. Regarding T5, although she seems 
to rely on the textbook here too, she manages to draw connections to her background 
and experience. Finally, T6 seems to balance her use of the textbook with examples 
pulled from her own experience working on electrical engineering projects. 
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FINAL CONSIDERATIONS 
While some of our results are fairly predictable, our study also reveals important 
phenomena. As expected, and as observed in González-Martín & Hernandes-Gomes 
(2021, submitted), teachers’ academic and professional backgrounds can provide a rich 
source of material to enhance their teaching in the context of an engineering 
programme. However, building on the results of our previous publications, it seems 
that certain profiles are less apt to yield realistic, engaging applications, as seems to be 
the case with T4 and T5. Although all three teachers believe it is important to use 
applications in their courses, they employ different techniques that reflect their degree 
of familiarity with the use of limits, derivatives, and integrals, in simple and accessible 
contexts suitable for first-year students. 
Not all of the participants have professional engineering experience, which may be the 
root of a phenomenon that has been less obvious in our previous papers. These 
participants list a number of external constraints that they use as rationales for not using 
applications or for not elaborating on them. We also observe that textbooks carry a 
good deal of weight for these participants. This phenomenon, already observed at the 
university level (e.g., Mesa & Griffiths, 2012), could be related to whether the teachers’ 
background and experience is pertinent to the course they are teaching. The constraints 
identified by the participants include: 1) an overloaded syllabus, which they describe 
as creating pressure to avoid other material in order to cover the course content; this 
results in applications being excluded, with the further rationale that students will 
encounter them in other courses; 2) certain content is seen as a stepping stone to other 
content (such as limits leading to the study of derivatives), which may explain why 
some applications are set aside to leave room for the “important” content; 3) first-year 
classrooms are heterogeneous, with students on track to study different specialisations, 
presenting a challenge for teachers who feel they cannot cope with such a wide range 
of needs; 4) first-year students are limited in their knowledge, which makes it harder 
to use real-world applications. 
Our study shows that while calculus teachers in engineering programmes acknowledge 
the influence of their background and professional experience on their teaching 
practices, they also believe that these practices, and the decisions behind them, are 
limited by certain constraints. We intend to pursue this line of research to better 
understand how these elements combine, in order to provide recommendations to 
postsecondary institutions for improving the training of mathematics teachers in these 
programmes. 
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BEYOND IMMEDIATE ERROR REPAIR: HOW TO SUPPORT 
TEACHERS’ DECISION MAKING FOR ENHANCING 

UNDERSTANDING: AN EXPERIMENTAL STUDY 
Sebastian Gross and Susanne Prediger 

IPN Leibniz-Institute for Science and Mathematics Education, Berlin, Germany 

How can diagnostic reports from formative assessment tools support teachers to derive 
decisions for enhancing students’ understanding? In an experiment with 178 teachers, 
we compared two support conditions: The Error-Analysis report analyses student er-
rors in detail, the Next-Goal report additionally explicates the next learning goal for 
this student. A quantitative analysis of teachers’ task selections revealed that teachers 
using Next-Goal reports tended to select tasks focusing on more foundational learning 
goals than teachers using Error-Analysis reports and that they justified their selections 
significantly more often by referring to the essential learning goals. We conclude that 
Next-Goal reports can indeed better support teachers’ targeted decision making. 

INTRODUCTION: SUPPORT FOR DECISIONS AFTER ASSESSMENTS 
After noticing (identifying and interpreting) student errors, many mathematics teachers 
need support for their decision making, i.e. to decide how to engage with these errors 
in ways that really can enhance students’ understanding (Brodie, 2014). Formative as-
sessment tools have the potential to support teachers in noticing their students’ under-
standing and to derive adaptive and targeted decisions about enhancing it (Black & 
Wiliam, 2009), in particular when curriculum materials for enhancing understanding 
are provided that follow thoroughly designed learning trajectories (Siemon, 2019). But 
while different feedback modes for students in formative assessments have extensively 
been studied, little is known about how to best support teachers in their decision mak-
ing based on formative assessments through diagnostic reports (Olsher et al., 2023). 
As diagnostic reports for teachers can have different designs, we ask:  
To what extent does the design of diagnostic reports in formative assessments  
have an impact on teachers’ decision making for enhancing students’ understanding?  
This research question was pursued in an experimental study with 178 practicing teach-
ers for one selected concept in Grade 5: understanding of multiplication. We selected 
this basic concept, which students should have learned in Grade 2, because many stu-
dents even in Grade 5 still hold only shallow knowledge of its meaning. Many German 
Grade 5-10 mathematics teachers, however, have not been sufficiently prepared for 
deepening this shallow knowledge (Prediger & Wischgoll, 2023), so that formative 
assessment bears some promise to support more targeted decisions. 
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THEORETICAL BACKGROUND 
Learning trajectory for multiplication 
The long-term learning trajectory for multiplicative thinking spans several years (Sie-
mon, 2019), in which one critical step is the learning goal of understanding multipli-
cation by the underlying unit structures (Clarke & Kamii, 1996). This learning goal is 
focused on in the Mastering Math formative assessment and enhancement materials 
(Prediger, 2022). It is unpacked into three sub-learning goals and sequenced as follows: 
(1) counting in units (e.g., in pre-structured graphical representations of dice pictures 
as in the example Task 1 in Figure 1), (2) translating counting in units to symbolic 
multiplication, and (3) imposing unit structures onto the unstructured situations (start-
ing with dot arrays), then connecting them to multiplication. This local learning trajec-
tory for one or two sessions starts with eliciting students’ experiences with prestruc-
tured figures like the dice, where talking about units (“five threes”) is familiar to stu-
dents (Task 1), who then only need to connect this to the symbolic multiplication. 
Based on this experience, teachers can focus mainly on imposing the unit structure in 
unstructured figures as in Task 5. This is needed in Task 7 to overcome a typical mis-
conception for counting only edges in the “L-figure.” 
Teachers’ noticing and decision making for multiplication  
Teachers’ noticing and decision making often focuses on procedural skills or superfi-
cial aspect, less on understanding (Prediger & Wischgoll, 2023; Siemon, 2019). As a 
background, studies have identified many teachers’ short-term practices striving for 
immediate error repair instead of longer-term plans for enhancing the underlying un-
derstanding (Brodie, 2014; Prediger, 2022). For planning longer-term enhancement 
practices, expert teachers were found to unpack conceptual learning goals into finer-
grained subgoals to sequence the subgoals into local learning trajectories and use them 
as diagnostic categories for noticing and decision making to successively enhance stu-
dents’ understanding along the learning trajectory (Gross et al., submitted).  

             
 Figure 1: Local learning trajectory: Unpacking the learning goal for understanding 
multiplication into three subgoals with successive tasks for enhancing understanding 
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Diagnostic reports in formative assessment: Back to immediate error repair? 
Formative assessment tools have been advertised for their potential to support teachers 
in noticing and adaptive decision making (Siemon, 2019; Black & Wiliam, 2009). So 
far, however, available diagnostic reports have tended to only include students’ errors 
and their diagnoses (Olsher et al., 2023), here called “Error-Analysis reports.” Since 
teachers were often reported to struggle with deriving appropriate goals for their stu-
dents after error analysis (Brodie, 2014), we hypothesized that it might be more sup-
portive for teachers when diagnostic reports contain the backgrounds of errors and also 
point to subsequent learning goals. In this paper, we test this hypothesis.  

METHODS 
Methods of data gathering for the quantitative support experiment 
Dependent and independent variable. As the dependent variable of our support ex-
periment, we assessed teachers’ decision making for selecting enhancement tasks (Item 
1a in Figure 2) and for justifying these selections (Item 1b). As the independent varia-
ble, two different support conditions were compared: Error-analysis reports analyze a 
student error in detail, and Next-Goal reports add an explicit articulation of the next 
learning goal for the student in view (diagnostic reports in Figure 2). As a control var-
iable, we assessed how teachers analyzed a student error and reacted to it without di-
agnostic reports (Item 0, Prediger & Wischgoll, 2023). Items 0 and 1 treated the same 
error for two students (superficially translating a multiplication to a figure focusing 
only on edges standing for factors, without representing the unit structure). Teachers 
received support only in Item 1 by means of a detailed Error-Analysis report (and with 
a Next-Goal report, the additional information that unitizing was the next important 
learning goal for Lisa, who was not yet acquainted with multiplicative structures).  

 
Figure 2: Research design: Variables and items in the support experiment 

  



Gross & Prediger 

 

PME 47 – 2024 2 - 267 

In Item 1a, teachers were asked to select one or more from 3 (unnumbered) tasks for 
enhancing Lisa’s understanding (shortened in Figure 1). Teachers who favorize  im-
mediate error repair were expected to choose Task 7, whereas teachers searching for a 
safe foundation building on students’ assets might use the dice in Task 1 (counting first 
in pre-structured units) before actively unitizing, i.e., imposing unit structures onto dot 
arrays for translating them into multiplications in Task 5 (in which dots first have to be 
gathered in groups before counting the new units). In Item 1b, we expect a justification 
of the selected tasks by referring to these learning goals involving unit structures. 
Data gathering procedures. The diagnostic reports and items were integrated as a 
professional development (PD) activity starting with the third session of a synchronous 
online PD program on enhancing student understanding for basic arithmetic concepts. 
The first two Zoom PD sessions had treated general approaches for enhancing under-
standing and substantiated them for the place value system, but not yet for multiplica-
tion. Items 0-1 (from Figure 2) were administered in a Moodle course as the Think 
phase of a Think-Pair-Share routine.  
Sample and cluster-randomized assignment. In total, 214 practicing teachers (of 
Grades 4-6 mathematics classes) participated in the PD session. Teachers from the 
same school were treated as clusters (of 1-4 teachers each), which were randomly as-
signed to the support conditions of Error-Analysis or Next-Goal reports. Our study 
sample consisted of 178 teachers who completed the activity and gave informed con-
sent to use their Moodle data for research purposes. Their teaching experience ranged 
from 0-43 years, with median 9 years. Teachers in both conditions did not differ sig-
nificantly in both teaching experience and the control variable: For the codes on Item 
0, the t-test revealed t(176) = 0.82 and p = .2066. This means without the support of 
diagnostic reports, teachers in both conditions reacted similarly to student errors. 
Methods of data analysis  
Coding. In Step 1, teachers’ task selections were coded (as they mostly chose either 
only 7, 5-7, 1-7, or 1/ 7, we coded the first selected task).  
Code for addressed learning goal Anchoring example 
No conceptual learning goal 
addressed 

“Lisa gets dot arrays and can search  
for the task.” 

Other conceptual learning goals 
addressed (not listed in Figure 1) 

“Lisa can see that in the dot array,  
the factors can be switched.” 

Unit structures addressed  
as general learning goal 

“The task addresses the principle  
of unit structure.” 

Unit structures addressed and unpacked 
into at least one learning subgoal 

“She has to understand that each group  
must have the same amount of dots.” 

Table 1: Anchoring examples for coding teachers’ justification  
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In Step 2, teachers’ written decisions (reactions to student error in Item 0 and justifica-
tions for task selection in Item 1b) were deductively coded, based upon the coding 
scheme adapted from Prediger and Wischgoll (2023; see Table 1). 
Statistical analysis. In Step 3, we tested our hypotheses (explicitly articulated below) 
by means of χ2-tests and t-tests on significance levels of 5%. 

RESULTS 
Support potential for selecting tasks for enhancing understanding 
With respect to teachers’ decisions on selecting appropriate tasks, we hypothesized that 
H1. Teachers supported by the Next-Goal report will select more targeted tasks than 
those with only the Error-Analysis report.  
The upper part of Figure 3 shows which tasks the teachers selected in Item 1a for en-
hancing the understanding of the fictitious student Lisa. Under both conditions, 11% / 
12%, resp., of the teachers went immediately to Task 7, which targets Lisa’s misun-
derstanding directly (matching representations). These teachers strove for immediate 
error repair without realizing the better learning opportunities in Tasks 1 and 5 for the 
unit structures needed to represent the multiplication in the dot array and understand 
why the L-shaped figure does not match. Under both support conditions, the majority 
chose Task 5, focusing on the next learning goal (55 vs. 50 teachers, i.e., 56% vs. 62%), 
and 33% of those with Next-Goal reports (referred to as “NGR-supported”) and 26% 
with Error-Analysis reports ( “EAR-supported”) selected Task 1, which targets the 
foundations of the unit structures by explicitly relating them to a student’s asset. The 
overall numbers showed that both reports seemed to have supported the teacher in 
striving less for immediate error repairs than in other studies, but the difference be-
tween both groups was not significant in the χ2-test (p = .61). So, H1 cannot be con-
firmed at all for the immediate error repair. For starting with foundations, we see a 
small but non-significant tendency. 

 
Figure 3: Differences in support conditions (Next-Goal and Error-Analysis reports) 

for selecting tasks and justifying task selections 
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Support potential for justifying task selections  
With respect to teachers’ goal-setting decisions expressed in their justifications of the 
task selections, we hypothesized that 
H2. Teachers supported by a Next-Goal report will explicitly address the learning goal 
of multiplicative unit structures more often than those with an Error-Analysis report.  
The lower part of Figure 3 reveals that none of the reports automatically led to address-
ing conceptual learning goals: 25 % / 27% did not write any justification (missing), 
and 44-46% justified their task selection without any conceptual learning goal. But 
large differences occurred among the other 30%: Whereas only 3 NGR-supported 
teachers referred to other conceptual learning goals that were not directly relevant for 
Lisa’s learning progression (e.g., commutativity), 13 EAR-supported teachers did (3% 
vs. 15%). In contrast, 16 NGR-supported teachers addressed unit structures as a general 
goal that had not yet been unpacked into subgoals while only 2 EAR-supported teach-
ers (18% vs. 2%) did. Interestingly, only 7 NGR-supported teachers unpacked the goal 
into at least one of the subgoals, but 11 in the less supported condition (8% vs. 12%) 
did. The χ2-test for both codes addressing unit structures against the rest (striped in 
Figure 3) was significant (p = .0271).  
We conclude that we have to refine the H2: While teachers supported by a Next-Goal 
report referred to the next learning goal in their justification significantly more often 
(unpacked or not unpacked), they less often adopted the unpacked subgoals offered in 
the report. Teachers with the Error-Analysis report, in turn, addressed the learning goal 
less often. Those few who did, however, more often unpacked it into refined subgoals. 
We assume this group comprised mainly those teachers not in need of support. 
This finding led us to an analysis combining Items 1a and b: In the bar diagram of 
Figure 4, each bar represents a group of teachers who selected a particular task as start-
ing task. Within each bar, we represent the relative frequency of addressing the unit 
structures goal, a significant distinction between conditions in Figure 3. Among those 
teachers who selected Task 1 or Task 7, no difference occurred between both support 
conditions: 0% of the teachers who went immediately to Task 7 explicitly addressed 
the learning goal of unit structures, while 21%/22% of those who selected Task 1 did.  

 
Figure 4: Relative distribution of addressed learning goals in justifications for each 
selected task under two support conditions (Next-Goal and Error-Analysis reports) 
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But within the group of teachers who selected the targeted Task 5, the relative distri-
bution differed substantially: While 15% (8 of 55) of EAR-supported teachers named 
unit structures as goals, 34% (17 of 50) of NGR-supported teachers did. This difference 
is highly significant (t(103) = -2.38, p < 0.01) with a small effect size of d = .46. 

SUMMARY AND DISCUSSION 
In spite of a large body of research on mathematics teacher noticing and decision mak-
ing with respect to student errors (Brodie, 2014), few studies have investigated how to 
support this decision making through appropriate and time-efficient formative assess-
ment approaches (Siemon, 2019; Olsher et al., 2023). Our study analyzed whether 
teachers could be supported by providing advice for learning goals (Next-Goal reports) 
and not just the backgrounds of students’ results (Error-Analysis reports).  
The study faced methodological limitations in that only two items were analyzed, and 
some teachers problematized time constraints during data gathering, so in future re-
search, more time must be planned. But still, the findings from 178 teachers provide 
valuable insights into support potentials of different diagnostic reports.  
Analyzing the background of the error in the Error-Analysis report and suggesting 
three enhancement tasks (to select from) was already very substantial support: In 
Item 0 (without diagnostic report), only 17% of the teachers suggested any reaction 
explicitly alluding to making the fictitious student Torben aware of the underlying unit 
structures, and these frequencies resonate with a previous study (Prediger & Wischgoll, 
2023). But with the reports, 88% / 89% of the teachers, resp., selected tasks that helped 
them work on learning goals that were suitable for Lisa’s error.  
Hypothesis H1 (assuming differences between two support conditions for teachers’ 
task selection) could not be confirmed, as only a slight but non-significant tendency 
occurred to choose Task 1 more often than Task 5. For selecting the tasks, the Next-
Goal did seem to hardly help more than the Error-Analysis report. 
Hypothesis H2 (assuming differences between two support conditions for teachers’ 
justifications of task selection), on the other hand, could be substantiated in a refined 
manner. As expected, effects of diagnostic reports were not explicitly visible for all 
teachers (as they might have good goals in mind without articulating them in written 
justifications). But we observed that significantly more teachers with Next-Goal re-
ports explicitly alluded to learning goals of unit structures (26% vs. 13%) than those 
with Error-Analysis reports (Figure 3). The refined analysis in Figure 4 revealed une-
qual distributions for groups of teachers according to their selections of tasks. It was 
remarkable to us that the support effect of the Next-Goal report was entirely concen-
trated on teachers choosing Task 5 as their starting task: In this group, more than twice 
as many teachers explicitly referred to unit structures (34% vs. 15%, a highly signifi-
cant difference). Given the state of research, we might explain this concentration as 
follows: More teachers who were completely guided by short-term intentions to repair 
errors (by immediately going to Task 7) seemed to be less attentive to the error analysis 
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and suggested next learning goals than those who sought to enhance the underlying 
understanding, which resonates with observations by Brodie (2014). In contrast, teach-
ers who believed in working through the complete learning trajectory as suggested by 
the materials, might not have needed to read the advice, but rather started with Task 1 
anyway (as also found in an interview study, Gross et al., submitted). The support ef-
fect, therefore, was concentrated on a third group. In the future, we intend to investigate 
in how far the advice about next learning goals has an impact on teachers’ moderation 
strategies when working on the task with the student in a well-aligned way.  
Overall, the support experiment provided evidence that at least some teachers can in-
deed be supported without time- and money-intensive professional development pro-
grams (Prediger, 2022), as subtle differences in the design of a diagnostic report can 
already have significant effects. However, the design needs to be further developed to 
reach more of the teachers (Olsher et al., 2023). 
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