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REASONING QUANTITATIVELY ABOUT THE LUNAR PHASES 

Nicole Panorkou and Amanda Provost 

Montclair State University 

We discuss how students’ reason quantitatively as they explored the lunar phases in 

an interactive computer simulation we designed to integrate math and science 

learning. We illustrate different forms of students’ quantitative operations as they 

reason about the moon in its orbit. 

As the importance of integrated education continues to grow, more research is needed 

to determine how to strengthen the reciprocal relationship between mathematics and 

science by providing meaningful learning opportunities where the mathematics support 

the science learning, and the science learning supports the mathematics learning 

(Fitzallen, 2015). In our prior work, we have shown that students can express 

sophisticated forms of mathematical reasoning while engaging with the activities and 

dynamic simulations we have designed to integrate mathematics content into earth and 

environmental middle school topics (e.g., Panorkou & Germia, 2020). In line with 

these efforts, recently we presented a preliminary analysis on how one pair of students 

have reasoned covariationally and multiplicatively about the lunar phases (Provost & 

Panorkou, in press). This paper expands this work by examining the reasoning of three 

more students and comparing this reasoning to our previous preliminary analysis. 

BACKGROUND 

The scientific phenomenon of the lunar phases is a prominent curriculum topic in 

middle school in the United States (NGSS Lead States, 2013). This is often a 

challenging topic for students as they usually have alternative conceptions for the cause 

of the lunar phases such as believing that some object blocks part of the moon (e.g., 

Wilhelm et al., 2022). To address this difficulty, our research group designed the Moon 

Pie simulation (Figure 1a) to model the relationship between the moon’s revolution 

around the earth and its different phases. The user can drag the moon around in its 

orbital path, observing the resulting changes in its phase as displayed in the picture-in-

picture view of the moon as seen from earth. The simulation displays a readout of the 

number of days elapsed during the moon’s orbit using a 28-day approximation of a 

lunar month. (Note that it takes the moon approximately 29.5 days to travel around the 

earth.) To support students to make a connection between the phases and the position 

of the moon in relation to a full orbit, the simulation presents the moon’s travel 

measured in days, degrees, and fractions of a full orbit. For example, Figure 1a shows 

the First Quarter moon on Day 7 of this 28-day month. Students can toggle overlays 

displaying measurements of the moon’s progress through its orbit in both degrees (blue 

overlay) and fractions (yellow overlay) to see how these measurements are related to 

each other and to the number of days elapsed. When both overlays are toggled on, they 

combine to form a green overlay. Figure 1b shows the quantities of time of travel (in 
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days), wedge of the orbit (as a fraction), and arc of the orbit (in degrees) that are 

associated with each lunar phase. We also designed probing questions to support 

students’ reasoning of mathematical relationships as they explore the simulation, such 

as: What do you notice?, What is changing? How is it changing?, What fraction of the 

orbit is it from [Lunar Phase] to the [Lunar Phase]?, and How many degrees of the 

orbit does it take for the moon to get from [Lunar Phase] to [Lunar Phase]? 

  

Figure 1: The Moon Pie simulation (left). The measures in each Lunar Phase (right) 

In our preliminary analysis (Provost & Panorkou, in press), we examined the 

quantitative reasoning of one pair of students as they engaged with the Moon Pie 

simulation. We refer to a quantity (Thompson, 1994) as a conceived attribute of an 

object or phenomenon that is measurable. For example, students reasoned about the 

position of the moon in its orbit or distance travelled in terms of the quantities of the 

fraction of the circular orbit traced or the degrees of the arc generated. Students 

reasoned about the variation in a single quantity and coordinated the simultaneous 

variation in multiple quantities, engaging in covariational reasoning (Thompson & 

Carlson, 2017). For instance, students reasoned that as the moon moves in its orbit, the 

arc of the moon’s orbit measured in degrees increases, and the number of days of travel 

also increases. Students also used co-splitting, a form of covariation in which any 

multiplicative change in one quantity is coordinated with the same multiplicative 

change in the other quantity (Corley et al., 2012). For example, they reasoned that when 

the arc of the moon’s orbit triples, the fraction of the orbit also triples. Overall, the 

Provost and Panorkou (in press) study illustrated some forms of reasoning that are 

possible when students engage with the Moon Pie simulation and our questioning. This 

paper presents our further analysis with more students that provided additional 

evidence to support these forms and shed light into some novel forms of reasoning not 

reported on before. Specifically, we examined: In what ways do middle school students 

reason quantitatively about lunar phases when utilizing our simulation design, and 

how does this compare to our preliminary findings? 
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METHODS AND ANALYTICAL FRAMEWORK 

We analysed the reasoning of three more students from the same whole-class design 

experiment (DE) (Cobb et al., 2003) as the Provost and Panorkou study, which was 

conducted in a sixth grade (11-12 year old) classroom in northeastern U.S.A. Students 

spent two 40-minute sessions working with the Moon Pie simulation. These sessions 

were conducted over Google Meet due to COVID-19 and were video-recorded.  

This paper reports on how the reasoning of this new group of students, Gaelyn, Jami, 

and Ghina, compares to our previous analysis. In addition to covariational reasoning, 

we were particularly interested in the forms of quantitative operations (Thompson, 

1994) that students used. For example, students may use repeated addition (Fischbein 

et al. 1985), such as reasoning about the distance from the New Moon to the Full Moon 

in terms of 45° + 45° + 45° + 45° = 180°. Students may also reason multiplicatively 

using the coordinated measurement approach (Izsak & Beckmann, 2019) of N×M=P, 

where N is the number of degrees, days, or a fraction of orbit in one group, M is the 

number of groups the distance from two phases makes, and P is the total distance from 

two phases. For instance, reasoning about the distance from the New Moon to the Full 

Moon in terms of 45° per group × 4 groups = 180°. We also examined whether they 

exhibited one-dimensional forms of reasoning (single quantity) or if they constructed 

any multiplicative objects (Thompson & Carlson, 2017), which entails the coupling of 

two quantities from the Moon Pie simulation. As Thompson and Carlson (2017) 

describe this as: “A person forms a multiplicative object from two quantities when she 

mentally unites their attributes to make a new conceptual object that is, simultaneously, 

one and the other” (p. 433). 

FINDINGS 

We first report on the quantities students constructed as they used the Moon Pie 

simulation and then discuss how they reasoned about single or multiple quantities, what 

we refer to as one- or two-dimensional forms of reasoning. 

Constructing quantities 

Students were asked to describe what is changing in the simulation and how. The 

students constructed the position of the moon as the controllable quantity, and 

discussed the resulting changes in time in orbit, wedge of the orbit, and arc of the orbit. 

For instance, Jami stated, “when you move the moon [moved it to Full Moon], the 

fraction changes at a certain point. For example, this is one-half, and then also the 

degrees changes.” Gaelyn described, “if we change the position of the moon, that will 

change the name of lunar phase and it will also change the number of days and the 

visible part of the moon, the degrees of moon’s orbit, and the fraction of moon’s orbit.” 

One-dimensional forms of reasoning 

Students were then asked a series of questions that probed them to identify the fraction 

travelled from New Moon to First Quarter to Full Moon to Third Quarter to New Moon. 

They used additive reasoning to identify that the fraction of the orbit’s wedge travelled 
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between each of these phases would be one-fourth. For instance, from the First Quarter 

to Full Moon, Gaelyn explained that, 

“it will be one-fourth because the Full Moon is one-half of the whole orbit, of all the phases, 

and one quarter is one-fourth so subtract one-quarter from one-half that will be another 

quarter.” 

Here Gaelyn had identified the fraction of the orbit’s wedge for the Full Moon and 

First Quarter moon phase positions and used subtraction to find their difference. (Note 

her use of “one quarter” instead of First Quarter.) Similarly, when asked about the 

fraction of the orbit travelled from First Quarter to Third Quarter (Figure 2), she stated, 

“Well, what I thought is one-fourth to three-fourths and the difference between that it’s 

two-fourths, and two-fourths as a fraction is equivalent to one-half.” Ghina also used 

subtraction of fractions reasoning that, “three-quarters minus one-quarter is two-

quarters, which is one-half.” In a similar manner, when asked to identify the degrees 

travelled from the same two phases, Gaelyn and Ghina subtracted the difference in 

degrees between the two positions. As Ghina explained, “it’s going to be 180 because 

when you’re at First Quarter it’s already 90° and Third Quarter is 270°, and the 

difference between 270 and 90 is 180.” Likewise, Gaelyn argued, “Well, it would be 

from 90° to 270° and the difference between that would be 180°.” 

The third student, Jami, constructed a quarter of the orbit as a unit which she iterated 

using repeated addition stating, “So First Quarter and then we have to get to Third 

Quarter, [moved the moon to the Full Moon position] that’s one quarter and then 

[moved the moon to the Third Quarter position] that’s two quarters which is one-half.” 

Likewise, to find the degrees travelled, Jami iterated by 90° explaining, 

“Also, I think it’s 180 because when you’re at First Quarter [moved moon to First Quarter] 
and then it’s 90° to get to Full Moon [moved moon to Full Moon] which is the next lunar 

phase, and then 90° to get to Third Quarter [moved moon to Third Quarter] which is 90 

plus 90 is 180. So, it’s when you’re traveling 180° to get to Third Quarter.” 

Jami’s statements show that she recognizes a quarter wedge to be equivalent to one-

fourth of the orbit and 90°, and uses this as a unit of measure to find the distance 

travelled between phases (Figure 2a): 

“Full Moon to the next First Quarter, I said it was three-fourths [moved the moon to Full 

Moon position] because if you go, so from Full moon to [moved the moon to Third Quarter 

position] Third Quarter, that would be a one-fourth, then two-fourths [moved the moon to 
New Moon position] from Third Quarter to New Moon. And then three-fourths would be 

[moved the moon to First Quarter position] from New Moon to First Quarter.” 

On the contrary, Ghina and Gaelyn’s reasoning showed that they constructed one-half 

of the orbit or 180° as a composite unit that they used whenever they were asked to 

find a larger distance. For example, for the same distance, Gaelyn stated: 

“I know that the Full Moon is at one-half and to finish the next cycle, it would be another 

one-half so, and then to finish up to another First Quarter would be one-fourth, I would 

add one-half and one-fourth together and get three-fourths.” 
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Likewise, for finding the degrees, Ghina explained, 

“I was going to say 270°. Because when you’re like the Full Moon, and then you head to 

New Moon that’s 180°, I’m pretty sure. And then, and then you go travel another 90° to 

First Quarter, and 90 plus 180 is 270.” 

The three students also reasoned multiplicatively using coordinated measurement. For 

example, when asked about the total number of degrees travelled to complete two full 

orbits, Gaelyn and Ghina showed that they even constructed 360° or a full orbit as a 

composite unit (a group) that they multiplied by two. As Gaelyn explained, “Because 

a circle is 360° and that’s when it orbits twice, you have to multiply 360 by two and 

that would be 720.” Ghina gave a similar explanation, “Since we know that, to get it 

done once 360°, so we just multiply by two to get 720° since we want two times.”  

Similarly, Jami used a coordinated measurement approach to explain that her unit 

(group) of 90° can be multiplied by four to get the total 360° of the orbit. When asked 

how the math helps with the science in the simulation (Figure 2b), she explained, 

“The math helps us with the science because if you know, a 90°, it’s like 360° and 90° 

angles, you’ll know that 90°, well 90° times four is 360. And then there’s four main points 

[moved the moon to each phase as she mentioned it]: the New Moon, the First Quarter, the 

Full Moon, the Third Quarter, and the next New Moon. So, [moved the moon to each phase 
she mentioned] if you know then the First Quarter is 90°, second quarter is Full Moon, the 

Third Quarter is another 90°, and the next New Moon is 360° which is plus another 90.”   

a) 

 

b) 

 

Figure 2: a) Travel from Full Moon to next First Quarter; b) The ‘four main points’. 

While students were using either fractions or degrees in their explanations based on the 

question asked, their reasoning showed traces of coupling the quantities of fraction of 

the orbit and the degrees of the orbit. For instance, in the statement above, Jami’s use 

of “second quarter” to refer to Full Moon shows that her construction of the unit entails 

both quantities. Also recall Gaelyn’s use of “one quarter” instead of First Quarter at 

the beginning of this section. The next section describes their coupling of quantities as 

multiplicative objects in more depth. 

Two-dimensional forms of reasoning 

As they explored the simulation, students first coupled the quantities of the wedge of 

the orbit and the time in orbit. For instance, when discussing the quarter phases (First 

Quarter, Full Moon, Third Quarter, New Moon), Jami stated, 



Panorkou & Provost 

  

4 - 6 PME 47 – 2024 

“they’re using instead of like the 28 days, they are using fourths to simplify it. … Because 

the moon phases are broken up into quarters so that’s why the first quarter gets its name, 

and so using for example 7/28 you would simplify it down to one-fourth.” 

Jami elaborated on this relationship later by using equivalent fractions, 

“And you can also use them [fraction of the orbit] for 28 days, you can make the 

denominator 28 instead of four, and you can make the numerator the correct day. So, for 

example, First Quarter would be seven-twenty eighths.” 

We interpret her reasoning to show that she recognizes that there is a fractional measure 

of the wedge for every measure of the time in orbit in days, illustrating the simultaneous 

coupling of the two quantities. Likewise, when Gaelyn was discussing the moon 

travelling from First Quarter to Third Quarter she stated (Figure 3), 

“because I know from First Quarter to Third Quarter it’s another way of just writing a line 

vertically down the middle and that would be one-half and the total degrees of a circle is 

360 and a half of that would be 180.” 

Both students’ statements show that they performed the same operation on both 

quantities simultaneously. For instance, Gaelyn coordinated that splitting a circle in 

half entails co-splitting the arc of a full orbit in half. 

 

Co-splitting 

 

Figure 3: Gaelyn’s reasoning about travel from First Quarter to Third Quarter moon. 

We noticed that students’ coupling of the quantities of wedge of the orbit to the arc of 

the orbit led to a construction of two-dimensional units of measure. For instance, when 

asked how the fraction of the orbit is related to the number of degrees travelled, Gaelyn 

responded, “I found out that 90° is how much every one-fourth is. That’s the pattern.” 

We interpret Gaelyn’s statement to show the construction of a unit that includes two 

quantities (one-fourth = 90°). Students then used this two-dimensional unit to reason 

about the moon travelling around the orbit. For example, Jami stated: 

“Another pattern is that. So, every 90° is one-fourth. So, for example, 90° is the First 

Quarter, another 90°, which is 180°. When you add it, it’s the Full Moon. And 180 is half 

of 360. And that’s half of, two-fourths is half. That’s like half the moon’s orbit. And then 

you add another 90°, which is now 270°, and it’s the Third Quarter. And it completed three-

fourths of its orbit. And then another 90° and it’s 360° and it has completed its orbit.” 

Here Jami was using repeated addition to iterate the two-dimensional unit one-fourth 

= 90° around the orbit (Figure 4). Note that as she was iterating by fourths around the 

orbit, she also used co-splitting to show evidence of constructing the relationship 
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between one orbit = 360° and one-half orbit = 180°. We interpret her statement that 

“two-fourths is half” to illustrate the beginning of a construction of a composite unit of 

one-half orbit = 180° that consists of two units of one-fourth orbit = 90°. 

  

Figure 4: Jami’s two-dimensional repeated addition (left) and co-splitting (right) 

Ghina also showed evidence of a construction of a composite unit when she was asked 

about the fraction of the orbit travelled from the Full Moon to the next First Quarter 

(Figure 5a) and stated, 

“So, when you’re at the Full Moon and you travel 180°, that’s one-half. And then you 

travel another 90°, that’s one-fourth. And one-half is also two-fourths. So, you can just do 

two-fourths plus one-fourth to just three-fourths, which is also 270°.” 

a) 

 

b) 

 

Figure 5: a) Ghina’s reasoning about the Full Moon to First Quarter distance and b) 

Gaelyn’s reasoning using co-splitting to find eighths. 

Similarly, Gaelyn used co-splitting to split both quantities even further and construct 

an even smaller two-dimensional unit. For instance, she noticed (Figure 5b), “Everyone 

one-eighth fraction is 45°. …Well, because one-fourth is 90°. And half of one-fourth 

is one-eighth, and a half of 90° is 45°.” 

CONCLUDING REMARKS 

This paper discussed three students’ quantitative reasoning as they explored the lunar 

phases and travel of the moon. Similar to our preliminary analysis, students reasoned 

about the simultaneous variation in multiple quantities (Thompson & Carlson, 2017) 

and used co-splitting (Corley et al., 2012) to operate on two quantities. 

In addition to these forms of reasoning, the current study provides more depth on the 

nature of the quantitative operations that students used. The design of the simulation 

illustrating both the wedge as a fraction of the circular orbit and the arc of the orbit in 

degrees showed to support students’ coupling of these two quantities as a multiplicative 

object. This coupling led to the construction of two-dimensional units, and two-
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dimensional composite units, that they used in quantitative operations to discuss how 

the moon travelled. Our findings showed evidence of a two-dimensional form of 

repeated addition, where students iterated a two-dimensional unit. We have also seen 

traces of a novel form of the coordinated measurement approach in which one “group” 

is defined as a two-dimensional unit. In the future, we plan to examine whether other 

students have used similar operations and study these new forms of reasoning further. 
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LEARNING ROUTES FOR ALGEBRAIC THINKING IN 

PRESCHOOL 

Elena Polotskaia*, Nathalie Silvia Anwandter Cuellar*, Annie Savard**, and 

Virginie Robert*** 

*Université du Québec en Outaouais, **McGill University, ***ULaval  

In this theoretical essay, we use observations from our ongoing research with 

preschool children to question the theoretical frameworks available for studying the 

developmental trajectories of algebraic thinking in young children. We critically 

analyse two approaches. The theoretical approach employed by Early Algebra 

presumes that elementary students develop algebraic thinking by using some 

knowledge of numbers and arithmetic operations. The theoretical approach employed 

by Davydov, and his followers presumes that the most general ideas of algebraic 

thinking are prerequisites for the study of numbers and operations. How do these 

approaches interplay to allow for an interpretation of what we observe in preschool? 

OUR OBSERVATIONS 

For the ongoing research project with 4-5-year-old children (preschool) we created 

learning activities in a game-like format to elicit young children's algebraic thinking. 

We created four games within the context of weight. In the first game, children try to 

feel with their hands the weight of different objects and discuss this and other 

characteristics of those objects. For example, two apparently similar bottles of yogurt 

weigh differently; one is heavier, and the other is lighter. The second game allows the 

students to freely use a two-plates scale to compare objects and groups of objects by 

their weights. The third game uses specially created materials: plastic blocks of four 

different colours identified by animal stickers—mouse, cat, dog, and pig. The weights 

of the blocks correspond to each other as follow: cat = 2 mice; dog = 3 mice; pig = 4 

mice. A playing card presents several animals indicating the blocks to use. A player 

needs to distribute indicated blocks on a two-plates scale to obtain equilibrium. The 

fourth game employs cards presenting a two-plates scale with some animals on it in 

equilibrium. One animal on the scale is hidden. The player is required to identify the 

missing animal: predict and then verify this prediction on the scale. The games three 

and four are inspired by the works of Papadopoulos and Patsialia (2018). The following 

excerpt present the interaction between the teacher and two children playing the fourth 

game. It is the teacher’s turn to play. He must find one animal to equilibrate a mouse 

and a cat (see Figure 1). 

Teacher: So here, I have one mouse and one cat (placing corresponding blocks near the 

card). I need something on the other side. One mouse, one cat. What is on 

the other side? 

Clara: (Takes a dog from the pile of blocs).  
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Teacher: One mouse, one cat. 

 

Figure 1: Visual equation with Mouse and Cat on the left side of the scale and a 

hidden animal on the right side. 

Clara: A dog. 

Teacher: A dog on the other side? We will try. (Placing blocs on the scale according to 

the Clara’s suggestion. The scale is in equilibrium; the dog weighs the same 

as a cat and a mouse together.) How did you know? 

Clara: I knew. 

Teacher: You knew? Please, explain, how did you know? 

Clara: Because mice are lightweight. 

Teacher: Mice are lighter, so you need something heavy. 

Clara: But not too heavy! 

Teacher: So, a pig would be too heavy? If I replace the dog by a pig? (Replaces a dog by 

a pig on the scale. The scale shows that the pig is heavier than a cat and a 

mouse together.) Yes, you are right. So, a bit heavier, but not too much. 

Wonderful! 

METHOD 

In our literature review (Polotskaia et al., 2019), we identified two major theoretical 

approaches to the introduction of algebraic ideas in elementary school: Early Algebra 

and Developmental Instruction. In the following sections, we present each approach, 

and we attempt to interpret our observations within these frameworks. Based on this 

analysis we propose a new framework for interpreting algebraic thought in preschool 

children. 

FROM THE EARLY ALGEBRA POINT OF VIEW 

The Early Algebra movement emerged out of the necessity to address one of the 

fundamental problems in mathematics education, namely the arithmetic–algebra gap. 

By the end of the 20th century, it became evident that a significant number of secondary 

students faced challenges in learning algebra. For instance, many students interpreted 

'=' operationally as 'calculate the result' rather than relationally as 'left and right 

expressions are equivalent' (see more examples in Kieran, 2018). Solutions to the 

arithmetic–algebra gap were proposed to facilitate a seamless transition from 

arithmetic to algebra by introducing activities that elicit algebraic reasoning at an 

earlier stage in elementary school (e.g., Kaput, 2008; Kieran, 2018). 
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Efforts were made to conceptualize the development of algebraic reasoning in students 

during the early years of schooling. Blanton and her colleagues (2018a, 2018b) use a 

definition of algebraic thinking formulated by Kaput (2008) to establish a theoretical 

framework for investigating the developmental routes of algebraic thinking in young 

students. According to Kaput (2008), algebraic thinking involves generalizing and 

communicating these generalizations in symbolic form, as well as using symbolic 

representations to apply the corresponding rules of the semiotic system. For young 

children, natural language and some culturally accepted visual representations are 

included as semiotic representations. Blanton et al. conclude: 

We derive four essential practices from Kaput’s (2008) core aspects that define our early 

algebra conceptual framework: generalizing, representing, justifying, and reasoning with 

mathematical structure and relationships... (Blanton et al., 2018b, p.30). 

In the experiments, the learning activities employed to elicit algebraic thinking were 

based on numerical expressions and their visual representations, where a number is 

depicted as a set of dots. Blanton et al. (2018a) propose the following classification of 

observable types of thinking about ' = ' in kindergarten students. 

1.     Operational: For example, interpreting an expression like 2 + 3 = 5 as 

combining or totalizing two numbers. 

2.     Emergent Relational: For example, using a nonstandard equation (5 = 3 + 2) 

while still interpreting ' = ' as totalizing/combining. 

3.     Relational: For example, using ' = ' to express the equivalence of values, 

evaluating whether the expression employing ' = ' is true or false, and solving 

equations for missing values. 

We tried to use this approach to interpret Clara’s reasoning. In our experiment, the 

context is not numerical; students do not need to count, as not more than four similar 

objects are used at a time, and the weight of each object is not expressed numerically. 

Equivalence is introduced as 'scale in equilibrium' or 'scale in an even position.' The 

students did not express their understanding in writing or drawing; thus, ' = ' was not 

used. However, some kids spontaneously used their hands to show the position of the 

scale, or they used words like 'similar' and 'even,' etc. 

Considering all these conditions, how can we interpret Clara’s solution to the missing 

animal problem? Certainly, Clara is solving an equation and not 'adding' the cat and 

mouse to obtain the dog. The explanation of her choice of animal is not based on 

counting (e.g., dog = 3 x mice, and cat = 2 x mice) or on memorized knowledge (e.g., 

dog = cat + mouse). Instead, she uses approximate qualitative arguments. Her thinking 

probably goes as follows: she needs an animal a bit heavier than a cat but not too heavy. 

She explains that mice are lightweight, so the animal should not be too heavy. We can 

suggest that Clara’s reasoning is strongly guided by the understanding of the situation 

as equilibrium or equivalence. We can conclude that Clara’s thinking can be classified 

as relational. This reasoning is approximate and not numerical, and the ' = ' is not used. 
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We found that it was useful but difficult to interpret Clara’s reasoning within a 

theoretical frame emerged from numerical contexts. 

FROM THE DEVELOPMENTAL INSTRUCTION POINT OF VIEW 

The Developmental Instruction approach proposed by Davydov (1982, 2008) is rooted 

in Vygotskian views of learning as a culturally formed, adult-child joint activity. This 

perspective implies that what students learn depends on the learning experiences 

offered by the teacher and the school tradition. If the traditional teaching of 

mathematics begins with counting and number operations, students have no other 

choice but to base their algebraic thinking on their knowledge of numbers and 

operations. Davydov suggests a fundamental shift in the school mathematical tradition 

by prioritizing learning about basic quantitative relationships—equality and 

equivalence—before the formal study of numbers and operations. 

Furthermore, Davydov (2008) introduces the notion of theoretical thinking, 

characterized by understanding a structure or relationship between quantities, 

expressing, and communicating this relationship, and using it to logically deduce new 

information, such as solving a problem or finding a missing element in the relationship. 

Considering this definition, Clara’s reasoning appears to be theoretical. The problem 

of the missing animal is represented by a schema or visual equation, and Clara mentally 

solves it without resorting to counting or manipulation. Clara understands that the 

weights on each side of the scale should be equivalent. To find a solution, she 

conjectures that to counterbalance a cat and a mouse, the other animal should be 

heavier than a cat but not too much, as mice are lightweight. This reasoning employs 

relationships between quantities to logically deduce a correct solution. 

However, the relationships Clara employs are not the complete relationships as defined 

by Davydov as a basis for mathematical knowledge development. In his view, a 

relationship is a structure of three elements, where each element can be found or 

constructed when the other two are known. For example, the numbers 2, 3, and 5 are 

in an additive relationship because 2 = 5 - 3, 3 = 5 - 2, and 5 = 2 + 3. In the case of the 

missing animal problem, the weight of the dog is equal to the sum of the cat’s and the 

mouse’s weights—an additive relationship according to Davydov. However, Clara 

does not explicitly know this relationship. Instead, she relies on approximation using 

partial relationships: the mouse is light (in relation to other animals), and the dog is not 

too heavy. These partial relationships do not constitute relationships of three elements. 

Furthermore, Clara does not represent her understanding of the relationships with 

symbols or models. Oral communication of her reasoning is not entirely complete and 

clear. Evidently, Clara is at the beginning stages of developing the mathematical 

language (semiotic system) necessary for the situation. 

We found it useful to interpret Clara’s reasoning by employing the notion of theoretical 

thinking. Nevertheless, some theoretical elements are missing to adequately capture 

the mathematical essence of students’ thinking. 
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DISCUSSION 

We employed two different theoretical approaches with an example of a 5-year-old 

student's thinking while solving a missing animal problem. Each of these approaches 

provides a comprehensible structure to identify some characteristics of the student’s 

thinking in association with algebraic or theoretical thinking. 

Our analysis of Clara’s reasoning shows that at the heart of both approaches is a deep 

understanding of a structure, equivalence, or relationship, working with the structure 

or structures (their meaning) to draw logical conclusions. We suggest that the definition 

of theoretical thinking seems to be very close to algebraic thinking employed in Early 

Algebra. In both cases, a deep understanding is a foundation, the use of symbolic 

communication is an essential part, as well as logically deducing a solution or 

justifying it. Yet, two major questions remain: 

1. What are the contexts available to 4-5-year-old children in which structures or 

relationships can be studied and understood? 

2. What semiotic systems, communication tools can young children employ to 

express their thinking and to move this thinking forward? 

The experimenters in the Early Algebra approach use small numbers to discuss 

algebraic concepts with students (e.g. numerical expressions, solving word problems 

with numerical data, function machines, etc.). Thus, we can suggest that numbers and 

operations on (small) numbers are the main context used in Early Algebra. 

The Developmental Instruction approach does not require number knowledge from 

students at the beginning. Even though some children may have some of this 

knowledge already developed, this knowledge is not really used to establish or employ 

simple relationships between continuous quantities. In multiple experiments (e.g., 

Mellone et al., 2018; Eriksson and Eriksson, 2020; Davydov, 1982), it was shown that 

young children can work with continuous quantities (volume, length, etc.) without 

counting or numerical expressions. Children can understand partial relationships 

between quantities (<, >, =), express those relationships using letter notations, produce 

logical conclusions, and justify their solutions. In this approach, contexts are physical 

objects and their quantitative characteristics, not expressed in numerical form. There 

are many such contexts accessible for young learners: lengthy objects (length), 

containers (volume), objects of different weight or area. Those contexts make some 

algebraic ideas (e.g. equivalence, using letters, evaluating expressions as true/false, 

etc.) available for kids to study earlier. In our experiment, we observed children who 

couldn’t count to 10 but were able to solve some problems in weight games. So,if non-

numerical contexts are used to study relationships and structures, the ways of 

communication and representation (modelling) should also be non-numerical. 

Researchers in Early Algebra (e.g. Blanton, 2018; Radford, 2011; Boily et al., 2020) 

showed that 4-8-year-old children can express their reasoning about relations by using 

special words and gestures. For example, to express equality, a child can say 'the same' 

or 'balance' (Blanton, 2018); to express the growth of a non-numerical sequence, a child 
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can say 'going up' and produce a corresponding gesture (Boily et al., 2020); a child can 

use gestures to attract attention to general aspects in several structures (images) 

(Radford, 2011). In our experiment, the teacher introduced a special hand-gesture to 

express the position of equilibrium of the scale, and the children easily adopted this 

gesture and used some others for the same purpose. In the experiments by Davydov 

and his followers, letter notation and schematic representations were employed from 

the beginning and helped students to express their understanding (for more discussion 

about the use of letters in elementary grades, please see Tremblay et al., 2021). 

However, those communication tools are different in the level of abstraction they 

introduce, and some of them are unknown for children in preschool. 

Taking into consideration that students' mathematical thinking (arguments) can employ 

complete or partial understanding of structures or relationships, and that students can 

express their thinking by using semiotic systems (communication tools) of different 

levels of abstraction, we propose the following bi-dimensional frame to analyse 

preschool children's algebraic thinking in non-numerical contexts (e.g., weight games). 

The first dimension reflects the quality of relationships a student uses to argue: partial 

relationships (bigger, smaller, identical) or complete relationships in Davydov’s sense. 

The second dimension reflects the level of abstraction of the communication tools 

(semiotic systems) the student employs: direct manipulation without comments, use of 

natural language and/or gestures to express their thinking, argumentation using a 

culturally shared formal semiotic system (other than natural language). Table 1 

presents what can be observable in the case of weight games. 

Relationships used to 

construct an argument 

/ 

Communication tools 

Partial relationships bigger, 

smaller, equal (identical 

objects)  

Relationships of type 

equation (equality of groups 

of non-identical objects)  

Direct manipulation 

with objects (without 

comments) 

Try and error strategy seems to 

be organized; Student directly 

chooses a correct object.  

Impossible to judge without 

explicit arguments. 

Argumentation in 

natural language, 

gesture 

Student names or/and shows by 

gestures essential partial 

relationships. 

Student names or/and shows by 

gestures essential full 

relationships 

Argumentation in 

culturally shared 

semiotic system 

Student represents partial 

relationships symbolically or 

schematically and uses these 

representations to advance her 

reasoning 

Student represents full 

relationships symbolically or 

schematically and uses these 

representations to advance her 

reasoning 

Table 1: Bi-dimensional model to interpret young students algebraic thinking in the 

context of weight games. 
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Direct manipulation with objects – partial relationships: In the missing animal game, 

Clara takes a dog from the pile of blocks (which is correct to counterbalance a cat and 

a mouse). Without oral arguments, it is impossible to judge what type of relationships 

is used. Another strategy would be to try animals one by one in order of their weight. 

This strategy suggests the use of partial relationships. 

Argumentation in natural language, gesture – partial relationships: Clara explains 

simple relations: mice are lightweight, not too heavy, to argue her solution. Students 

can also try with their hands which animal is heavier or lighter. 

Argumentation in natural language, gesture – full relationships: In a different case, a 

student can argue, for example, that a dog weighs the same as a cat and a mouse, so we 

can use a dog instead of a cat and a mouse, and the equilibrium will not change. 

Argumentation in culturally shared semiotic system – partial relationships: In another 

case, a student could perform the following as an argument: D > C, so D + M > C + 

M, meaning that if one adds a mouse on each side of the scale, the scale will remain in 

the same position. 

Argumentation in culturally shared semiotic system – full relationships: In a different 

case, a student can solve the following problem (see Figure 2) by using a schema and 

show that the missing animal should be a cat. 

 

Figure 2: Visual equation with Dog and Cat solved by a schematic representation. 

The proposed theoretical frame describes types of thinking 4-5-year-old children might 

use in terms of observable elements. These elements extend the definition of algebraic 

thinking employed in Early Algebra and Developmental Instruction approaches to 

include the understanding of partial relationships and the use of communication tools 

available for young kids but not yet developed to represent a fully formed semiotic 

system. We propose that the development of algebraic thinking in young children can 

go in two directions: from partial to holistic understanding of quantitative relationships 

and employing more and more formal (abstract) and complete semiotic systems. 

Considering this bi-dimensional frame, Clara’s reasoning can be classified as 

argumentation in natural language, gesture by using partial relationships; and she is 

at the beginning of the algebraic thinking development. 

In conclusion, we agree with Davydov and Blanton, who suggest that non-numerical 

contexts can and should be employed with 4-5-year-old children to initiate the 

development of algebraic thought. We hope that the theoretical frame we proposed will 

help investigate the developmental routes of algebraic thinking in young students. 
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INQUIRY MATHEMATICS TEACHING IN A UNIVERSITY 

BRIDGING COURSE: CHALLENGES FOR STUDENTS AND 

TEACHERS 

Despina Potari*, Nikolaos Metaxas*, Barbara Jaworski**, and Theodossios 

Zachariades* 
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This paper reports a study on the design and enactment of inquiry teaching approaches 

in a University Bridging Course, offered in a lecture format. In particular, the 

development of these approaches by the teachers, and the students’ reactions to these 

as well as the tensions that both teachers and students experienced are investigated. 

The data consists of recordings of the lectures and students’ work as well as interviews 

with the students and reflective discussions between the teachers. The analysis is based 

on the three layers of inquiry model of Jaworski (2019) and the framework of Potari 

et al., (2023). The identified tensions of teachers and students reveal challenges in the 

developmental process of inquiry approaches in the socio-cultural context.   

INTRODUCTION 

The last two decades university mathematics and its development has been the focus 

of research  both in lectures and in group work settings (Dreyfus, Tabach & Rasmussen, 

2023; Virman, 2021). In particular, ways of engaging students more actively in doing 

mathematics has been explored and inquiry-based learning approaches have been 

adopted even in quite advanced courses (Johnson et al., 2013). Τhese approaches have 

been implemented in small group settings, workshops or tutorials, but rarely in lectures 

that are often characterized as “chalk and talk” where the lecturer presents the content 

following a specific structure with very little interaction with the students. However, 

there are studies that claim that even in the lecture format, lecturers may address 

students’ needs in different ways (Petropoulou et al., 2020). Potari et al., (2023) 

illustrated tensions and contradictions that a lecturer faces in addressing demanding 

mathematics content to all students under the institutional and social conditions in 

which teaching was taking place. Mesa et al., (2020) point out that inquiry teaching, 

even in small groups, is difficult for the university teachers who also face several 

tensions related to their obligations to institutional factors as well as to mathematics. 

Moreover most studies focus either on the teachers or on the students while few 

attempts have been made to study university mathematics teaching both from the 

students’ and teachers’ perspectives (see PLATINUM project in Gómez-Chacón, et al. 

2021). In this paper, we report a case study, of two university teachers who are also 

mathematics education researchers and use inquiry approaches in lectures. We use the 

three layers of inquiry process of Jaworski (2019) to address two research questions: 

(RQ1) How can inquiry approaches in the setting of a lecture be initiated?  and (RQ2), 

What are the challenges for teachers and students in the process of engaging in inquiry? 
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THEORETICAL BACKGROUND  

Several definitions and terms have been used about inquiry teaching. Laursen and 

Rasmussen (2019) use the term Inquiry-Based Mathematics Education (IBME) as an 

umbrella to include several orientations related to inquiry approaches in teaching and 

learning mathematics at the university level. They consider this as a common vision 

that is based on four pillars, two emphasizing student behaviours, “engage deeply with 

coherent and meaningful mathematical tasks; “collaboratively process mathematical 

ideas” and two emphasizing instructor bevaviours “inquire into student thinking; foster 

equity in their design and facilitation choices” (p. 139). Jaworski (2019) embeds 

inquiry-based practice into the development of mathematics teaching through the 

three-layer model of inquiry. In the first layer the focus is the engagement of students 

in mathematical inquiry with the support of the teacher/lecturer. In the second layer the 

teachers engage in inquiry to scrutinize the students’ activity and learn about creating 

learning opportunities for them. In the third layer, the teachers in collaboration with 

researchers are engaged in developmental research where they theorize on inquiry 

teaching and its development. In the current study, the layers of inquiry of Jaworski 

are considered more appropriate than the pilars of  Laursen and Rasmussen to address 

both students’ and teachers/researchers’ perspectives and gain insights into teaching 

and learning. However, relating both frameworks could be a promising line of research. 

Studies have indicated that inquiry approaches and their impact on students have been 

framed by the institutional and social conditions in which teaching takes place (Mesa 

et al. 2023). By considering the sociocultural context, Potari et al. (2023) use the 

Teaching Triad (TT) construct embedded in Activity Theory to identify certain 

relations between the elements of the TT, Mathematical Challenge – MC 

(mathematical inquiry, concepts, mathematical practices), Sensitivity to Students -SS 

(students’ cognitive, affective and social needs) and Management of Learning – ML, 

(tools, learning environment, teaching actions) and to interprete these relations 

reflecting on the activity in which a lecturer participates.  In that study, through the 

analysis of observations of teaching and  using the TT, it appears that the lecturer’s 

activity embodies affective and social sensitivity but rather little cognitive sensitivity 

and mathematical challenge. Interpreting these relationships on the basis of the 

lecturer’s thinking in the discussions/interviews emerging contradictions were 

addressed and their role in the development of teaching.  

In this paper, the two university teachers teach together a bridging course for the first 

year students. Both are mathematics education researchers trying to engage students in 

mathematical inquiry. They seek to change existing norms where teaching is in the 

amphitheatre, transmitted by the teacher with very little interaction between teacher 

and students. They also study students’ activity to get feedback on the impact of their 

teaching approaches  on their students. So, students’ perspectives are also brought into 

consideration in the study of the inquiry process and the development of teaching. To 

bring some changes towards inquiry teaching approaches creates tensions (challenges) 

for the teachers and for the students and possibly for the learning outcomes of the 
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students. As in the study of Potari et al. (2023), these tensions will be characterized in 

relation to specific interactions between teaching and learning using the TT and will 

be addressed in reflecting on the activity of the lecturers and of the students.  

METHODOLOGY 

Context 

Our study took place within a series of lessons of an obligatory mathematics bridging 

course during the spring semester of the 2022-23 academic year at a mathematics 

department in Greece. The department offers this course for first year students in both 

winter and spring semesters and includes two 2-hour lessons every week for 13 weeks. 

The particular spring course was addressed to students who had not passed the winter 

course or had not enrolled in it during the winter semester.  The spring semester course 

had an enrollment of about 100 students, but the attendance was only about 30 students. 

The course during both semesters had to cover the same content, which was basic set 

theory, binary relations, natural and integer numbers and cardinality of countable and 

uncountable sets. Most mathematics courses offered in the department are lecture-

based, where the lecturer writes on the board and describes her reasoning.  

Inquiry teaching approaches  

The two university teachers (a male and a female) were mathematics education 

researchers who had not previously taught the course. They adopted inquiry 

approaches that have been discussed in our theoretical background. After the course 

began, feedback from students and conversations between them during reflective 

debriefings with each other helped to fine-tune their teaching decisions. They used the 

standard textbook which has been offered to students for the last five years and every 

week students were assigned as homework some tasks from the textbook, modified or 

completely new ones. Each homework contained between two and four problems and 

every week the teachers selected and discussed anonymously some of the students’ 

submitted solutions in class. There were also two hourly problem sessions (third and 

11th week) where students worked in groups to solve problems and then presented 

their solutions to their peers.  During each group presentations, the teachers encouraged 

students to ask questions, raise objections or request clarifications. There were also two 

1-hour flipped classrooms (during fifth and tenth week) during which students in 

groups had to prepare and teach a specific theorem from the textbook. In the lectures, 

the teachers also emphasized the use of examples and diagrams; conjecturing and 

discussing the key ideas of proofs; eliciting students’ ideas through questioning; 

encouraging students to share their ideas in the lecture; using power point presentations 

to discuss the main points of the lesson in parallel with the use of board. 

Data and Data Analysis 

Data included video recordings of lectures and group problem solving, audio 

recordings of meetings between the teachers and copies of student work generated over 

the semester. They also include students’ responses on two online questionnaires 
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regarding their views on the teaching methods. Finally, online interviews with four 

volunteered students were conducted lasting approximately one-hour each that were 

audio-recorded and transcribed. The work is in process so initial analysis of parts of 

the data has been reported in this paper adopting grounded theory techniques in 

episodes related to the main inquiry approaches that were enacted.  

RESULTS  

We structure our results below in relation to the two research questions.  

Ιnquiry teaching approaches from teachers’ and students’ perspectives (RQ1) 

The teachers implemented an inquiry-based learning approach to teaching where MC 

was promoted mainly through open tasks and questions as well as with an emphasis on 

mathematics concepts and proving processes. MC was balanced with SS in an attempt 

to make content accessible through the use of diagrams and examples and the feedback 

provided on homework (cognitive sensitivity); the encouragement of students to 

express their ideas and queries (affective sensitivity); and consider students who could 

not attend the lectures through the provision of a variety of resources (social 

sensitivity).   

Studying the process of designing and enacting inquiry teaching from the teachers’ 

perspectives, we can see that the teachers used resources from research in mathematics 

education and from their inquiry into students’ and teachers’ activity. For example, the 

transition from the distributive law of numbers to the sets in the group work activity 

came from reading the paper of Gabel & Dreyfus (2022) and discussing it through 

email: “It would be good to ask them to work in groups on a task similarly to the paper, 

to ask them first about the distributive law with numbers. Then to formulate this law 

in sets and to prove it explaining why in the sets both hold (Teacher B – 13-02-23)”. 

Inquiring also into students’ work provided teachers ideas about linking MC and SS. 

For example, Teacher A through the analysis of students’ solutions in the homework 

tasks identified students’ tendency to use definitions in proving: “I am interested in 

why students prefer the use of definitions and not of the theorems in proving. It is 

important to discuss this with them in relation to the tasks they tackle” (Teacher A – 

22-02-2023). In the after class discussions the teachers also considered ML issues in 

seeking to increase students’ participation and show SS: “I will keep some notes to 

think about “Why they do not participate”. When you ask them some questions, you 

may need to give them time to think. Everybody could write something and then we 

ask someone to report.” [Communications are translated from the Greek.] 

How students experienced these inquiry teaching approaches was analysed through 

their responses in the questionnaires and the interviews. The students found especially 

helpful the resources provided (video-lectures, ppt presentations and the set of 

exercises) and they also valued the discussion in the amphitheater and the use of 

diagrams for supporting their understanding. The group work, the flipped classroom 

and the discussion on their solutions on the homework task were approved by all the 
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students who were engaged in these. We provide below some examples of students’ 

views about the inquiry teaching approaches adopted in the course: 

“ I liked a lot the flipped classroom. It helped us a lot to understand what we read, to 

understand it in depth, completely. If this could be done in all the course then we would 

understand the course completely 100%. There would be no confusion. But it takes time so it 

cannot be done in all the course”. (flipped classroom) 

“I was feeling more comfortable to participate comparing to the course in the previous 

semester, maybe because we were fewer students and I have been enculturated… In the 

previous semester, I was coming, observing and then leaving”. (interaction in the lecture) 

Challenges of the teachers and the students (RQ2) 

Both the teachers and the students were confronted with difficulties stemming from 

different expectations and modes of working in school and in the other courses of the 

students and culminating in the creation of tensions. We exemplify some of these 

challenges in the group work activity and in the flipped classroom. 

Group work activity: Below we give an excerpt from one group of four students 

working on a task to examine if there is a distributive property in sets similar to the 

distributive property of numbers. The role of union and intersection is left as an open 

question for the students to negotiate. The distributive law for numbers was chosen to 

engage the students in discussing about a property familiar to them from school while 

at the same time leading to an interesting investigation of its transformation to the sets. 

1  Student Α: Even for us that we started intuitively, there many ways to represent 
three sets and how they intersect each other … I don’t think Venn diagrams 
are sufficient. I don’t know, if intuition is a valid way to start.  

2  Teacher B: So, your question is whether intuition is a safe way to start proving 
something? 

3  Student Α: I mean if it is worth it to start in this fashion, we could start formally if 
x belongs to the set on the left etc.   

4  Teacher A: What do the others think about it? 

5  Student B: Basically Venn diagrams are not proofs ,.., we need them for explaining, 
as an aid to get to the formal proof.  

6  Teacher B: Why it’s not a proof? 

7  Student B: It’s not a proof because we use the diagrams intuitively, we don’t employ 
the definition to be driven to a valid claim. It’s also written in the notes of 
the course.  

8  Teacher B: If we check every case with a Venn diagram and a certain claim holds, 
is it a proof that the claim holds in general?  

9  Student A: The answer is no, but I don’t know. 

10  Student B: In Venn diagrams we draw our own particular case on paper, on the other 
hand there could be other cases … so Venn diagram doesn’t include every 
case while taking the definition we cover every single case. 
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11  Teacher A: Let’s start the proof, as first step you can write x belongs to this set A∩
(B∪C), if and only if since we employ the definition, it maintains the 
equivalence relations. 

In the excerpt above, we see that Teacher B tried to introduce students into an inquiry 

dialogue by making inquiry and deliberation dialogical moves (lines 4, 6 and 8) that 

are characterised by a high degree of MC . SS is indicated by Teacher B’s 

encouragement of the students to exchange ideas (line 4) and by building on their  

epistemological views on proof production (lines 5 and 7). In line 11, Teacher A shifts 

the discussion in the construction of the  formal proof reducing the MC. Here the 

tension for the teachers and especially for Teacher A as it was pointed out in the after 

class discussion concerned whether they should have had let the discussion go on and 

perhaps postpone the proof for the next session. Although both teachers concluded that 

in cases like this they had to sacrifice discovery for the purposes of the course, the 

question on how to achieve both goals had remained open. Moreover, the relationship 

between intuition and proof implies a contradiction (see Stouraitis et al. 2017) that from 

the teachers’ point of view is not easy to handle while the students also feel uncertain 

about their role in proving (lines 7 and 9). Students also in the interviews considered 

on one hand their engagement in this form of inquiry in group work activities very 

helpful but on the other hand time consuming avoiding the solution of more exercises:  

“Certainly it helps because you are in the position to solve the exercise, you discuss with the 

others, you listen to other ideas as well, other ways of thinking that you may have not thought 
them on your own, but because we are first year students (meaning they are not used to this 

approach), it may take a long time so we may not do many proofs or  exercises in the lesson.” 

 Flipped classroom activity: In the first flipped classroom activity the students 

presented a proof of the following proposition: Let f: A→B function. Then f is onto if 

and only if it has a right inverse.  The following excerpt comes from the discussion 

after students’ proof presentation. 

1 Teacher B: Would you add anything to the proof of the textbook in order to make it 
more explanatory? 

2 Student C: Well, in the proof there was a point where we have to notice that for 
every x in A, y=f(x) belongs to f(A), the main point of the proof and is a 
kind of a logical jump. The textbook says we notice that, but it is irrelevant. 

3 Teacher B: How then could someone write the proof to make it more explanatory? 

4 Student D: I think with the help of the Venn diagram, we have the two cases, either 
y is in f(A) or y is not. So, we notice that for every x in A then y which is 
f(x) is in f(A). A diagram would be more convincing here. 

Students’ narrative was an exact presentation of the textbook’s proof without 

developing a kind of agency attached to it. On the contrary, the teachers’ expectation 

was the exposure of the main strategic moves of the proof and an explanation of them: 

“Maybe we could have asked them to make a proof themselves. The process of proving 

was missing in the thinking about the proof. The focus was given to the structure 

although they made connections” (Teacher A).This resulted to two incommensurable 

discourses, which culminated to the tension between teachers’ aims and students’ 
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responses that reflected on a textbook approach of the proof.  A tension for the teachers 

was also to give on one hand the lead to the students to present their work and on the 

other to take care of the understanding of the other students in the class.  

Overall, all the students in the interview recognised the importance of inquiry at 

different activities of the course (group work, flipped classroom) and the goals and 

actions of the teachers seem to meet students’ needs. There is a tension of time for 

students and teachers as well (how much time to work in groups rather than being 

instructed). Students were interested in “reading” solved exercises  uploaded in the 

course platform and also to have more exercises to solve on the board by the teachers: 

“I think that it is good to solve as many exercises as possible in the class, but this is not 

realistic. Maybe it would be better to solve the most important in the class and have 

many solved exercises in the e-platform”. To solve more exercises in the class was 

often in contrast to the inquiry approaches that teachers aimed to engage the students. 

To be successful in the course final examination was a priority for the students that this 

required the practice of many exercises similar to those they had to face in the exams. 

CONCLUDING REMARKS  

Initiating an inquiry teaching approach at the university lectures is not an easy task. To 

interact with the students during the lesson may mean that only the “good” students 

participate in the discussion (see Petropoulou et al. 2020). In this study, we tried to 

engage students in different forms of inquiry such as discussing students’ homework 

in the lecture, arranging problem solving group work, providing resources and flipped 

classroom activities to meet students’ diffent cognitive, affective and social needs. The 

three layers of inquiry of Jaworski (2019) offered the opportunity to the university 

teachers who were also researchers in mathematics education to develop and enact 

inquiry activities for the students by co-designing and co-teaching (first layer) and 

through inquiring students’ activity as well as their own activity as teachers and 

researchers (second and third layers) to understand how their decisions and students’ 

interactions could facilitate learning in the lecture through experimentation and 

reflection. Engaging students in mathematical inquiry (MC) relevant to their needs 

(SS) created tensions for the teachers mainly stemming from their attempts to balance 

institutional constraints and students’ expectations with their goals often initiated from 

their activity as researchers. Students seemed to align with the inquiry approaches but 

they were also concerned with success in the exams, expected to require less inquiry 

and more proving and solution of exercises. Through the ongoing and the retrospective 

analysis of students’ homework, questionnaires and the interviews the university 

teachers became more aware of these tensions and developed ways to handle them. 
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This philosophical essay delves into the role of theories in mathematics curriculum 

reforms, particularly how theories can contribute to creating and implementing 

innovations. Using the concepts of discourse and grammar of schooling, we investigate 

two well-researched Swedish curriculum reforms. With these two concepts, we discuss 

the possible contribution of the underlying theories to the success of one reform and 

the failure of the other. 

INTRODUCTION 

This philosophical essay concerns the role of psychological theory (PT) in mathematics 

curriculum reforms and how that role can be conceptualized and analyzed. We aim to 

discern how PTs can provide innovations and influence formal curriculum documents, 

teaching materials, and teachers in different, more or less efficient, ways. To study 

different ways of influence, we use the concepts of discourse and grammar of 

schooling. The former is well-known in mathematics education research, while the 

latter is not. In brief, each concept concerns a structure that can exist in an educational 

text simultaneously, which can affect teachers. To illustrate what is more or less 

efficient, we study two cases. One case was successful in the sense that key innovations 

in the formal curriculum had an impact on textbooks, teachers, and student results. The 

other case was less successful because key innovations in the formal curriculum did 

not impact teachers and textbooks, and student results did not improve. The two cases 

are the Swedish mathematics curriculum reform of 1980 (success) and the subsequent 

Swedish mathematics curriculum of 1994 (not a success). Our guiding questions (GQ) 

have been the following: 

GQ1: How were the key innovations of the two cases connected to PT? 

GQ2: In what respect did the innovations and PT contribute to discourses and grammar 

of schooling? 

We draw on a synthesis of results from previous research concerning the two reforms 

mentioned above. This paper’s original contribution is a comparison of the two reforms 

and an application of the concepts of discourse and grammar of schooling. 

PREVIOUS RESEARCH 

The design of a formal curriculum, that is, documents issued by a governmental body 

intended to steer teachers and their teaching, can positively affect what teachers teach 
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and what students learn (Schmidt et al. 2001; Schmidt & Prawat, 2006; Prytz, 2020). 

In brief, it is a matter of content covered and emphasized in the formal curriculum that 

receives more attention in teaching and that students learn more about that content. 

However, covering or emphasizing content can be done in different and more or less 

efficient ways (Schmidt & Prawat, 2006; Prytz 2020). 

There are thus different ways to introduce an innovation based on a PT in mathematics 

education through the formal mathematics curriculum (i.e., having it in the text). We 

seek to understand these ways through the discourse and grammar of schooling. 

Innovation is a general concept here and includes something new compared to the 

previous curriculum. It can be new concepts or the design of guidelines. 

Discourse is a well-used concept in current research about curriculum reforms in 

mathematics education. In a recent comprehensive research overview on mathematics 

curriculum reforms (Shimizu & Vithal, 2023a), discourse sometimes refers to debates 

or discussions going on in society that influence the formal curriculum (e.g., Shimizu 

& Vithal, 2023b; Gosztonyi et al., 2023). Sometimes, discourse refers to more specific 

language structures and psychological or psychosocial aspects of the people 

participating in the discourse. For instance, Ruiz et al. (2023) consider mathematical 

discourse to influence how people understand and reason about mathematics. Quirke 

et al. (2023) view discourse as influencing teachers’ professional identity. Pinto and 

Cooper (2023) see discourse as an essential part of mathematics teachers’ identity (i.e., 

how mathematics is taught and what the best source of knowledge about teaching is). 

Both Quirke et al. (2023) and Pinto and Cooper (2023) point out that other groups than 

teachers (stakeholders with an interest in mathematics education) can belong to other 

discourses. Discursive differences can pose a problem if, for instance, the discourse of 

politicians and school bureaucrats formally deciding the curriculum content is different 

from the teacher discourse. More precisely, it can hinder the formulation and 

implementation of a formal curriculum due to varying understandings of expressions 

and concepts and even conflicting expectations. 

Hence, the research into the psychological or psychosocial aspects of discourses about 

mathematics education provides important insights into the design of a formal 

curriculum and the effects it can have on teachers. 

The ‘grammar of schooling’ concept concerns teachers’ need for routines for managing 

students in time and space. The term is coined by the historians of education Tyack 

and Cuban (1995) in their seminal book Tinkering toward Utopia: century of public 

school reform. In this book, and with the US as the case, they seek to explain why 

educational reforms in the 20th century have succeeded or, most often, not succeeded. 

The story begins already in the 19th century, when Tyack and Cuban (1995) observe 

that several reforms, when mass education expanded quickly, were highly successful, 

for instance, the introduction of age-graded classes, schedules built up by mandatory 

subjects, and teaching practices adapted to this type of organization. These innovations 

spread rapidly and became basic structures of daily life in almost all schools – they 
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became a grammar of schooling. This grammar became stable. Several reforms of the 

20th century, not seldom labeled ‘progressive’, have aimed to change these structures 

fundamentally, but they all failed. One explanation of the latter is that teachers liked 

the established grammar. It:  

[…] enabled teachers to discharge their duties in a predictable fashion and to cope with the 

everyday tasks that school boards, principals, and parents expected them to perform: 

controlling student behavior, instructing heterogeneous pupils, and sorting people for 

future roles in school and later life. (Tyack & Cuban, 1995, p. 86).  

Other explanations of failed reforms are 1) loss of legitimacy as the reformers lost 

contact with the general public’s conception of schooling and 2) burnout and overload 

among reformers or teachers since creating new routines became overwhelming 

(Tyack & Cuban, 1995).  

The concept of grammar of schooling is uncommon in mathematics education contexts. 

The term is not used in the overview of mathematics curriculum reforms (Shimizu & 

Vithal, 2023a). The concept does occur implicitly in some chapters when the need to 

support teachers with materials and pay attention to teachers’ situations is stressed. 

Nevertheless, the teacher’s need to manage students in time and space is not 

highlighted as a prominent factor or a quality of support. 

When we seek to understand a reform process with the concepts of grammar of 

schooling and discourse, we partly consider the same things in curriculum documents 

and textbooks, for instance, what the mathematical content was and how it was 

described. However, different aspects are brought to the fore. Grammar of schooling 

highlights teachers’ need for routines for managing students in time and space, whereas 

discourse concerns teachers’ language, identity, and social relations. In this paper, we 

illuminate how analyses of mathematics curriculum reforms based on discourse and 

grammar of schooling differ and how they can be combined. We also illuminate the 

benefits of using grammar of schooling rather than just discourse. 

THEORY AND METHOD 

In our analysis, a psychological theory is a set of concepts and assumptions about some 

aspect of the physical or the ideational worlds. In a scientific theory, questions are 

central, involving an explicit methodology about how to pose and answer questions. 

Our definition of a psychological theory (PT) is based on the Oxford English 

Dictionary definition of psychology as “the scientific study of the nature, functioning, 

and development of the human mind, including the faculties of reason, emotion, 

perception, communication, etc.” (OED 2024). 

Our study involves two PTs: George Miller’s theory on working memory (Miller, 

1968) and the NCTM mathematical competence framework, also known as process 

standards (NCTM, 1989). Their status as scientific are different, but both are 

psychological. Miller’s theory focuses on how the human mind functions, particularly 

the processing of information and limits of the working memory. The NCTM 
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framework concerns the nature of the human mind when it comes to mathematical 

thinking and how it consists of different competencies. 

A PT can exist in a formal curriculum document. When we talk about PT existing in a 

curriculum document, it is a matter of expressions or concepts central to the PT 

appearing in the text. 

In our analysis of how curriculum documents can influence teachers and their teaching, 

we have considered two types of influence: discourse and grammar of schooling. By 

discourse, we mean how people in a particular context speak about a topic and how 

this way of speaking influences peoples’ self-perception, their perception of other 

people, and their perception of the world around them. By grammar of schooling, we 

mean school structures that concern how teachers and students are positioned and what 

they do in time and space. 

As mentioned, this essay is a synthesis study, bringing together results from previous 

studies, mainly our own, in a new way. These results come from analyses of reports 

concerning the two curriculum reform programs, previously published analyses of 

impact on textbooks series, and analyses of national and international assessment 

results. 

ANALYSIS 

The period from 1980 to 1995 was successful for mathematics education in Sweden; it 

is the best record so far, at least if student results in national and international tests are 

considered, as these improved significantly. Interestingly, the same formal curriculum 

was in effect for much of this period: the 1980 national curriculum, which was replaced 

in 1994 (Prytz, 2020). 

The 1980 mathematics curriculum marked a definitive break with the New Math 

movement and consolidated the Back to Basics movement, a shift going on since the 

mid-70s. The Back to Basics movement meant that arithmetic was emphasized at the 

expense of algebra and geometry, and computational procedures were favored over 

understanding concepts. Problem-solving was emphasized, but then in the context of 

everyday applications. Moreover, diagnostic materials were further underscored as an 

important tool for teachers (Prytz, 2018, 2020). 

The 1980 mathematics curriculum also marked a shift in connection to science. The 

connection to the scientific discipline of mathematics became weaker as concepts from 

set theory were not used to organize school mathematics. Instead, psychology became 

the scientific domain to inform teachers how to teach. 

In the 1970s, the Swedish national school authority supported two projects to improve 

elementary mathematics skills, particularly arithmetic. The background was low 

student results, especially in arithmetic, and the New Math reform, launched in 1969, 

was identified as a possible cause (Prytz, 2020).  
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The most extensive project of the two was PUMP (Processanalyser av undervisning i 

Matematik/Psykolingvistik, [Process analysis of teaching in mathematics/psycho-

linguistics]). PUMP was a four-year research and development project focused on 

arithmetic and school years 1 to 6. The scientific theory guiding the work was George 

Miller’s theory on working memory and cognitive load, i.e., a theory from psychology 

(Prytz et al., 2022).  

In PUMP, it was discovered, through classroom observations and textbook analysis, 

that the teaching progression in arithmetic was too fast. The students encountered too 

complicated exercises too early. In terms of Miller’s theory, the exercises involved too 

many new concepts and procedures, leading to cognitive overload and hampered 

learning. The PUMP people, therefore, sought to develop a detailed scheme of putting 

exercises in a sequence that did not lead to cognitive overload. They developed 

diagnostic material to determine what exercises the students should work on (Prytz et 

al., 2022). 

Much of the PUMP thinking went into the 1980 mathematics curriculum and the 

commentary material: on the one hand, as specific and concrete guidelines about the 

type of exercises the students should encounter and their sequencing, and on the other 

hand, as references to reports from the PUMP project (Prytz, 2018, 2020). In 

comparison to the previous 1969 curriculum, this was an apparent innovation. We can 

also observe that popular textbook authors quickly picked up the new guidelines, even 

some years before the 1980 reform (Prytz et al., 2022).  

There is further evidence that development work in the 1970s and the 1980 curriculum 

section about arithmetic positively affected teaching and learning. From SIMS1980 to 

TIMSS1995, the Swedish results improved considerably, particularly in arithmetic, in 

contrast to the areas of algebra, geometry, and statistics, where the improvements were 

more modest. Moreover, there had been no research and development projects in those 

areas, and the curriculum documents were briefer and more general as to the type of 

exercises the students should encounter and their sequencing (Prytz, 2020). 

All these aspects of the 1980 curriculum reform can be seen as something that 

influenced a discourse about mathematics teaching and, eventually, teachers’ 

professional identity and even their way of teaching.  

From a grammar of schooling perspective, we can see that the PUMP project and the 

1980 curriculum also changed the grammar of schooling. They provided new daily 

routines for teachers’ management of students; more precisely, routines for allocating, 

in time, the right type of exercises for students to work with. 

In 1994, the 1980 curriculum was replaced. The design of the new 1994 curriculum 

and the commentary material were, in certain respects, very different, even though the 

mathematical content areas (arithmetic, algebra, geometry, and statistics) were the 

same. The innovative feature was the emphasis on competencies. The newest in this 

respect was the reasoning, communication, and problem-solving competencies; they 

did not have a prominent and clear position as specific competencies in the 1980 
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curriculum (Boesen et al., 2014; Prytz, 2015). The scientific background of the 

emphasis on competencies was competence theories, i.e., models where the 

phenomenon of knowing is divided into different competencies. The influence came 

from the NCTM common core standards, which were being developed in the US. In 

the early 1990s, Swedish curriculum developers had good contacts with NCTM people 

(Helenius & Ahl, 2023). 

Implementing the 1994 curriculum, particularly the innovative parts on reasoning, 

communication, and problem-solving competencies, did not work well. When Boesen 

et al. (2014) studied the degree to which teachers had implemented the 1994 

curriculum, they found that teachers had difficulties understanding and teaching the 

parts about reasoning and problem-solving competencies, even though they were rather 

positive towards them. Instead, much of the teaching was focused on procedures. 

Another circumstance is that results in large-scale international assessments began to 

decline by the end of the 1990s.   

This change in the formal curriculum 1994 can be seen as a change in discourse and 

an attempt to change teacher identity. Nonetheless, there is little to see when we apply 

a grammar of schooling perspective on the 1994 curriculum and the commentary 

material, related to the fact that the curriculum and the commentary material were 

significantly shorter and contained much fewer details and examples concerning what 

to teach and in which order. So, even though the curriculum emphasized the reasoning, 

communication, and problem-solving competencies, there was no support to create 

new routines – a new grammar – to teach the reasoning, communication, and problem-

solving competencies. Our preliminary analysis of textbooks published around 1995 

and onwards yields a similar result: the textbooks did very little to support teaching 

about communication, reasoning, and problem-solving (Prytz et al., 2024). 

So, when our analyses of the 1980 and 1994 curriculum reform are compared, we have 

an example where the grammar of schooling can contribute to an explanation of why 

curriculum reforms, particularly the implementation of the innovative features, fail or 

succeed, which discourse does not, in this case.  

CONCLUSIONS 

In this paper, we have illustrated how PT can exist in curriculum documents in two 

ways: as parts of discourse or as parts of the grammar of schooling. We have also 

illustrated how PT can be part of both discourse and grammar in the same curriculum 

document (1980) and how PT can be part of just discourse (1994). 

Our findings suggest that PT being part of both discourse and grammar, or just 

grammar, in the curriculum documents is vital for the successful implementation of 

innovations. Therefore, to be successful as a reformer in mathematics education, it is 

not sufficient just to win or dominate the discourse; you also need to create a grammar 

of schooling that matches that discourse. More precisely, creating teachable sequences 
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of explanations, exercises, and other activities enables teachers to manage students in 

space and time. 

Our findings also give reasons to think about PTs having different potentials to change 

the discourse and grammar of schooling in connection to curriculum reforms, 

especially regarding the creation and implementation of innovations. For instance, a 

central component in Miller’s theory is that there is an upper limit to how much 

information the working memory can handle. That is a highly relevant condition to 

create teachable sequences of mathematical explanations and exercises, i.e., routines 

for teachers. In contrast, the NCTM competence framework does not have a 

corresponding component. So, in that respect, Miller’s theory should have better 

potential of changing the grammar of schooling. On the other hand, Miller’s theory 

concerns cognition in general. It will have little potential in mathematics education 

unless combined with some mathematical content. One can argue this happened in 

algebra concerning the Swedish 1980 curriculum reform. Teaching and results 

improved more in the area (arithmetic) where Miller’s theory had been involved in the 

development work and not so much in algebra; the latter was “untouched” by Miller’s 

theory. Similarly, Miller’s theory, per se, due to its general character, should have little 

potential to influence discourse on mathematics education in contrast to the NCTM 

competence framework, which is specific to mathematics and covers the whole 

mathematics curriculum. Hence, both theories appear to have strengths and weaknesses 

concerning curriculum reforms. Our advice to reformers is to not lean on just one 

theory but several and then learn about their strengths and weaknesses. The latter is, of 

course, something researchers can dig into. In this paper, we have offered some 

concepts to consider.  
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Self-efficacy expectations, which are learners’ estimation of being able to solve a task, 

are an important motivational variable in learning processes. Learners with high 

expectations may be more ambitious when dealing with mathematical tasks, 

particularly in the challenging entry stage of a university program. It is not clear how 

situation and person characteristics influence these expectations. Results of a study 

with 338 students enrolled in mathematics study programs show that stable person 

characteristics, such as different facets of self-concept, and the mathematical practice 

required in the task (calculating, modelling, and proving) interact in predicting self-

efficacy expectations. The results shed light on the complex interplay of person and 

situation characteristics, highlighting the situation-specificity of expectations. 

INTRODUCTION 

At the transition from school to university mathematics, challenging mathematical 

learning tasks are offered for students’ self-regulated learning. However, many 

students tend to deal superficially with these tasks. It is assumed that persons with high 

self-efficacy expectations invest more time on tasks because they can overcome 

temporal complications and impasses. Thus, high self-efficacy expectations are of 

particular importance for successful learning processes in this context. We assume that 

person characteristics, such as mathematical self-concept, as well as situation 

characteristics, such as the mathematical practice foregrounded in a task, influence the 

emergence of self-efficacy expectations as a situational measure. It is unclear however, 

how these specific characteristics interact in influencing self-efficacy expectations.  

THEORETICAL BACKGROUND 

Context: study entry phase 

The transition from school to university is a challenging phase for students because in 

many countries not only the institution changes but also the predominant mathematical 

practices targeted by instruction. In university mathematics study programs, proving 

tasks predominate whereas in school more focus is on calculation tasks or modelling 

tasks in which mathematical contents are used to solve real-world problems 

(Engelbrecht, 2010; Rach & Heinze, 2011). Previous research shows that some 

students can anticipate which mathematical practices, e. g., modelling or proving, are 

central for school or university mathematics (Rach et al., 2014) and that they can report 

specific motivational tendencies towards these practices (Rach et al., 2017). 
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Students experience failure (di Martino & Gregorio, 2018), in particular when working 

on challenging learning tasks which are often demanded as compulsory exercise in 

undergraduate mathematics courses. As a result, superficial task engagement 

strategies, such as copying task solutions from peers (Liebendörfer & Göller, 2016) 

without processing them deeply (for example, by self-explaining the copied solutions) 

are frequently observed. This superficial learning behaviour goes along with reduced 

learning gain (Rach & Heinze, 2011). Reasons for superficial processing have been 

sought in students’ characteristics (Berger & Karabenick, 2011) as well as task 

characteristics (Schukajlow et al., 2012), such as the mathematical practices 

foregrounded in a task. 

Self-efficacy expectations 

Bandura (1977) understands “efficacy expectation” as “the conviction that one can 

successfully execute the behavior required to produce the outcomes” (p. 193). A 

similar construct “expectation of success” as “individuals’ beliefs about how well they 

will do on an upcoming task” is used by Eccles and Wigfield (2020, p. 3) in the situated 

expectancy-value model which explains students’ choices, persistence, and 

performance in learning processes. Both approaches conceptualize such expectations 

as a situational construct that is affected by more stable person characteristics, as well 

as characteristics of the learning situation, entailing the concrete learning task.  

Empirical research in mathematics classrooms only partly supports the assumption that 

self-efficacy expectations depend on characteristics of the learning task. Schukajlow et 

al. (2012) reported only small differences in ninth graders' self-efficacy expectations 

between modelling tasks and word problems, and they could not identify any 

differences to intra-mathematical problems. In the study of Krawitz and Schukajlow 

(2018), ninth and tenth graders reported different self-efficacy expectations concerning 

tasks which foreground different mathematical practices. Self-efficacy expectations in 

mathematics are often measured using different mathematical tasks from different 

mathematical topics that foreground different practices (Parker et al., 2014). Yet, self-

efficacy expectations are not differentiated based on such task characteristics despite 

the results of Krawitz and Schukajlow (2018). 

Self-efficacy expectations, as a situational construct, are assumed to also depend on 

more stable person characteristics. Similar to self-efficacy expectations, self-concept 

describes a learners’ image concerning their knowledge and skills in a certain domain. 

Both constructs share many similarities such as the focus on perceived skills, domain-

specificity, and multidimensionality. Whereas self-efficacy expectations focus on the 

potential for solving a specific, given task in the (near) future, self-concept is framed 

as a relatively stable person characteristic, which arises from retrospective experiences 

(Marsh et al., 2019). Theoretical works and empirical works with undergraduate 

students underpin a strong relation between self-efficacy expectations and self-concept 

(Bong & Skaalvik, 2003; Pajares & Miller, 1994). Thus, for estimating whether oneself 

can solve a particular task, it is plausible that students draw on their image of their own 
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domain-specific skills. When studying effects of self-concept, it is advisable to 

consider measures of actual domain-specific performance as a covariate to disentangle 

effects of students’ actual skills and their own image of these skills. 

In line with Eccles & Wigfield (2020), low self-efficacy expectations are one possible 

explanation for superficial task processing when dealing with challenging learning 

tasks. Determinants of self-efficacy expectations are still a matter of research 

especially when the mathematical practices foregrounding a task vary.  

Research questions of the current study 

In this contribution, we focus the joint influence of person and situation characteristics 

on students’ self-efficacy expectations regarding learning tasks in university 

mathematics courses. In particular, we analyse (Q1) to which extent students’ self-

efficacy expectations differ systematically between persons and between tasks, (Q2) 

whether the foregrounded practice in the tasks (calculating, modelling and proving) 

contributes to variance explanation, (Q3) whether students’ individual self-efficacy 

reports vary systematically over different foregrounded practices, and (Q4) how 

students’ self-efficacy expectations for each practice relate to their self-concepts 

concerning the same three practices and their actual mathematical performance. 

METHODS 

This study is part of the project SISMa (“Self-concept and Interest when Studying 

Mathematics”). The sample comprises 338 first-year students of five different study 

programs (n = 92 general mathematics, n = 89 financial mathematics, n = 102 teacher 

education for the high attaining school track, n = 35 teacher education for other school 

types, n = 14 computer science, n = 6 missing) in two “Analysis 1” courses who 

voluntarily participated in this study. 

To measure self-efficacy expectations, we used a questionnaire consisting of twelve 

tasks (four tasks for every practice, see also Rach et al., 2017) in the field of Analysis. 

Students reported their self-efficacy expectation for each task by evaluating the 

statement “I think I can solve this task” on a four-point likert scale from “I don’t agree” 

(0) to “I agree” (3). 

• Example task for calculating: “Let 𝑓 be 𝑓(𝑥) =
√1+𝑥⋅𝑒𝑥

4+𝑥2
− 1. Calculate the 

extrema of the function 𝑓.” 

• Example task for modelling: “By metal, you should produce a cylindrical can 

with a prescribed volume. For which radius is the material consumption 

minimal?” 

• Example task for proving: “Let 𝑓:ℝ → ℝ be a differentiable function. Show 

that 𝑓 is continuous.” 

As personal variables, we measured self-concept concerning calculating, modelling, 

and proving with an approved questionnaire (Rach et al., 2019; calculating; 5 items, 

α = .71; modelling: 5 items, α = .80; proving: 4 items, α = 78, item example: 
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“Understanding mathematical proofs is easy for me.”). We measured students’ actual 

knowledge of advanced mathematics with an approved multiple-choice test (8 items, 

α = .58). All personal variables were z-standardised for analyses and show small to 

medium correlations (r < .35). 

Our study implements a cross-classified multilevel design because self-efficacy 

expectations vary over two (random) factors: the person (N = 338) and the task 

(N = 12). We estimated linear mixed models with lme4 in R, version 4.3.0, since they 

are a sensible way to analyse such complex data (Bates et al., 2015). 

RESULTS 

(Q1) To investigate to which extent students’ self-efficacy expectations differ between 

persons and tasks, we estimated a linear mixed model containing only both random 

effects. Random effect variances (table 1) indicate that self-efficacy expectations vary 

significantly between persons (33.5% variance of self-efficacy expectations explained, 

model 1) and, also significant but to a smaller degree, between tasks (3.5% variance of 

self-efficacy expectations explained, model 2).  

 Model 1 Model 2 Model 3 Model 4 

Random effect: 

person 
Var = 0.25 Var = 0.25 Var = 0.25 Var = 0.31 

Random effect: 

task 
 Var = 0.03 Var = 0.02 Var = 0.02 

Random slope 

effect: 

person*practice 

   
Var = 0.16a 

Var = 0.17b 

Residual Var = 0.50 Var = 0.47 Var = 0.47 Var = 0.42 

Fixed effect: 

practice 
  

F(2, 9.00)=1.67, 

p = .24 

F(2, 9.64)=1.60, 

p = .25 

Difference 

between 

models 

- 

χ(1) = 164.4, 

p < .001 

(Model 1 and 2) 

χ(2) = 3.69, 

p = .16 

(Model 2 and 3) 

χ(5) = 87.9, 

p < .001 

(Model 2 and 4) 

Table 1: Results of linear mixed models with dependent variable self-efficacy 

expectations; Var = Variance. N = 3,982 observations; adifference between proving 

and calculating; bdifference between proving and modelling 

(Q2) The practices foregrounded in the tasks (calculating, modelling, or proving) do 

not contribute to the variance explanation in self-efficacy expectations as a fixed effect 

(model 3). Indeed, mean self-efficacy expectations, aggregated over all persons and all 

tasks per practice, are similar for all three practices: calculating (M = 2.25; SD = 0.83; 
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N = 1,325), modelling (M = 2.07; SD = 0.88; N = 1,322), and proving (M = 2.07; 

SD = 0.87; N = 1,335). 

(Q3) To analyse whether students’ individual self-efficacy reports vary systematically 

between different foregrounded practices, we included a random slope for the effect of 

practice over persons (model 4). This means that separate person intercepts are 

estimated for each practice and each student (like in a three-dimensional model). 

(Q4) To analyse which person characteristics relate to self-efficacy expectations, we 

integrated these characteristics as fixed effects in model 4. All self-concept facets 

significantly predict self-efficacy expectations (calculating: F(1, 330.9) = 25.1, 

p < .001; modelling: F(1, 331.2) = 12.3, p < .001; proving: F(1, 330.0) = 29.8, 

p < .001) but there is no clear evidence that besides these perceptions, students’ actual 

mathematical knowledge relates to self-efficacy expectations (F(1, 331.0) = 3.66, 

p = .06). Interaction effects show that the influence of the different self-concept facets 

on self-efficacy expectations depend substantially on the practices of the tasks, except 

for proving (table 2, last column). Trend analyses indicate that self-concept concerning 

proving predicts self-efficacy for all foregrounded practices. Further, self-concept 

concerning modelling relates stronger to self-efficacy regarding modelling tasks 

(b = 0.16) than the other two practices (b = 0.08 or b = 0.05). Self-concept concerning 

calculating shows a stronger prediction on self-efficacy regarding calculation tasks 

(b = 0.18) than to modelling tasks (b = 0.09), while the difference is non-significant 

between calculation and proving tasks (b = 0.12). Summarizing, students’ self-efficacy 

expectations in task over all practices is significantly predicted by their proof-related 

self-concept. Beyond this, self-efficacy for calculating and modelling tasks are 

significantly predicted by the related self-concept facets. Interestingly, calculation-

related self-concept significantly predicts self-efficacy on proving tasks. 

  Self-efficacy expectations  

  
Calculating Modelling Proving 

Self-concept × 

practice 

Self-

concept 

Calculating 
0.18  

[0.12; 0.25] 

0.09  

[0.03; 0.16] 

0.12 

[0.05; 0.19] 

F(2, 331.0) 

 = 4.10* 

Modelling 
0.08 

[0.01; 0.14] 

0.16 

[0.10; 0.23] 

0.05 

[-0.02; 0.11] 

F(1, 332.0) 

 = 5.92** 

Proving 
0.13 

[0.07; 0.20] 

0.15 

[0.08; 0.21] 

0.22 

[0.15; 0.28] 

F(1, 329.7) 

 = 2.95, p = .06 

Table 2: Results of contrast analyses for predicting self-efficacy expectations of tasks 

with different practices by different self-concept facets; trend coefficients and 

confidence intervals for confidence level .95; *** p < .001, ** p < .01, * p < .05 
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DISCUSSION 

Our main goal was to investigate how situation and person characteristics interact in 

their relation to students’ self-efficacy expectations. The results unveil that learners’ 

self-efficacy expectations vary stronger between learners than between tasks and their 

foregrounded practices (Q1). As at the transition from school to university, the 

mathematical practices, which predominate the learning process, change (Engelbrecht, 

2010), it was plausible to assume that students’ self-efficacy expectations differ by the 

foregrounded practices as a situation characteristic (Q2). The results do not indicate 

that students report lower self-efficacy expectations for proving tasks than for 

calculating or modelling tasks (similar results as reported in Schukajlow et al., 2012). 

However, students differentiate their expectations systematically between different 

foregrounded practices (Q3). In general, self-efficacy expectations seem to be more 

strongly influenced by the person or the interaction of person and learning situation 

than by the concrete situation itself. This indicates that one-size-fits-all task designs 

may be of little promise for boosting participants’ self-efficacy expectations.  

Adapting to learners’ characteristics requires to understand the interaction of personal 

and situational variables in the genesis of self-efficacy expectations. Further analyses 

show that students’ self-concept, rather than their actual mathematical knowledge, 

predict students’ self-efficacy expectations (Q4, see Bong & Skaalvik, 2003). This 

indicates that a positively-realistic self-concept may trigger beneficial self-efficacy 

expectations, and potentially sustained task engagement. Developing such self-concept 

requires opportunities to perceive oneself as competent as it is proposed in the self-

determination theory of Ryan & Deci (2020). Differentiating the analyses by practices 

unveils that – as one would expect – self-concept regarding a specific practice is 

predictive for self-efficacy expectations on tasks foregrounding this practice. We also 

find that self-concept regarding proving predicts self-efficacy expectation comparably 

strongly for all practices foregrounded in the task. Possible explanations must be 

investigated in future research but one reason could be that students anticipate proofs 

to play a role for all learning tasks in the new university context. Finally, also self-

concept regarding calculation significantly predicts self-efficacy for tasks 

foregrounding the other practices. For proving tasks, which are a major obstacle for 

many learners in the study entry phase, a positive self-concept regarding calculating, 

which is a practice that is familiar from school to many students (Rach et al., 2014), 

might benefit students’ self-efficacy expectations and potentially engagement towards 

this challenging practice. This more practical conclusion offers levers to increase self-

efficacy expectations by offering opportunities for positive, but still realistic skill 

perception also when working on other mathematical practices (e.g., calculating) than 

those posing specific problems (e.g., proving) in the study entry phase. 

Our findings are limited by the fact that we only used tasks in the field of Analysis. 

Moreover, we developed the mathematical tasks for this study by differentiating 

between practices. Other tasks characteristics beyond these practices, such as the 

targeted mathematical concepts, e. g., limits or derivations, or explicit scaffolding 
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approaches to support self-efficacy could be analysed in further studies. Finally, we 

could not investigate actual task engagement in this study. Even though, there is 

substantial evidence for the effects of self-efficacy expectations on task engagement 

(Berger & Karabenick, 2011), investigating the whole effect chain from person and 

situation characteristics over self-efficacy expectations to task engagement and 

potentially task performance or learning gain would be of substantial interest.  

This study provides theoretical insights into the complex interaction of person and 

situation factors in the genesis of students’ self-efficacy expectations in a university 

mathematics program. The results point to interesting interactions but more research is 

needed to understand how person and situation characteristics work together on the 

micro-level and how they influence students’ learning-related decisions during task 

engagement. This call for analysing the situated nature of motivational constructs is in 

line with the analyses of Eccles and Wigfield (2020) and Schukajlow et al. (2023). 
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YOUTUBE CONTENT CREATORS’ DISCOURSE: A MULTIPLE 

CASE STUDY ON THE CROSS PRODUCT USING 

COMMOGNITION AND POSITIONING THEORY 

Farzad Radmehr, Kristin Krogh Arnesen, and Anita Valenta  

Norwegian University of Science and Technology (NTNU) 

Many university students turn to YouTube as a learning resource to reinforce their 

mathematical learning. However, there is a lack of research in mathematics education 

on the learning potentials of this type of resource. Through a multiple case study with 

two cases, we utilize commognition and positioning theory to investigate (a) what types 

of mathematical discourse are demonstrated and (b) how YouTube content creators 

position themselves and their viewers in the learning resources on the cross product. 

The findings indicate that different types of mathematical discourse are promoted (i.e., 

rituals vs. explorations), and different positioning occurs on the cross product (e.g., 

similar to many tutors helping students to get correct answers vs. promoting a storyline 

that mathematics makes sense, similar to discourse of many mathematicians).  

INTRODUCTION 

YouTube learning resources are among the most popular resources university students 

use to support their mathematical learning (Aguilar & Esparza Puga, 2020; Pepin & 

Kock, 2021). Past research suggests that students use YouTube learning resources to 

recall (Kanwal, 2020) and learn (Aguilar & Esparza Puga, 2020) mathematics. 

Although YouTube videos are widely used as learning resources, it seems that research 

in mathematics education has, so far, not sufficiently focused on the learning potential 

that emerges from these resources. Our study aims to contribute to this matter by taking 

a discursive approach, utilizing commognition and positioning theory.   

Within commognition, mathematics can be seen as a particular discourse where 

narratives about mathematical objects are derived and some particular routines are 

regularly employed (Sfard, 2008). Mathematics learning takes place through 

participation in the mathematical discourse and its individualization, thus, learning is 

to become able to communicate in mathematics with oneself and others. We suggest 

that YouTube learning resources can be viewed as a context for learning and teaching, 

sharing similarities with classrooms where the content creators promote some 

particular ways of participating in mathematical discourse. Yet, YouTube learning 

resources also differ significantly from traditional classroom settings. Unless the 

content creator partakes in live streaming, direct interaction with students is absent.   

In a classroom, the teacher can promote different kinds of participation in the discourse 

(Sfard, 2017), ideally bringing the students’ discourse closer to the mathematicians’ 

discourse. YouTube content creators are not necessarily teachers and do not need to 

act as such. Instead, the content creator can play the role of, for example, a friend 
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assisting with exam preparations, or someone eager to share the beauty of mathematics. 

The observed variation of roles in YouTube learning resources led us to also adopt 

positioning theory (Harré et al., 2009) in our study. In the study, we seek to answer the 

following research questions:  

1. What types of mathematical discourse are demonstrated by YouTube content 

creators in mathematical learning resources on the cross product?  

2. How do YouTube content creators position themselves and their viewers in 

mathematical learning resources on the cross product?  

To answer the research questions, we analyse two popular YouTube learning resources 

on the cross product. We chose this mathematical object because it is typically included 

in introductory linear algebra courses, and it has a number of applications in 

mathematics and other disciplines.  

THEORETICAL BACKGROUND  

We use commognition (Sfard, 2008) as the main theoretical framework. 

Commognition is a discursive theory, where learning mathematics is conceptualised as 

changes in participation in a mathematical discourse. In addition, we use positioning 

theory (see Harré et al., 2009) to capture nuances in how the YouTube content creator 

participates in, and thus shapes, the discourse. The two theories both centre around 

discursive and social aspects and have previously been combined to study students’ 

identity in relation to learning mathematics (e.g., Heyd-Metzuyanim & Cooper, 2022).  

Commognition  

In commognition, mathematical discourse consists of four elements: The words that 

have specialised meaning within the discourse, the visual mediators used to represent 

mathematical objects, the narratives that define and describe mathematical objects and 

their properties, and the routines—the actions that are regularly performed within the 

discourse (Sfard, 2008). Sfard (2008) describes three types of routines: The rituals are 

performed with the social aim of “fitting into” the discourse (e.g. when students apply 

a known algorithm because they are expected to do it). In contrast, the deeds and the 

explorations are performed to change the discursive objects (e.g. when you add two 

numbers as part of a problem-solving process), or to create or substantiate the 

narratives about them (e.g. when students investigate patterns, searching for a 

conjecture), respectively. Explorative participation is the aim of learning mathematics, 

but rituals are seen as a necessary part of the trajectory (Sfard, 2008). 

Sfard’s notions of discourse and routines have been extended to essentially any human 

activity within communities (Lavie et al., 2019). In the mathematics classroom, there 

is a certain mathematical discourse. However, because the teacher is usually more 

experienced in “canonical” mathematical discourse than the students, and because the 

teacher’s aims are different from those of a mathematician, the classroom discourse is 

not exclusively mathematical (even if we exclude the social or upbringing parts of the 

discourse). The same is true for YouTube learning resources. In this study, we use 
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positioning theory to add another layer when investigating the discourse in the 

YouTube learning resources.  

Positioning theory in the context of YouTube learning resources  

Originating in social psychology, positioning theory aims to describe how people 

interact with an emphasis on the role of rights and duties within a discourse (Harré et 

al., 2009), and is thus closely related to concepts such as agency, power, and authority. 

The theory has been adapted to educational research, where it provides a lens to “the 

in and over time construction of positioning actions of teachers and students in 

developing episodes for learning and participating in classrooms” (Green et al., 2020, 

p. 119). Two fundamental terms of positioning theory are positioning and storylines. 

Positioning happens through acts where people are attributed to, or allow themselves, 

rights and duties. Examples are the positions of “teacher” (with a certain authority in 

the classroom, and a strong duty of scaffolding students’ learning) or “mathematician” 

(with an indisputable mathematical authority). Positioning is situated in the context of 

storylines, “social and discursive practices within which people are embedded that 

inform actions” (Green et al., 2020, p. 121), that again are placed within social, 

historical and cultural situations (Harré et al., 2009). Thus, storylines can be well-

known histories like “David and Goliath” or “Mathematics is a boring and difficult 

school subject”, but also ad hoc constructed stories.  

Earlier commognitive research has shown how positioning acts and storylines are 

related to the type of discourse that is provided by the teacher, as well as influencing 

students’ opportunities to learn. Although neither uses the term “positioning”, Sfard 

(2017) and Heyd-Metzuyanim et al. (2015) describe teachers who repeatedly position 

themselves and their students and evoke certain storylines about mathematics and the 

learning thereof. The lesson learnt from these studies is that the teacher’s positioning 

strongly affects the mathematical discourse. In both cases, the teacher’s positioning 

reinforce ritual participation and thus limit the students’ opportunities to participate in 

an explorative discourse. These studies focused on the teacher’s interactions with 

students. In a YouTube learning resource, such communication is limited. Still, it is 

possible to recognise storylines, for example, by looking at how mathematics is alleged 

to and justified. 

METHODOLOGY  

The study reported here is a multiple case study with two cases. To demonstrate that 

discourse is independent of the mathematical topic in question, we examine two 

YouTube learning resources on the same mathematical topic, cross product, in this 

study. To find YouTube learning resources, we searched YouTube using the keyword 

“cross product” in October 2023, and sorted the results based on view counts. The first 

two learning resources in English were chosen as the cases for this study. The first 

case1 is from the 3Blue1Brown channel. The video is viewed 1.6 million times as of 

19th December 2023. The second case is from The Organic Chemistry Tutor channel, 
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which has 7.2 million subscribers. The video on the cross product in this channel2 has 

been viewed 1.2 million times as of 19th December 2023.   

Data analysis  

The analysis was carried out in two parts, corresponding to the two research questions. 

In the first part, we looked mainly for evidence of explorative or ritual participation in 

the mathematical discourse in the two cases. This was done by a deductive analysis of 

the content creator’s routines: Explorations are product-oriented, with a focus on 

“constructing and endorsing a new narrative about mathematical objects” (Lavie et al., 

2019, p. 166), whilst rituals typically focus on “manipulation of mathematical symbols, 

without any reference to the objects signified by them” (Heyd-Metzuyanim et al., 2015, 

p. 548). Moreover, rituals and explorations can be distinguished by looking at where 

the action resides: Referring to the actions undertaken by participants (“do this”) is 

related to rituals; explorations, on the other hand, are removed from the humans 

performing them, concentrating on the mathematical objects (Heyd-Metzuyanim et al., 

2015).  

In the second part, we identified routines that revealed the content creator’s positioning 

of himself or the viewers, and the mathematics-related storylines that were alluded to 

or explicitly invoked. The former involves discourse that reveals the content creator’s 

aims, relation to mathematics, relation to the audience and so on, as well as talk about 

who the audience is, or assumptions of what they want. The latter involves talk about 

the nature and goals of mathematics, and about how to learn mathematics. This part of 

analysis was data-driven because positions or storylines were not predetermined.  

RESULTS 

Case 1  

The content creator introduces the video by saying:   

Last video, I talked about the dot product, showing both the standard introduction to the 

topic, as well as a deeper view of how it relates to linear transformations. I’d like to do the 

same thing for cross products, which also have a standard introduction along with a deeper 

understanding in the light of linear transformations. 

By pointing to “deeper understanding” and relations between mathematical objects, the 

content creator is indicating that the discourse he invites the viewers into is about 

mathematical objects, their properties and relations, and thus explorative. The 

following excerpts strengthen this claim (time into the video indicated in 

parenthesis). The content creator introduces a definition of cross product in 2D (sic) by 

relating it to the parallelogram spanned by them:  

(1) The cross product of 𝑣̅  and 𝑤̅ , written with the X-shaped multiplication symbol, is the 

area of this parallelogram. (1:09)  

Here, he talks about the objects and gives a definition, before he further presents a 

procedure to find such product:  
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(2) For the 2-D cross-product 𝑣̅ × 𝑤̅ , what you do is you write the coordinates of 𝑣̅  as the 

first column of the matrix, and you take the coordinates of 𝑤̅  and make them the second 

column then you just compute the determinant. This is because a matrix whose columns 

represent 𝑣̅  and 𝑤̅  corresponds with a linear transformation that moves the basis vectors  𝑖̂ 
and 𝑗̂ to 𝑣̅  and 𝑤̅ . The determinant is all about measuring how areas change due to a 

transformation. And the prototypical area that we look at is the unit square resting on  𝑖̂ and 

𝑗̂. (3:13)  

Even though the content creator’s utterance here is about a procedure, the focus is on 

the product (thus, it is a deed and not a ritual), and he also tries to justify the process 

by relating it to linear transformations. The content creator sums up the presentation 

on 2D-vectors by saying:   

(3) As with any new operation you learn, I’d recommend playing around with this notion 

just to get kind of an intuitive feel for what the cross product is all about. (4:17)  

Later, he points out that the operation defined in 2D is not actually a cross product, and 

he proceeds to a definition of cross product in 3D by defining the length of the new 

vector, and its orientation. As before, the content creator’s utterance is about 

mathematical objects and the construction of narratives about them, as he presents the 

process for finding a cross product of two vectors. Here, he does not spend time on 

calculating the determinant, he simply refers to a previous video in case the viewer 

does not remember how to proceed. Rather, he points out:  

(4) Now, this process looks truly strange at first. You write down a 3D matrix where the 

second and third columns contain the coordinates of 𝑣̅  and 𝑤̅ . But for that first column you 

write the basis vectors  𝑖̂, 𝑗̂ and 𝑘̂̂. Then you compute the determinant of this matrix. The 

silliness is probably clear here. What on earth does it mean to put in a vector as the entry 

of a matrix? (7:24)  

The creator proceeds by trying to give meaning to the procedure, pointing out that it 

yields a linear combination of the basis vectors 𝑖̂, 𝑗̂ and 𝑘̂̂. Still, he says that “students 

are told just to believe it” that what one gets by performing the procedure is the unique 

vector which was defined earlier as the cross product. He remarks that “It’s not just a 

coincidence”, that it is about the idea of duality and that the argument is somehow 

complex but is provided in another video for those who are interested. At the end, he 

stresses that it is important to know what the cross product represents geometrically.  

As illustrated by the excerpts, the content creator of this video employs explorative 

mathematical routines—the focus is always on mathematical objects (vectors, cross 

products, linear transformations, determinants, parallelograms, and areas), and the 

construction and substantiation of new narratives about their properties and relations.   

Regarding the content creator’s positioning, he promotes a storyline that mathematics 

makes sense, that it is about mathematical objects and relations between them, about 

constructing new objects (as cross product), narratives about how they are related to 

other objects (as determinants, parallelograms, 2D and 3D) and justifying such 
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relations: even though he does not go into why the procedure gives the vector which is 

defined as the cross product, he indicates that there is an explanation. Furthermore, the 

creator promotes a storyline that learning mathematics involves “playing with new 

operations” (as in excerpt (3)), sense-making and asking why (as in excerpt (4)). We 

suggest that the creator positions himself as a mathematician in the video, giving an 

example of how objects are constructed (e.g. transition from 2D to 3D), and how 

mathematicians proceed to explore mathematical objects (particularly seen in excerpts 

(3) and (4)).  Also, he positions the students as sense-makers, by remarking that they 

often are asked to “just believe it”, but that there is an explanation which he makes 

available for them even though it is complex.   

Case 2  

The content creator of this video starts by pointing out that “In this video we’re going 

to talk about how to find the cross product of two vectors”, which indicates that a 

procedure will be in focus. And it is, as shown in the excerpts below. He starts with 

two arbitrary vectors, “Let’s a vector a is 3𝑖 plus 5𝑗 minus 7𝑘̂, and vector b is 2𝑖 minus 

6𝑗 plus 4𝑘̂” and continues:  

(1) So, what is the cross product of vectors a and b, how can we find the answer. What I’d 

like to do is first put this in the form of a matrix this is 𝑖 𝑗 𝑘̂ which corresponds to the 𝑥, 𝑦 

and 𝑧 components of a vector and then first we need to put vector a in the middle (…) And 

basically, you got to find the determinant of this 3 × 3  matrix. (1:21)  

The content creator continues with step-by-step calculations, as “12 minus negative 14 

is like 12 plus 14 that’s 26 and we have a minus in front so it’s going to be negative 

26”. Even though the content creator starts with the phrase “what is the cross product 

of vectors 𝑎  and 𝑏”, his focus is completely on “doings”—what a person needs to do 

to find the cross product of the two vectors, not what the cross product actually is. After 

performing the calculation, and getting a vector 𝑐 as a result, he suggests that one can 

check whether the result is correct:  

(2) If you take the cross product of those two vectors, you’re going to get another vector, 

vector 𝑐 that’s perpendicular to 𝑎 and 𝑏. (4:31)  

He continues by reminding the viewers of how to check whether two vectors are 

perpendicular (is the dot product 0?). Then, he calculates the dot product of the vectors 

c and a, and c and b, which both are 0, and he concludes that the cross-product 

calculation was correct. Here, the creator presents a property of the cross product 

(which was used as a definition of cross product in Case 1) as a way to check the 

calculation. Even though he talks about a property of a mathematical object, the focus 

is on a person doing a procedure, and not on the mathematical object. Thus, the 

creator’s routines are rituals.  

Next, the creator gives a new example of vectors 𝑎  and 𝑏  and performs the same 

procedure, step-by-step, again pointing out at the end that, “just to make sure that we 

have the right value”, one can check the dot-products, and he does that in the video.  
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As already pointed out, the mathematical routines the content creator engages in, and 

invites the viewers into, are rituals. He never talks about what mathematical objects are 

or which properties they have, the focus is on what to do to find a cross-product. The 

property of the cross product, i.e., that it is a vector perpendicular to the factor vectors, 

is mentioned, but only in the context of a procedure to verify correctness.  

Concerning positioning, the content creator presents mathematics as performing 

specific procedures, step-by-step, correctly. There is no flexibility and no justifications 

or sense-making (“you got to …”, excerpt (1)). He never mentions students or learning 

mathematics explicitly, but his detailing of the procedure and emphasis on checking 

the results indicates that the storyline about learning mathematics is about being able 

to perform some given procedures correctly. We suggest that he is positioning himself 

as a tutor, helping students to get correct answers on tasks asking to find a cross 

product, and that he is positioning learners as interested in only that.  

DISCUSSION  

In this study, we employ commognition and positioning theory to analyse the discourse 

in two YouTube learning resources. There is a lack of research on the learning potential 

of YouTube resources, and our study aims to address this gap. Furthermore, our 

utilization of a combination of commognition and positioning theory is novel, although 

one could argue that positioning was implicitly used in earlier commognition studies 

earlier (e.g. Heyd-Metzuyanim et al., 2016; Sfard, 2017).  

As the analysis shows, the two cases are very different. While the first demonstrates a 

truly explorative mathematical discourse, the second is an example of a discourse 

dominated by rituals. Naturally, an important aspect in the learning of the cross product 

is the procedure for how to find it, and introducing some mathematical procedure can 

easily become process-oriented, like in Case 2. In Case 1, however, the creator is 

always focused on the result of the process, and not the process itself (excerpt (2)): He 

is not dwelling on technicalities, but rather focuses on the sense-making and 

justification of the procedure. In both cases, the analysis shows a clear connection 

between the mathematical discourse and the positionings undertaken by the content 

creators. The storylines about mathematics were mostly implicitly presented in both 

videos, aligning well with the characteristics of the respective discourses.  

In the classroom, students often have little or no choice but to be there, and thus the 

kind of discourse orchestrated by the teacher is crucial for students’ opportunities to 

learn (Heyd-Metzuyanim et al., 2015). On YouTube, students can choose what they 

want to watch, depending on what they want to learn. However, the commognitive 

discourse analysis performed above reveals important characteristics of the 

mathematical learning opportunities available on YouTube. By adding positioning to 

the analysis, we revealed positionings and storylines about mathematics that also affect 

the potential learning opportunities. Rituals, that dominate in Case 2, are important for 

learning (Sfard, 2008). However, in the same video, there is no mention of “something 
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more” than procedures: the storyline is about mathematics as procedures and only that, 

and this can limit further learning opportunities.  

We propose that combining positioning theory with commognition effectively 

describes the discourse set up in YouTube learning resources. positioning may be more 

flexible and visible in YouTube learning resources compared to traditional 

mathematics teaching, we suggest that employing positioning theory along with 

commognition can enhance discourse analysis in both contexts.  

Notes 

1. Cross products | Chapter 10, Essence of linear algebra (youtube.com)  

2. Cross Product of Two Vectors Explained! (youtube.com)  
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The paper recounts the successful implementation story of the TRansforming 

Instruction in Undergraduate Mathematics via Primary Historical Sources 

(TRIUMPHS) project. Our analysis of the project involved examining influential 

factors (Century & Cassata, 2016) and scaling dimensions (Coburn, 2003). We 

identified how influential factors and strategies employed by the TRIUMPHS project 

positively impacted scalability, particularly highlighting sustainability. These findings 

underscore the importance of innovation, user engagement, and the operational 

context in driving project expansion and long-term viability.  

INTRODUCTION 

In implementing innovation, especially in discussions about scaling, leaders of reform 

aspire for the innovation to have a widespread impact on the users (Aguilar et al., 

2023). Scaling the heights of successful implementation projects requires a nuanced 

understanding of the underlying factors contributing to their triumphs. This paper 

narrates the success story of an implementation project—TRansforming Instruction in 

Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS)—focusing 

on the factors that enabled the scaling of the project. We employed the factors of 

influence proposed by Century and Cassata (2016) and the scaling dimensions 

proposed by Coburn as the theoretical constructs to address the research question: What 

factors influenced the success of scaling of the TRIUMPHS project? 

Following a comprehensive explanation of the theoretical constructs, we provide 

detailed descriptions of the TRIUMPHS project. After the methods and the results 

sections, the paper concludes with a discussion on influential factors, the projects’ 

sustainability, and a final summarising conclusion. 

THEORETICAL CONSTRUCTS 

Exploring implementation research serves as a driving force to unearth the 

determinants influencing the effectiveness of adopting innovations, spotlighted by 

Century and Cassata (2016). These determinants, labelled as factors of influence, 

encapsulate characteristics tied to four distinct realms: the innovation itself, the users, 

the organizational setting, and the external environment (Century & Cassata, 2016). 

The specific attributes defining these factors of influence are contingent on the 

particular context under scrutiny, spanning diverse domains like healthcare, sports 

organizations, manufacturing, and, notably, educational institutions—our focal point 

herein, primarily concentrating on tertiary educational institutes. 
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In line with Century and Cassata (2016), we define innovations as the pivotal 

components targeted for alteration or enhancement, particularly those emerging from 

research in mathematics education. Key intrinsic factors of influence concerning the 

innovation involve its adaptability, relevance to end-users, and alignment with specific 

operational practices. Educators, chiefly teachers or instructors, are the primary users 

wielding significant influence as change catalysts within educational settings, 

including universities. Factors shaping implementation projects involving educators 

encompass their grasp of innovation, proficiency in mathematical and pedagogical 

domains, prior experiences, organizational adeptness, classroom management style, 

and an array of affective traits like beliefs, values, attitudes, motivation, self-efficacy, 

and openness to novel approaches (Century & Cassata, 2016). 

Organizational factors of influence stem from decisions made by stakeholders within 

educational institutions, spanning choices related to class sizes, resource allocation, 

physical infrastructure, scheduling, and the overarching organizational framework 

governing instructors’ endeavours. Administrative procedures, management 

methodologies, and policy determinations linked to the specific innovation considered 

constitute aspects of these organizational factors. Meanwhile, external environmental 

factors comprise opportunities and constraints lying beyond the control of educational 

institution stakeholders, influencing the implementation of innovations. These external 

influences typically transcend the school’s sphere of influence and can encompass 

economic conditions, infrastructure limitations, and shifts in political priorities. 

Tangible examples illustrate external influences, such as inadequate network 

connectivity impeding instructor support for professional development or alterations 

in budget allocation due to political leadership shifts. 

Delving into the dissemination of innovations, Coburn (2003) presents four 

interconnected dimensions of scale: depth, sustainability, spread, and shift in reform 

ownership. Depth refers to a change in classroom practices surpassing mere shifts in 

curriculum resources or the introduction of specific teaching methods and activities. 

Coburn (2003) argues that scaling in depth includes altering teachers’ beliefs and 

norms regarding communication and pedagogical practices, requiring a fundamental 

change in ideas regarding effective instruction and student learning for successful 

implementation. 

For implementation projects, it is essential to devise a strategy ensuring the 

innovation's continuity within the organization beyond the project’s completion. 

Coburn introduces the dimension of sustainability within scaling, emphasizing the 

support structure required to uphold the innovation’s vitality even after the withdrawal 

of support from reform leaders (Coburn, 2003). 

While expanding the innovation to other educational settings remains a crucial aspect 

of scaling, Coburn (2003) delineates the concept of spread across various levels of 

stakeholders within the school system: classrooms, schools, and districts. The fourth 

dimension of scaling is a shift in reform ownership as part of the scaling process 
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(Coburn, 2003). Initially, the genesis of an innovation lies with its creators and 

implementation architects. However, for the innovation to seamlessly integrate into the 

organization, the authority to scale its implementation must gradually transition to 

districts, schools, and teachers. This shift allows for scaling in-depth, sustainability, 

and spread to maintain effectively over time. 

THE TRIUMPHS PROJECT 

The TRIUMPHS project, funded by the National Science Foundation (NSF), 

represents an American initiative that leverages prior experiences using primary 

historical sources from the history of mathematics to transform undergraduate 

mathematics instruction (Clark et al., 2022). This endeavor centers on primary source 

projects (PSPs), a unique approach intertwining historical materials within curricular 

resources and assessing the anticipated educational advantages. On the one hand, 

TRIUMPHS is an innovative development project. On the other hand, it is a research 

initiative exploring students’ mathematical understanding, influenced by Sfard’s 

(2008) theory of commognition. 

Primary historical sources in this project encompass excerpts from manuscripts, letters, 

and other works by past mathematicians. These sources delve into topics like the 

evolution of mathematical concepts, such as Leonhard Euler’s (1707-1783) 

contributions or the abstract algebra development involving mathematicians like J. L. 

Lagrange (1736–1813), Augustin Cauchy (1789–1857), and Arthur Cayley (1821–

1895), as previously explored in TRIUMPHS-related projects. The PSPs present 

segments of selected primary sources, often with English translations through a ‘guided 

reading’ approach. These readings provide context, clarify unfamiliar terminologies, 

and offer tasks to enhance students’ content comprehension.  

These PSPs are designed for undergraduate students, target college and university 

instructors and are envisioned as alternatives to conventional textbooks or lecture 

materials. Spanning the same duration as traditional coursework, they encompass self-

contained mathematical and historical content. Notably, PSPs offer instructors the 

flexibility to adapt the materials to suit their needs, considering them as no-cost, open-

source LaTeX files. Mathematics-related degree holders, i.e., college and university 

instructors, are invited to specialized training seminars where their creators introduce 

PSPs. These seminars also feature ‘site-testers’ who share their experiences using 

different PSPs. Over time, experienced instructors may even develop their own PSPs 

under project guidance. 

The TRIUMPHS project leaders aim for ‘implementation at scale’, seeking to expand 

the innovation to broader contexts encompassing more undergraduate students, 

instructors, colleges, universities, and districts (Barnett et al., 2022). Barnett et al. 

(2022) discuss various factors related to PSP attributes, dissemination, and 

implementation support strategies. In terms of impact, Barnett et al. (2022) cite positive 

experiences, both quantitatively and qualitatively.  
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METHODS  

We conducted semi-structured interviews—each 90 minutes long—via Zoom with five 

out of seven principal investigators (PIs) of the TRIUMPHS project in September and 

October 2023. The interview protocol comprised six themes with probing questions to 

ensure comprehensive information. The deliberate use of open-ended questions aimed 

to elicit extensive insights. The six themes were background, the role of mathematics 

education theories, materials (PSPSs), implementation, factors influencing, and 

evaluation. The interviews were transcribed using Zoom’s transcription feature and 

manually reviewed for clarity. For this paper, we analyzed the responses for the last 

four themes: materials (PSPSs), implementation, factors influenced, and evaluation. 

Two theoretical frameworks, influential factors of implementation research (Century 

& Cassata, 2016) and Coburn’s (2003) scaling dimensions, were incorporated in 

analyzing the transcripts. Additionally, we referenced the project’s final report 

alongside the interview transcripts to gather precise data figures. For anonymity, we 

used the pseudonyms PI# for PIs.  

RESULTS 

This section presents the results of the analysis of the interviews. We structure them 

under Coburn's (2003) four dimensions of scaling: depth, spread, shift in reform 

ownership, and sustainability, respectively.  

Depth: Initially, PSPs were written exclusively for a limited number of courses, such 

as discrete mathematics. Over time, many PSPs were designed to encompass all 

undergraduate math courses. as noted by PI4. 

PI4: Before it was mostly like discrete math, the primary source projects were 

done in [...]. But we wanted to be able to write projects in pre-calculus, 

abstract algebra, linear algebra, geometry, topology, and real analysis. The 
entire gamut of courses. So that no matter what course you were teaching 

in an undergraduate math curriculum, you would find at least one primary 

source project. 

All five PIs we interviewed confirmed PI4’s assertion. They identified several reasons 

that could motivate authors to compose PSPs for various courses. For instance, if an 

author comes across a captivating primary source, they might create a PSP related to a 

topic taught in their classroom. Similarly, suppose an instructor is dissatisfied with 

their teaching approach and considers experimenting with a new method. In that case, 

they may seek a primary source linked to that subject and develop a PSP. The PIs 

emphasize the importance of authors connecting historical sources to new 

mathematical topics. For instance, PI1 articulated, “We were always hoping that 

whatever the author picked for a source, they could tie it to a standard topic.” 

Spread:  

The PIs contacted instructors, inviting them to act as site testers through various 

channels, including platforms like the Mathematical Association of America, email 
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correspondence, daily newsletter subscriptions, workshops, and more. They aimed to 

have a PSP tested by at least one site tester other than the author. 

PI1: Some of our projects were very widely tested. And I think we ended up 

with, out of a hundred projects, about ten that were only tested by their 

author and not by another individual. Maybe less than ten. 

However, a few PSPs underwent testing solely by their respective authors. 

Nevertheless, PI1 and PI2 verified that there were fewer than five dropouts among site 

testers, primarily attributed to personal reasons such as changes in employment. The 

PIs stressed that favorable student feedback during evaluations significantly impacted 

instructors’ decisions to utilize a PSP repeatedly. 

PI4: I think a lot of the site testers became repeat users. I wouldn’t say all, but a 

lot. In fact, I would guess a majority  

Shift in reform ownership: The PSPs were freely available and were open to 

modifications. 

PI5: These materials were available to a wide range of professors, instructors, 

[and] teachers. They were free open source, and then, unlike textbooks, you 

can edit [...] these. You can change everything. You have the [LaTeX] code, 

for example. 

He highlighted that, apart from granting instructors agency as users, they also had the 

opportunity to receive support from the PSP authors. PI3 echoed PI5’s statement. 

PI3: Because it was important that we made these projects publicly available, 

people could grab them without having to ask permission to do so. They 
were invited to contact the authors of the projects to recover the raw LaTeX 

code. So that [the] users could modify them as needed for their actual 

implementation. 

This empowerment enabled instructors to choose materials (PSPs), modify them, and 

implement them in a way they wanted to adapt them according to their preferences. 

Subsequently, some instructors expressed interest in creating new PSPs and received 

continuous support until the PSPs met the required standards. PI1, in particular, 

provided one-on-one support to these authors. 

PI1: Every project was read by at least three people and got two stages of review. 

I worked a lot with authors at the beginning and at the end of polishing: 
[From] launching a project, picking sources, and then the final polishing of 

them. 

Further, a statement from PI2 confirms a change in reform ownership. 

PI2: Higher ed[ucation] implementation is significantly different from K-12. 

And I think because of that, it felt like a serendipitous kind of outcome like 

the folks that were all dialed in and who are now our external authors. 

Hence, over time, ownership was transferred to the instructors.  
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Sustainability: Addressing the sustainability of innovation, we asked for information 

about the future of TRIUMPHS. 

Interviewer: What is next? How could the results from TRIUMPHS be spread and 

implemented in the future?  

PI1: We have already formed a new TRIUMPHS society. So, towards the end 

of the grant, we started thinking seriously about how we can recruit the next 
generation of people who will keep this [...] initiative going. [...] It will 

probably focus more on the development and implementation side. There 

is a peer-reviewed journal that will be associated with that effort. 

Moreover, even after the project’s funding concluded and officially ended in July 2023, 

the community has remained dynamic, actively authoring and uploading PSPs. 

PI4: we are still coming up with newer and better versions of the PSPs. There 
are still new PSPs coming out and being posted [on the website. The new 

PSPs indicate that the newly formed society has remained engaged in 

developing and modifying existing PSPs based on the evaluations. 

DISCUSSION 

In this section, we sought to provide answers to the research question. In line with 

influential factors of implementation research pointed out by Century and Cassata 

(2016), innovation likely influenced the scale of the TRIUMPHS project. The apparent 

innovation of the TRIUMPHS project is the PSPs. Using primary sources to learn 

mathematical concepts was a novel experience for the students. More importantly, 

understanding the language and historical mathematics was undoubtedly a challenge. 

To overcome this challenge, the project team carefully structured the PSPs in a specific 

manner. For example, each PSP revolves around one or several primary source texts. 

The tasks aid students in comprehending and analysing the primary sources. They offer 

unfiltered insights, expressed in language unaltered by decades of refinement. The 

context in which the authors write, often involved in evident discoveries, adds to the 

appeal for student engagement. The context in which authors write engages students, 

and the tasks help students decipher the text and understand the mathematical content, 

linking it to modern curricula. In that way, the innovation is relevant to the end users 

and aligned with the standard practice of learning new mathematical concepts.   

In addition to the structure of the PSPs, the innovation also paid attention to instructors 

as users. To make the instructors (as users) comfortable teaching with the PSPs, a set 

of detailed instructions encompassing guidance on incorporating tasks into classroom 

settings and offering insights on their utilization was integrated within the 

implementation schedule of each PSP. This development stands out as another 

significant contribution of the TRIUMPHS project, particularly in providing a valuable 

resource for instructors. 

Another vital aspect of the innovation is its adaptability. The flexibility allows 

instructors to tailor and adapt the PSPs to their needs. This freedom empowered 
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instructors to create their materials for diverse mathematics courses. That was a reason 

for the depth (Coburn, 2003) of the TRIUMPHS project—expansion to almost all 

undergraduate mathematics courses; by the end of the project in July 2023, 99 PSPs 

had been developed (Clark & Barnett, 2023).  

The primary end users of the project are tertiary-level mathematics instructors. The 

project team has organized numerous workshops for groups of high school, college, 

and university teachers who volunteered as site testers. Site testing is entirely 

voluntary, and a key factor for instructors to remain engaged in the project is their 

satisfaction with using PSPs. Consequently, within the initial six years of the grant, 

“133 instructors officially used PSPs, … for a total of 436 distinct implementations in 

over 240 classrooms at 109 different institutions across the US and Canada” (Clark & 

Barnett, 2023, p.3). Hence, TRIUMPHS gradually spread.  

Over time, some site testers became authors of PSPs, receiving ongoing support from 

the project team. They were guided through drafting, receiving feedback from a PI, and 

modifying PSPs until achieving a high-quality standard. As the new authors gained 

proficiency, they transitioned from modifying existing resources to creating entirely 

new ones. Gradually, as users became more accustomed to PSPs and their role in 

contemporary mathematics education, instructors expanded the scope and took 

ownership of PSPs. This shift in ownership aligns with Coburn’s (2003) scaling 

dimensions regarding reform ownership. However, the agency given to instructors 

might be attributed partly to these individuals being university instructors. They are 

experts in the field of their teaching. This scenario might differ considerably from K-

12 implementation, where such autonomy is not typically observed.  

The TRIUMPHS project most likely had a sustainability plan to ensure the continuity 

of innovation beyond the project conclusion. As the project progressed, the PIs and site 

testers— comprising authors and exclusive users —evolved into a community of 

practitioners. The PIs of the TRIUMPHS project announced this community as the 

TRIUMPHS Society. Even after the end of the project, the TRIUMPHS society has 

been active in writing new PSPs and upgrading existing ones based on evaluations.  

Organizational influences appeared favourable for the users in their settings. The PIs 

did not complain about the support the users and authors received from the institutes 

or the infrastructure facilities. There were no external influences on the project due to 

the autonomy of tertiary-level instructors in deciding what to teach, how to teach, and 

how to evaluate. Not surprisingly, in organizational settings, tertiary-level institutes in 

developed countries appeared to receive preferential support for such projects. 

However, this may not be the case in a different context, for example, in a developing 

country or a K-12 setting.  

CONCLUSION 

This paper delineates influential factors contributing to the success of an 

implementation project in scaling. The apparent finding is that the TRIUMPHS project 
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scaled up in terms of Coburn’s (2003) scaling dimensions: depth, sustainability, spread, 

and shift in reform ownership. We identified the interplay of influential factors and 

strategies employed by the TRIUMPHS project, positively impacting project 

scalability. In particular, the innovation, including its distinctive structure and 

supplementary materials such as instructor guidelines, alongside its adaptability and 

the continual support offered by the authors, markedly influenced the TRIUMPHS 

project’s success. Further, as Aguilar et al. (2023) pointed out, the well-developed 

relationship between producers (authors) and users, evolving into a collaborative co-

production, will likely positively impact the TRIUMPHS project’s success.  

The findings of the paper confirm two of the three factors proposed by Aguilar et al. 

(2023)—contact factor (producer-user contact – a strong relationship between the 

authors and users in the TRIUMPH project) and material factor (e.g., incorporating 

detailed guidelines to the users)—are crucial factors in scaling up an implementation 

project. In addition to these factors, the adaptability of the materials and the plans 

protect the established bond between the producers and users (TRIUMPH society), 

which is also worth considering in future implementation projects. 
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Using an ecological and dynamic view of teacher agency, this study explores the 

relationships between teachers’ professional actions and decisions, mathematics 

curriculum materials (CMs), and cultural norms and values at play in four educational 

contexts: Finland, Flanders (Belgium), Sweden, and the United States. The data were 

drawn from a survey of 397 teachers (grades 1-6), inquiring into self-reported use and 

perceptions of their CMs. Analysis of the most commonly reported CMs illustrated 

characteristics that reflect cultural values in each context. Survey findings indicated 

that teachers in all contexts use CMs purposefully and in relation to their own ideas 

about teaching. We also found context-specific differences in how teachers relied on 

CMs for different curricular aims, adding complexity to notions of CM use. 

INTRODUCTION 

Curriculum materials (CMs)1 have long been a mainstay in mathematics classrooms 

around the world (Valverde et al., 2002). In many school systems, they are used to 

communicate curriculum policy and ensure coherence across classrooms. They are also 

seen as valuable classroom resources for teachers, supporting instructional planning 

and decision-making (Remillard, 2005). The roles CMs play in educational practice 

are influenced by educational policies, cultural norms and values, and teaching 

practices, which differ across cultural contexts (Pepin & Haggarty, 2001). Cross-

cultural studies of mathematics teaching offer insights into the complex web of factors 

that contribute to classroom instruction in any cultural context (e.g., Stigler & Hiebert, 

1999). At the same time, many studies highlight the role of textbooks as shaping forces 

and downplay the teacher's role in this process (e.g., Valverde et al., 2002).  

This study explores the relationships between teachers’ professional actions and 

decisions, mathematics CMs, and cultural norms and values in four educational 

contexts: Finland, Flanders (Belgium), Sweden, and the United States. We draw on a 

professional space lens (Oolbekkink-Marchand et al., 2017), which conceptualizes 

teacher agency as a dynamic process of negotiating and acting within objective and 

subjective features of an educational landscape. By looking comparatively at how 

teachers in the four contexts describe their uses of mathematics CMs in relation to how 

typical CMs guide teaching actions, we seek to uncover context-specific differences in 

the interplay between teachers’ professional space and the enactment of agency. 
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PROFESSIONAL SPACE AND THE ENACTMENT OF AGENCY 

This study takes an ecological approach to teacher agency, viewing teachers as active 

agents in a system, navigating the tension between “their work as professional 

practitioners in the classroom, and their dependence on organizational structures, such 

as school and curriculum provided by state governance” (Wermke & Höstfält, 2014, p. 

60). Oolbekkink-Marchand et al. (2017) use professional space to refer to objective 

components of school systems, along with teachers’ subjective perceptions and 

negotiation of them. Rather than viewing teacher agency as objectively determined by 

context, professional space views teachers as “active interpreters of the school context 

and the space they have, to act on their own personal goals” (p. 38). Further, teachers 

act “by means of their environment,” and agency is understood as an interplay among 

“individual efforts, available resources, and contextual and structural factors” (p. 38).   

We adapt Priestley and colleagues’ (2015) ecological model of teacher agency to guide 

our analysis of the interplay between CMs, specifically teacher’s guides, and teacher 

decision-making in relation to their instructional goals (Fig. 1). Their model proposes 

that teachers enact agency in relation to influential components of their current context, 

which they refer to as the practical-evaluative dimension. This dimension includes 

cultural (values, beliefs), structural (policies), and material components (physical 

environment, resources). Teachers’ negotiations of these components are influenced 

by the iteration dimension (teacher’s personal and professional experience) and the 

projective dimension (their short- and long-term aims). Our adapted model considers 

the practical-evaluative and projective dimensions and CMs as a key material 

component. Our analysis focused on how CMs guide teaching decisions and how 

teachers described using this guidance to inform three levels of curricular aims: Macro-

level refers to broad instructional goals and objectives; mid-level refers to sequencing 

and depth of topics included; lesson-level refers to the content taught in a lesson and 

the teaching techniques used. We drew on existing research to identify cultural and 

structural components relevant to the use of curriculum materials in each context. 

 

Figure 1. Ecological model of teacher agency as the interplay between CMs and 

teacher decision-making in relation to their instructional aims  
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CROSS-CULTURAL RESEARCH ON TEACHERS’ USE OF CMS 

Our examination of how elementary teachers in four cultural contexts describe their 

use of mathematics CMs brings together existing cross-cultural research on teaching 

practices in different education systems, comparative textbook analyses, and research 

on teachers’ use of mathematics textbooks. Culturally specific patterns and approaches 

in mathematics teaching have been documented by a number of studies (e.g., Pepin & 

Haggarty, 2001; Stigler & Hiebert, 1999), although the research on elementary 

mathematics is limited. These differences have been explained by cultural norms and 

values (Stigler & Hiebert, 1999), which are reflected in the structures and policies of 

the particular education system (Krzywacki et al., 2023).   

CM comparisons have also found cross-cultural differences, but the majority focus on 

the treatment of mathematics topics and offer limited insight into pedagogical practices 

or how textbooks are designed to guide teachers. One exception exists: An analyses of 

how mathematics CMs from Flanders, Sweden, and the U.S. communicate with 

teachers found differences in the mode and focus of communication and the positioning 

of teachers in relation to authority (Van Steenbrugge & Remillard, 2023).  

A few studies have made strides toward connecting cultural differences reflected in 

textbooks and classroom practice. Pepin and Haggerty (2001) detailed how cultural 

values in England, France, Germany, and Norway are reflected in policy documents, 

mathematics textbooks, and teaching practices. Further, in an examination of Swedish 

and Finnish teachers’ interactions with Finnish CMs, Koljonen (2020) found 

differences in lesson planning and enactment, reflecting distinct cultural norms in each 

country. The impact of CM designs and their usage on these cultural differences 

remains less explored. In many settings, textbooks are viewed as potential messengers 

of change (Hemmi et al., 2017). At the same time, it is well understood that teachers 

use CMs in different ways (Remillard, 2005). This study looks more closely at how a 

large sample of teachers describe using the distinct features of their mathematics CMs. 

CULTURAL AND STRUCTURAL COMPONENTS 

As Nordic countries, Finland and Sweden share many cultural and educational values, 

including teacher autonomy and local decision-making, which are reflected in 

educational norms and policies in both, although with some variations. In Finland, the 

educational system promotes student and teacher independence and holds teachers in 

high regard (Krzywacki et al., 2023). The Finnish national curriculum sets overall 

topics to be covered, and the decentralized system allows teachers to select materials 

and determine when and how these topics are taught. 

Sweden also grants teachers liberty to choose and modify CMs. The Swedish national 

curriculum outlines goals and guidelines for mathematics content and pedagogical 

approaches, but schools determine daily instructional structures. Individualized 

learning is highly valued in Sweden; elementary teachers may use several CMs to cater 
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to students at different levels. In both countries, CMs are commercially published, with 

substantial input from experienced teachers (Hemmi et al., 2017).  

The Flanders region of Belgium has a semi-autonomous structure. The government 

adopts attainment targets that identify the knowledge, skills, and attitudes that students 

should reach at the end of grade six, but authority to determine how to reach them is 

given to schools. School principals, often in consultation with teachers, select CMs, 

which are developed by a mix of stakeholders, are commercially published, and reflect 

the attainment targets. Teacher professionalism, where teachers contribute 

meaningfully to educational aims, tends to be valued over autonomy (Simons & 

Kelchtermans, 2008). As such, teachers are expected to regularly use selected CMs. 

Education in the U.S. places considerable emphasis on control and accountability in 

order to reach common outcomes (Krzywacki et al., 2023). Each state establishes 

specific learning objectives for each grade level, and students’ attainment of these 

objectives is measured annually on high-stakes assessments (Remillard & Reinke, 

2017). Commercial publishers typically write CMs, although some are prepared by 

researchers and sold commercially. District administrators are responsible for selecting 

CMs that all teachers in the district are expected to use, often following a set schedule. 

METHODS 

Survey development  

Data for the study came from a mixed-methods study of elementary teachers' use of 

mathematics CMs in Finland, Flanders, Sweden, and the U.S., which included semi-

structured teacher interviews and curriculum analysis. The survey was designed to 

situate interview findings in a broader, cultural context. Survey questions asked about 

print and digital materials, frequency and purpose of use, and influencing factors. The 

team generated questions in English (common language) based on emerging themes 

from interviews in all four contexts. Following standard survey design procedures, 

questions were translated into the native language of each context (Dutch, Swedish, 

and Finnish), field tested using cognitive interviews, and then revised by the full team.  

Survey Administration 

The survey was launched in Spring 2022 and was open for approximately 6 months. 

Efforts to solicit respondents varied by context, based on typical practices and the 

team’s access to resources in each location.  The final data set included 397 teachers, 

grades 1-6, as follows: Finland (n=27), Flander (n=86), Sweden (n=102), US (n=182).  

Analysis 

Responses were compiled, cleaned, and arrayed to facilitate comparative analysis. A 

survey consultant performed analysis of variance on appropriate responses to 

determine statistical significance of differences found. We identified questions relevant 

to the focus of this report–understanding patterns in how teachers use CMs to design 

lessons–and undertook descriptive analyses, looking for relevant patterns within or 
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across contexts. To consider the role that CMs might play in these patterns, we 

identified the five most commonly named CMs in each context and analyzed them to 

describe patterns in the guidance CMs provide.  

FINDINGS 

Following our ecological model of teacher agency, we first present findings from the 

analysis of CMs in each context and then use survey findings to explore patterns in 

teachers’ reported actions and decisions in relation to their CMs and their aims.  

How CMs Structure Teachers’ Roles 

Analysis of the five most commonly mentioned CMs from each context surfaced 

relevant patterns that resonate with the cultural and structural components described 

earlier. For example, all CMs were aligned with national or state official curriculum 

documents, however, they differed in how specifically they mapped this overlap. 

Finnish and Swedish CMs offered macro-level frameworks over prescriptive guidance, 

prioritizing flexibility and autonomy in how teachers enact their roles. In contrast, the 

U.S. and Flanders CMs provided more mid- and lesson-level guidance, further 

specifying the teacher’s role. We summarize these findings in the following 

paragraphs. We then detail survey findings to explore how teachers in each context 

interpret and act in relation to these features.  

Finnish CMs analyzed were predominantly similar in structure and content, with a 

moderate level of guidance that aligns with the national core curriculum standards. 

predominantly similar in structure and content, providing a macro-level framework that 

encouraged teachers to integrate their own pedagogical approaches within the 

established educational goals. Each unit began with a description of the content and 

learning objectives. The daily lessons included student activities, but only moderate 

guidance for the teacher. This structure provided teachers freedom to decide on daily 

teaching practices, reflecting the core value of teacher autonomy. 

The commonly used CMs identified by Swedish participants varied considerably and 

included both traditional and newly developed CMs. However, all CMs linked core 

content and objectives to mathematical concepts and skills developed through each unit 

or lesson; they also offered differentiated tasks to cater to individual needs. Like the 

Finnish CMs, and in keeping the value of teacher autonomy, the traditional Swedish 

CMs included limited guidance for teaching daily lessons. In contrast, newer CMs 

provide greater pedagogical guidance, suggesting a shift toward a more structured 

approach. Notably, the fourth most common response to the question, “What is your 

primary mathematics curriculum program?” was “I don’t use a specific CM”. 

Flanders' CMs exhibit a structured and didactic approach, closely adhering to 

government-set attainment targets. Most CMs were detailed and prescriptive, 

providing teachers with step-by-step guidance for each lesson, including strategies for 

differentiation and adherence to structured learning plans. This high level of detail aims 
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to ensure that instructional practices are consistent with the specified learning 

outcomes of the Flemish educational system. 

Like Sweden, the U.S. CMs varied considerably. They were similar, however, in their 

comprehensiveness and explicit alignment with state standards, reflecting the U.S. 

emphasis on control and accountability. Each CM included extensive detail about 

sequence, scope, and learning objectives, providing considerable detail on how the 

components of each lesson should flow and specific pedagogical actions. Guidance 

also included suggestions for differentiation, prompts for discussion, and alerts about 

possible student misconceptions and how to address them. 

Teachers’ Decisions and the Interplay of CMs and Teachers’ Own Ideas 

Survey question asked teachers to report on factors that influenced their mathematics 

teaching. Responses from all contexts revealed that teachers characterized their 

curricular decisions as being influenced by their CMs and their own ideas. However, 

the degree to which teachers prioritized CMs or their own ideas differed across the 

contexts, highlighting differences in how teachers perceived their roles.  

Teachers in all four contexts reported using CMs regularly (“almost every or most 

lessons”) to a similar extent, ranging from 58% to 69%. Teachers from the U.S. and 

Finland, however, were more likely to indicate that their CMs were “very influential” 

in their mathematics teaching (63 and 62% respectively) than those from Flanders 

(36%) and Sweden (49%). This difference did not appear to be related to having 

adequate materials, since over 75% or more in each sample reported having adequate 

curriculum materials available for instruction.  

Teachers in all contexts also reported relying substantially on their own ideas. A higher 

proportion of teachers from Nordic countries reported this position. Finnish teachers 

stood out, with 81% reporting that their own ideas were “very influential,” compared 

to 72% of Swedish teachers, 52% of U.S. teachers, and 49% of Flanders teachers.  

These findings surface several themes related to the interplay between objective 

components of professional space and teachers’ enactment of agency: U.S. teachers 

stood out in their reliance on CMs when making curricular decisions. They were the 

only group to report being influenced by CMs at a higher rate than their own ideas. 

This pattern comports with the themes of structured guidance, accountability, and 

control present in the U.S. school environment. In contrast, teachers from Nordic 

countries prioritize their own ideas in their decisions. Finnish teachers stood out in the 

extent to which they report relying on their own ideas and CMs.  Flemish teachers’ 

responses suggest more discomfort in relying on CMs.  

Teachers’ Decisions in the Interplay of CMs and Curricular Aims  

In light of the differences in how CMs in each context structured teachers’ roles, we 

used survey data to explore how and why teachers from each context reported using 

CMs, and particularly the teacher’s guide. Survey questions asked teachers to indicate 

how much they used their CMs to determine overall goals and objectives (macro-level), 
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sequencing topics and time spent on each (mid-level), content and skills taught in each 

lesson and teaching techniques to be used (lesson-level). Our aim was to consider how 

teachers made use of objective features in their CMs to enact curricular aims, as well 

as how their approaches related to cultural values and structures in their systems. 

It appears that the balance between the influence of CMs and teachers' own ideas, 

outlined above, reflects the structure and content of guidance in their CMs, along with 

cultural norms and values. U.S. CMs provided extensive and comprehensive guidance, 

and U.S. teachers were likely to report using them to determine all levels of curricular 

aims “primarily or quite a bit" (macro 74%, mid 72%, lesson content 70%, teaching 

techniques 59%). U.S. teachers also stood out in the extent to which they reported 

following CMs; 62% indicated they “follow[ed] the script in the teacher’s guide as 

written or mostly as written,” compared to 8-11% of teachers from European contexts. 

Teachers in our study from Nordic countries reported more limited use of CMs and 

this use was concentrated around macro-level aims; just over half reported strong 

reliance on CMs for some macro-level purposes (61% Finland, 54% Sweden). Far 

fewer respondents reported relying on CMs for mid-level (32, 33%). At the lesson-

level, these teachers were more likely to report using CMs to determine the content to 

be taught (53, 60%) than teaching techniques and activities (37, 36%). These findings 

reflect the nature of guidance provided by CMs and the cultural expectation that 

teachers make teaching determinations, using multiple CMs and resources.  

Teachers in Flanders present a mixed profile that does not align cleanly with either 

pattern above. They were more likely than the others to report using CMs to determine 

macro-level aims (87%), and they fell in the middle on using CMs to determine mid-

level aims (50%). Their reported use of CMs for lesson-level aims was akin to the U.S. 

teachers: 76% for content to be taught and 42% for teaching techniques and activities. 

It appears that, despite the prescriptive approach found in Flemish CMs, teachers make 

selective use of the guidance for their mathematics instruction.  

DISCUSSION & CONCLUSION 

Our analysis of teachers’ reported use of CMs in four contexts from an ecological 

perspective of teacher agency contributes to our understanding of teachers’ 

professional actions in relation to CMs within a cultural and institutional context. It is 

well understood that CMs are used around the world and operate differently in different 

school systems (Valverde et al., 2002). By considering teachers’ decisions and actions, 

our findings add complexity to what it means to “use” CMs. We found that teachers in 

different contexts negotiated the guidance in their materials, relying on them for 

different instructional purposes and in relation to their own ideas.  

By adopting a professional space lens (Oolbekkink-Marchand et al., 2017), our 

analysis demonstrates how CMs operate as part of the objective components of school 

systems, reflecting and reinforcing cultural values and institutional structures. They are 
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not simply messengers about mathematics curriculum, but about traditions and values 

related to teaching and teachers’ roles. 

Our findings offer some insight into how teachers interpret and negotiate these 

structures as actors in this system. Teachers made selective and purposeful use of 

components of CMs that were pertinent to their contexts and instructional aims. Using 

CMs to guide or inform instructional decisions was not understood as a rejection of 

one’s own ideas and values. The Finnish data illustrates this perspective well, showing 

that teachers embraced being influenced by both CMs and their own ideas.  
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TEACHERS’ MOTIVATIONS TO TRANSITION TO DE-

STREAMED SECONDARY MATHEMATICS 
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An initiative supported by the Ministry of Education to combat educational inequity 

has positioned de-streaming New Zealand secondary mathematics as a critical issue. 

Using the lens of self-determination theory (SDT), understanding teachers’ beliefs, 

motivations, and goals in de-streaming may facilitate this transition. This report 

presents the results of a thematic analysis on interviews from 11 secondary 

mathematics teachers. Findings suggest that teachers can internalise goals of 

externally introduced de-streaming initiatives and teacher intrinsic motivation can 

originate from knowledge of the broader negative consequences of streaming. 

Practical implications are discussed together with the results.  

INTRODUCTION 

‘Streaming’, also known as ‘setting’ or ‘tracking,’ is the practice of grouping students 

by perceived ability, commonly through sorting them into separate classes (Domina et 

al., 2019). The removal of streaming, or ‘de-streaming,’ is a pressing issue in Aotearoa 

New Zealand due to evidence of inequitable outcomes, particularly for Māori and 

Pasifika students (Tokona Te Raki, 2019). These findings, together with cumulative 

evidence from international literature on the harms of streaming to equity (Terrin & 

Triventi, 2023) informed an action plan for de-streaming schools by 2030 with support 

of the Ministry of Education (Tokona Te Raki, 2023). However, de-streaming can be 

difficult and complex (Horn, 2006; Taylor et al., 2017), with a small but increasing 

portion of schools in the country currently de-streamed or transitioning to de-streamed 

classrooms (OECD, 2023). Mathematics particularly remains heavily streamed, which 

may contribute to postsecondary inequity, given its role as a ‘gatekeeper’ subject.  

One explanation for the difficulty of effectively de-streaming, is that the motivations 

and goals of teachers may conflict with those of school leaders and researchers (Taylor 

et al., 2019). Thus, it is helpful to examine the motivation of teachers participating in 

a project aimed at understanding and supporting the transition to de-streamed 

secondary mathematics. Further, understanding teachers’ goals for de-streaming with 

respect to their beliefs and motivation may inform supporting teachers in constructing 

and reaching appropriate goals. Doing so will enable those who are leading the 

transition in their own schools to support their teachers through this process.  

LITERATURE AND THEORETICAL BACKGROUND 

Beliefs heavily shape what is valued, which, in turn, influences motivation and goals 

(Parks & Guay, 2009). Many teachers believe that streaming has positive impacts on 
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students (Taylor et al., 2017), particularly through being effective for students of 

varying prior attainment. This belief can be stronger in mathematics (Hallam & Ireson, 

2003), particularly in higher year levels (Forgasz, 2010). Teachers view the 

disadvantages of streaming as including problems with stream allocation, and differing 

educational quality and opportunities between streams, both of which restrict long-

term options (Forgasz, 2010). While teachers sometimes indicate the limitations of 

streaming for certain students, they often do not agree upon or acknowledge broader 

equity issues perpetuated by streaming (Forgasz, 2010; Hallam & Ireson, 2003). 

Importantly, school ethos around mixed grouping influences teacher beliefs (Hallam 

& Ireson, 2003). There is little research on the transition to de-streamed classrooms, 

leaving teachers beliefs, motivations, and goals through this shift poorly understood. 

Self-determination theory (SDT) diverges from many previous theories of motivation, 

which focus on how external factors influence behaviour, through further centralising 

internal factors that shape development and regulation (Ryan & Deci, 2019). SDT 

distinguishes the ‘quality’ of motivation rather than simply motivational intensity 

(Deci & Ryan, 2008), which can correspond with wellbeing, performance, and 

persistence (Ryan & Deci, 2000). It is therefore an appropriate framework for this study 

since the transition to de-streaming requires a long-term commitment.  

SDT posits that three psychological needs must be fulfilled to enhance self-motivation: 

competence (perceived effectiveness in relevant tasks), autonomy (personal agency), 

and relatedness (connectedness and belonging with others) (Deci & Ryan, 2008). 

Intrinsic motivation, participating in an activity for its inherent interest and satisfaction, 

is supported through meeting these needs (Ryan & Deci, 2019). Extrinsic motivation 

exists on a spectrum, which varies in the level of individual autonomy. At one end, 

there is external regulation and introjected regulation, where regulation takes place 

through purely external factors, such as compliance, or is not fully internalised. In 

contrast, identified regulation and integrated regulation can be understood as more 

closely linked to intrinsic motivation through individuals valuing or assimilating to the 

goal content (Ryan & Deci, 2000).  

Goals refer to ‘what’ someone expects to accomplish from their behaviours, whereas 

motivations are ‘why’ they engage in the behaviour (Deci & Ryan, 2000). Goal content 

may be intrinsic or extrinsic, with intrinsic goals associated with autonomous 

motivation, wellbeing, and the satisfaction of the basic psychological needs (Deci & 

Ryan, 2000). Higher-quality motivation can correspond with stronger outcomes 

relevant to professional development. It is therefore important to unpack sources of 

motivation and identify related goals, to understand and support teachers in their 

transition to de-streamed mathematics. With this in mind, our research questions were: 

• What motivates teachers to participate in a project aimed at supporting and 

understanding the de-streaming of secondary mathematics?  

• How are teachers’ beliefs about streaming, motivations, and goals for 

participating in this project related?  
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METHODS 

This research sits within a broader project that aims to understand and support the de-

streaming transition in partnering with teachers, students, and schools. Five New 

Zealand schools, which had recently de-streamed secondary mathematics and 

represented regional, ethnic, and socioeconomic diversity, were recruited as partners. 

Eleven teachers from these schools participated in semi-structured interviews in-

person or online. After listening to the interviews while making preliminary notes, they 

were coded by the first author using inductive thematic analysis (Braun & Clarke, 

2012). The themes were reviewed separately by the second and third author, then 

refined. The results outline whether and how participants expressed their beliefs about 

streaming, their motivations for participating in this de-streaming project, and their 

goals in participating.  

RESULTS 

Beliefs 

Of the participants who articulated beliefs about de-streaming, a clear subset was 

identified, who expressed the view that streaming limits educational pathways.  

Claire: Why do we get to put them in Year 11 into this class…? You’re stopping 

them from getting UE (university entrance), you’re stopping them from 
doing anything that has maths and statistics in their future, what right do 

we have to make that decision? 

This was often linked to the algebra and calculus content of streams.  

Tom:  I’ve talked for lots of years about how streaming isn’t fair…limiting people 

and only teaching the extension class the higher-level stuff. What about all 

of these kids in the next sort of two or three bands, however you stream? 

They’re missing out on that high-level stuff, and I know, I’ve seen it so 
many times that you struggle and struggle and struggle with algebra, and 

then ‘click,’ all of a sudden, it happens. And that happens at different times 

for everybody. So, why would we stop them from trying? 

Teachers highlighted their beliefs about bias in streamed systems based on their own 

experiences. Explicitly linking to broader equity issues, the belief around systematic 

bias was particularly evident with respect to racial inequity.  

Tom:  But our extension classes are full of the kids whose parents have fought for 

the right for their kids to be there…And that’s going to link into our 

culturally responsive[ness] isn’t it? You know, what do they say systemic 

racism, you know, yeah that’s the other side. 

Diane elaborated further on her perspective of de-streaming facilitating positive 

outcomes for students stating, “Our achievement in external [exams] is going up, but 

the bar was quite low. Our engagement’s gone up because we said everybody’s doing 

externals now.” 
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Motivations 

Contrasting motivations for participating in the project distinguished the teachers. One 

extrinsic motivation was being recruited for participation by school leadership or 

colleagues. This recruitment existed on a spectrum and was sometimes a clear top-

down directive, 

Claire:  [The head of mathematics] said we’re changing everything. We’re going to 

do this and this, and being a second-year teacher I was like ‘okay,’ and just 

went along with everything…now it’s something that I am really passionate 

about, but not because of [colleague] but because of me. 

For some, their engagement was presented as optional, 

Ivan:  My head of department asked me if I wanted to join…and I thought, yeah 

that could be something I’m into…so just pretty much said yes immediately 

and it wasn’t until I suppose we had our first meeting…I realised that, oh, 

this is actually something I really agree with. 

Some were motivated by their peers, 

Marama:  I find [colleague] very inspirational. Just her drive and passion and for the 
kids to be successful and to love what they do when they're in her 

classroom…Yeah, I get caught up in that, I guess. I look at the impact on 

our kids and that's inspiring for me. 

Similarly, some teachers commented on the project aligning with their schools’ goals. 

Extrinsic motivation can take the form of a directive or feeling pressure to conform. 

However, some extrinsically motivated teachers began to value or internalise the goals 

of de-streaming. Several teachers identified such extrinsic sources as their only 

motivation, while others reported other factors. Many participants were motivated by 

their observations of the inequity, injustice, and damage of streaming.  

Kyle:  I think the real goal behind that is creating an inclusive and relational 

culture where there’s diversity and students will feel included and students 

feel empowered to be part of, where students feel actually part of the kura 

[school] they feel like they belong. 

Such concerns were linked to personal reflections on teachers’ own education. 

Brie:  I was in extension classes. I was in the top groups…But when I think back 
now it’s actually because the system worked for me, not because I was 

intelligent…I think teaching changed that view a lot because you see so 

much more. You see all the different kids coming in from all the different 

places then there’s not much equity there. 

Student and societal attitudes toward mathematics and education generally were raised 

as a motivator for engaging with this project. This, again, was often linked to 

reflections on their own educational journey.  

Diane:  I feel very passionate about de-streaming from my own personal journey of 

being streamed as a child myself at high school with English and I still have 
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whakamā [shame/embarrassment] around English…I feel like if that’s the 

narrative that we’re perpetuating for these students from day one, it’s just 

so hard to change any of their dispositions with themselves in mathematics, 

let alone in themselves as a learner in our system.  

Some teachers were intrinsically motivated by their curiosity in or challenge of de-

streaming mathematics at secondary level.  

Goals 

Goals for participation were broad, though nearly all teachers indicated a desire for 

clarity, guidance, or resources for facilitating or improving their de-streamed practices. 

Teachers sought to gain a better understanding of the effects of streaming and what it 

means to de-stream effectively.  

Diane:  What I professionally hope we can get out of it is looking more at the 

pedagogy and kaupapa [purpose] that needs to be happening in the 

classroom…So, we’ve got the de-streaming part sorted, but now it’s like 

actually how do we support this happening in the classrooms? How do we 

support our kaiako [teachers]? How do we support our ākonga [students] to 

make sure that they’re still getting the best out of what we can offer? 

Teachers hoped the project would provide the opportunity to expand their toolbelt with 

concrete approaches to inform their practice. Tania comments, “I’m just looking at 

what are the different tools, or what are the different strategies we can use. And I think 

we need to create our own, you know, unique style of going about doing it.” 

Teachers sought guidance to inform their own practice, including outside the 

classroom. Layla commented on managing parental responses to de-streaming and Ivan 

sought to learn how to convince other staff of its value. No teachers discussed these 

goals outside of intrinsic personal and professional growth to support their students. 

For example, there was no reference to their practices needing to reflect well on their 

classrooms. In participating, many hoped to not only gain knowledge from others, but 

also form collaborations. Tom explained, “I’ve got some ideas and I like to bounce 

those ideas off others…being able to talk to others and hear how other people are 

approaching similar concerns, similar issues.” 

However, some teachers expressed goals that exceeded the boundaries of developing 

their own understanding and transition to de-streamed classrooms. Specifically, 

teachers hoped to support equity and cultural empowerment. Marama elaborated, “I 

guess what I would like is for our rangatahi Māori [Māori youth] to feel confident to 

take pāngarau [mathematics] and science and technology and those subjects when they 

get into the senior school.” This hope was linked to teachers’ own classroom practices.  

Brie:  I’ve realised that there’s a lot of things we can change in our practice, not 
just to make things more equitable for kids that have other stuff going on, 

but actually just to make things more equitable for cultural differences and 

just how kids work… particularly around culturally empowering practices 

for our Māori ākonga [students]. 
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Some hoped their participation would facilitate more widespread awareness and 

adoption of de-streaming. Kyle explains, “I’d really like to see more schools de-stream 

and…more teachers getting involved in thinking about, rethinking the way we do 

things a little bit.” This goal was linked to equity concerns around streaming, with 

Diane stating, “I think that the more widely we can get our ideas and thoughts and 

kōrero [conversation] and use data to show people how harmful the streaming can be, 

the better for everybody.” 

Relationships between Beliefs, Motivations, and Goals 

Three teachers did not express particular beliefs about streaming in their interviews 

and exclusively reported being motivated by leadership or other faculty members. 

These teachers discussed their goals for this project as seeking clarity around de-

streaming, exemplars of successful practices, resources for their own work, and 

collaborators in their journey. Two other teachers, who expressed the negative beliefs 

they held about streamed systems and discussed only intrinsic sources of motivation 

regarding equity and attitudes toward mathematics, extended on these goals to include 

improving equitable practice and supporting widespread adoption of de-streaming. 

Four teachers reported both extrinsic and intrinsic sources of motivation for their 

participation. Three of these identified goals that overlapped with the intrinsically 

motivated teachers. However, despite acknowledging inequity as a belief and 

motivation, for the fourth teacher, addressing societal change was not identified as a 

goal. One teacher was intrinsically motivated by the challenge of de-streaming and also 

acknowledged inequity as a motivating factor, but did not discuss beliefs about 

streaming. Her goals were similar to those of the extrinsically motivated teachers. Two 

Māori teachers, who worked in schools with a high proportion of Māori students, did 

not explicitly express beliefs on streaming. Their semi-structured interviews largely 

focused on the cultural empowerment of their students, with de-streamed practice 

treated by them as a prerequisite connected to their participation in the project.  

DISCUSSION 

Many schools across New Zealand will be moving to de-streamed mathematics, so for 

teachers the transition will be, to some extent, extrinsically motivated. To facilitate an 

effective transition, teachers will ideally develop identified or integrated regulation 

(Ryan & Deci, 2000). Teachers in this project participated voluntarily, but there were 

still varying sources of motivation for their engagement. Extrinsic sources came on a 

spectrum from being introduced by leadership, to being exposed by inspiring 

colleagues, as well as school values that had been personally adopted. Intrinsic sources 

of motivation were identified to be inequity, students’ attitude toward mathematics, 

and inherent interest in shifting practice. Our analysis suggests that it is realistic for 

teachers to internalise the goals of externally introduced de-streaming initiatives. For 

schools moving to de-stream, a source of intrinsic motivation appears to often originate 

from teachers’ concerns about the broader societal inequity and negative attitudes 

toward mathematics, which streaming can perpetuate. The influence of broader societal 
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inequity differs from previous findings (Forgasz, 2010) and exposure to this 

information may be a critical component of the transition.  

The teachers’ goals for participating in this project ranged from practical insights, such 

as guidance and resources, to broader issues, such as equity, cultural empowerment, 

and encouraging de-streaming nationally. The content of these goals can be understood 

as intrinsic in their professional development and personal satisfaction, through 

encouraging meaningful change for others. It will be important to allow teachers to 

develop appropriate intrinsic goals during the transition. Therefore, teachers should not 

be forced into formulating extrinsic goals, which can undermine motivation (Ryan & 

Deci, 2000), for example, through tracking student achievement while transitioning.  

In line with SDT, the teachers’ motivations and goals in this study associated with 

fostering their basic psychological needs. Goal content including guidance for 

improving their practices connects to their competence and sense of autonomy within 

their de-streamed classrooms. Developing goal content around fostering a community 

of collaborators corresponds with relatedness. Our analysis suggests that for all 

teachers in their de-streaming journey, these are important goals for schools to help 

address to encourage higher-quality motivation. However, some teachers had broader 

motivations and goals in their participation, specifically, going beyond the satisfaction 

of their basic psychological needs and pertaining to the development of equity and 

cultural empowerment nationally. The desire and intention to do good for others may 

be a powerful need to be satisfied in this context to drive goal content and motivation, 

in addition to the basic psychological needs posited by SDT (Martela & Riekki, 2018).   

Our findings suggest that more autonomous motivation is evident when valuing and 

developing goals around educational equity are apparent. Thus, encouraging a school-

wide dialogue around broader social issues and presenting this as a goal of de-

streaming is a potential approach in fostering intrinsic teacher motivation for de-

streaming, though this may not be completely internalised for everyone early in the 

process. The notion that de-streaming may be considered as a prerequisite for the goal 

of developing culturally empowering practice will be explored in future analyses.  
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Geometry is an important mathematical domain, especially for students with general 

learning difficulties (LD). However, not much is known about geometry learning of 

students with LD, possible difficulties, and needs for support. The aim of this paper is 

to investigate if and how students with LD differ in the identification of quadrilaterals 

from students without LD. We carried out an eye-tracking study with 184 students (20 

with LD, 164 without LD) in which students were asked if given shapes were 

quadrilaterals. We analyzed students’ error rates (from their oral responses) and their 

strategies, based on qualitative analysis of eye-tracking videos. We found that students 

with LD tended to make more mistakes than students without LD and to regard the 

quadrilaterals more often holistically, paying less attention to their properties. 

INTRODUCTION 

Geometry is one of the central domains of mathematics learning on primary and 

secondary school level (KMK, 2022). It is particularly important for students with 

general learning difficulties (LD): students who encounter learning difficulties that are 

severe, long-lasting, and extensive (e.g., Heimlich, 2016; OECD, 2007) affecting 

several school subjects, predominantly reading, writing, mathematics, and “learning to 

learn” (Heimlich, 2016, p. 36). For students with LD, geometry is crucial since, on the 

one hand, it is vital for everyday requirements and, on the other hand, it is central to 

relevant professional fields for students with LD (Basendowski & Werner, 2010; 

Hellmich, 2016). Due to the significance of geometry for the lives of students with LD, 

it is important for teachers to help them develop an understanding of geometric 

concepts and to support them adequately (Hellmich, 2016). However, there is a 

research gap on the geometry learning of students with LD and possible needs for 

support. 

This paper addresses the geometry learning of students with LD. It focuses on one 

particular activity that is associated with supporting and investigating students’ 

geometric understanding: the identification of geometric shapes, especially of 

quadrilaterals (e.g., Clements et al., 1999; Hannibal, 1999). In a study involving 

students with LD and students without LD, we pursued the research question, Do 

students with LD differ from students without LD in the identification of quadrilaterals, 

and how? We analyzed students’ error rates (from their oral responses) and their 

strategies, based on qualitative analyses of eye-tracking videos. 



Schindler, Simon, Czimek, Rott, & Lilienthal 

  

4 - 74 PME 47 – 2024 

RELATED WORK 

Learning difficulties and special educational needs in learning 

The phenomena of learning difficulties and special educational needs are not clearly 

defined; different definitions and terms are being used, which are influenced by culture 

and educational systems, and there is often an interplay of several factors that lead to 

learning difficulties (Grünke & Canvendish, 2016). In short, in this paper – in line with 

our national educational system and its cultural context – we address students with 

special educational needs in their learning as students who encounter learning 

difficulties that are severe, long-lasting, and extensive (e.g., Heimlich, 2016; OECD, 

2007). Students with special educational needs in their learning have difficulties in 

their academic achievement and can have difficulties in several school subjects, but 

usually show difficulties in reading, writing, mathematics, and in “learning to learn” 

(Heimlich, 2016, p. 36).  

The few studies on the mathematical learning of students with LD indicate that students 

with LD show deficiencies in basic numerical competencies already at the beginning 

of school (Moser Opitz, 2008) and that these deficiencies appear to increase over the 

course of schooling: Werner et al. (2019) found that students with LD in grade 6 did 

not meet the level of mathematical competencies that are expected at the end of grade 

4 (e.g., regarding arithmetic or geometry), while Gebhardt et al. (2015) found that the 

majority of fifteen-year-old students with LD were at or below the competence level I 

in PISA. Even by the end of school, students with LD often show difficulties with 

primary school level competencies, e.g., arithmetic operations, and often do not have 

the mathematical competencies required for the transition to working life (e.g., Lutz et 

al., 2023). While the existing studies indicate difficulties and delays (often with a 

product-view), to the best of our knowledge, there are no studies focusing specifically 

on the geometry learning of students with LD and possible needs for support. 

Geometry and identification of shapes 

The development of students’ understanding of geometric concepts is a complex 

process (Tsamir et al., 2008) and often described in simplified terms using van Hiele’s 

stage theory (van Hiele, 1986), which describes levels of geometric thinking “from a 

Gestalt-like visual level through increasingly sophisticated levels of description, 

analysis, abstraction, and proof” (Clements & Battista, 1992, p. 426, see also Clements 

et al., 1999). Van Hiele’s model includes five levels, of which the first three are 

relevant to this study: Level 0, “Visualization”, where students regard shapes through 

their holistic appearance, which is prototype-based; Level 1, “Analysis”, where 

students pay attention to properties of shapes and can use them to classify shapes; Level 

2, “Abstraction”, where properties are being ordered and where relationships between 

properties can be used for reasoning. While younger children rely on prototypical ideas 

when identifying geometric shapes, property-based considerations gain significance as 

development progresses (Clements et al., 1999): While young learners (aged 4-6) 

identify prototypical quadrilaterals more easily than atypical ones and are influenced 
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by mathematically irrelevant attributes such as shape orientation or aspect ratio 

(Unterhauser & Gasteiger, 2018), students from grades 1 to 4 increasingly rely on 

properties, although still prototypical ideas play a role for older students (Bruns et al., 

2021). Fujita (2012) found that even among older students (aged 14), more than half 

of them relied on prototypes to identify quadrilaterals. All in all, quadrilaterals appear 

to be more difficult to identify than other shapes such as triangles (e.g., Ma, 2015). 

Eye tracking 

Eye tracking (ET) allows recording of spatio-temporal sequences of gaze points that 

indicate visual attention (Holmqvist et al., 2011). For mathematics education, ET is of 

interest, since the recorded sequences of gaze points allow inferences about cognitive 

(and affective) processes, although the interpretation of eye movements is not 

straightforward and bijective (e.g., Schindler & Lilienthal, 2019). ET has been of 

growing interest in recent years, partly because ET devices have become more 

affordable, advanced, accurate, and easy to use with students and in classroom settings 

(Lilienthal & Schindler, 2019; Strohmaier et al., 2020). ET offers benefits for 

mathematics education, especially for investigating processes of students with 

difficulties: In a methodological study comparing think-aloud interviews and ET 

analyses, Schindler and Lilienthal (2018) found that especially for students with 

mathematical difficulties ET offered more detailed insights, possibly because aspects 

such as “anxiety, difficulties with memory retrieval, introspection, or meta-cognitive 

reflection, or verbalization issues” (p. 117) may have influenced the verbal reporting 

of students with mathematical difficulties. Since such issues may also play a role for 

students with LD, our study uses ET to investigate their shape identification processes. 

THIS STUDY 

Participants 

184 students who had just finished German primary school level and were in the first 

weeks of grade 5 participated in this study: 20 students with general LD who attended 

a special school for students with LD (mean age: 11.6 years) and 164 students attending 

an inclusive comprehensive school who did not have general LD (mean age: 10.7 

years). The 20 students with LD were from three different school classes with different 

mathematics teachers each, while the 164 students without LD were from six classes 

with different mathematics teachers. 

Setup 

Data collection took place in individual sessions in a quiet room in the schools. The 

students were presented with a series of 32 shapes (prototypical quadrilaterals, non-

prototypical quadrilaterals, and non-quadrilaterals) on a 24'' full HD screen. The shapes 

were arranged in a random order that was the same for all students. Between tasks, 

children looked at a fixation star on the left side of the screen, which ensured a clear 

transition from one task to the next. The students were asked if the depicted shape was 

a quadrilateral and to answer “yes” or “no” as soon as they knew the answer. They 
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received no feedback on their answers. The answers were recorded using an audio 

recording device. The eye movements were recorded with the Tobii Pro X3-120 eye 

tracker (120 Hz, binocular, infrared). This screen-based eye-tracker was attached to the 

bottom of the screen on which the shapes were presented. The average accuracy in our 

study was 0.9°. A 5-point calibration was performed with every student individually. 

The presented shapes included the following three kinds (see Fig. 1, see also Tsamir et 

al., 2008, Simon et al., 2021): (1) Prototypical quadrilaterals, that means squares in 

prototypical orientation; (2) Non-prototypical quadrilaterals, that means atypical 

representatives, such as trapezoids or rhombuses; (3) Non-quadrilaterals, that means 

shapes that have a quadrilateral-like shape, yet, critical attributes of a quadrilateral are 

violated (e.g., curved or interrupted lines). 

 

Figure 1. Item overview and examples (# indicates number of items) 

Data analysis 

Based on the students’ responses, we determined the error rates. For investigating 

group differences regarding error rates, we carried out a repeated measurement 

ANOVA with type of measure (prototypical quadrilaterals, non-prototypical 

quadrilaterals, non-quadrilaterals) as within factor and group (with LD, without LD) 

as between factor. Due to the different number of items grouped under the different 

types of kinds of shapes, the relative error rates were used for the analyses. 

We analyzed gaze-overlaid videos provided by Tobii Pro Lab software, where the gaze 

is visualized as a moving dot. For the qualitative analysis of the videos, the category 

system of strategies presented in Simon et al. (2021) was applied (see Fig. 2 and note 

that we use a static scanpath visualization (here: gaze plot) in this figure while the 

analysis was performed on ET videos). In short, the category system includes three 

kinds of strategies: (1) identifying “at a glance”, where the gaze moves to one aspect 

only (mostly the center of the shape or one vertex/side); (2) looking at “parts of the 

shape”, where gaze moves to distinct parts of the shape (e.g., two vertices, or a side 

and a vertex), yet, not the entire shape; (3) looking at the “entire shape”, where the 
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gaze moves over the whole shape, partially multiple times (see Simon et al., 2021, for 

a more detailed description). To calculate interrater reliability using Cohen’s kappa, 

26% of the data were coded by a second coder independently. The interrater agreement 

was 0.87, which can be considered almost perfect (Landis & Koch, 1977).  

For investigating group differences regarding students’ shape identification strategies, 

we performed chi-squared tests based on the frequencies of strategy use for each kind 

of shape (prototypical quadrilaterals, non-prototypical quadrilaterals, non-

quadrilaterals) and calculated effect sizes using Cramér’s V. For prototypical 

quadrilaterals, we calculated Fisher-Freeman-Halton test, since the assumption of chi-

squared tests was violated.  

We used the software IBM SPSS 29 for the statistical analyses. 

 

Figure 2. Kinds of strategies with scanpath examples  

RESULTS 

The analysis of error rates indicates that the students with LD in our study made more 

errors than students without LD: There was a significant main effect for the groups, 

independent of the types of quadrilaterals (F(1, 182) = 6.08, p = .015, ηp2 = .03). While 

prototypical quadrilaterals were recognized correctly as quadrilaterals by both groups 

of students with very few errors, non-prototypical quadrilaterals caused many errors 

for both groups (approx. 65% vs. approx. 60%). For non-quadrilaterals, students with 

LD made more errors than students without LD, i.e., they stated more often that the 

shapes were quadrilaterals (approx. 26% vs. approx. 15%): This means that for non-

quadrilaterals, group differences in errors were most apparent. 

We analyzed students’ strategy use for prototypical quadrilaterals, non-prototypical 

quadrilaterals, and non-quadrilaterals separately (Fig. 3): For prototypical 

quadrilaterals, Fisher-Freeman-Halton test revealed a significant difference in strategy 

use between students with and without LD (p = .047, V = .12). For non-prototypical 

quadrilaterals and for non- quadrilaterals, chi-squared tests also revealed significant 

group differences in strategy use (χ2 (2) = 8.89, p = .012, V = .05 and χ2 (2) = 6.20, p 

= .045, V = .06). For all kinds of shapes, the students with LD tended to regard the 

shapes “at a glance” more often and tended to look at “parts of the shape” less often 

than students without LD (Fig. 3).  
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Figure 3. Strategy use for three kinds of quadrilaterals in this study 

DISCUSSION  

The aim of this paper was to investigate if and how students with LD differ in the 

identification of quadrilaterals from students without LD. We conducted an eye-

tracking study and analyzed shape identification strategies from ET videos together 

with error rates in shape identification based on student oral responses. 

When discussing the results, some limitations of the study need to be considered. First, 

the number of students with LD in our study was small, especially considering that 

students with LD are not a homogeneous group who cannot be assumed to be 

homogeneous in their mathematics learning either. The results of our study offer 

interesting insights, but future research should confirm them with larger groups and 

with students with LD from different school types, e.g., from special education schools 

(as in this study) and also from inclusive education. Second, it must be noted that 

although the group differences in our study were statistically significant, the effect 

sizes were small, indicating that the differences in strategy use and error rates between 

students with LD and without LD were practically small. Yet, our findings indicate 

meaningful trends, which we will summarize and discuss in the following.  

In this study, we investigated strategies in identifying quadrilaterals. What we found is 

that students with LD for all three kinds of shapes (i.e., prototypical quadrilaterals, 

non-prototypical quadrilaterals, non-quadrilaterals) tended to use a quick strategy more 

often than students without LD: They tended to look at the shapes “at a glance” more 

often, which means that their gazes went to one point (often the center) and that they 

perceived the rest of the shape peripherally, while students without LD tended to look 

at parts of the shapes more often, paying more attention to the properties of the shapes 

(e.g., vertices, an interrupted or curved line). This goes along with the tendency of 

students with LD to make more errors in assessing whether a shape was a quadrilateral 

or not. Our findings indicate that the students with LD tended to perceive the shapes 

holistically more often and to pay (visual) attention to their properties less often than 

students without LD, which indicates that they more likely relied on prototypical ideas 

than students without LD. In particular, we saw that students with LD often regarded 

prototypical quadrilaterals at one glance and correctly, while this quick strategy went 

along with wrong answers for non-prototypical quadrilaterals. Students with LD also 

appeared to apply prototypical ideas more often for non-quadrilaterals, possibly 

overlooking or not regarding the violated critical attributes (e.g., when sides were 

curved), which in turn let them accept these shapes as quadrilaterals more often than 
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students without LD. These findings connect to studies indicating that especially 

younger students rely on prototypical ideas but that they may persist even for older 

students (Unterhauser & Gasteiger, 2018; Bruns et al., 2021; Fujita, 2012) and to 

research that indicated differences in strategy use of students with and without LD 

(Grobecker & de Lisi, 2000). However, we found that also students without LD showed 

difficulties identifying non-prototypical quadrilaterals, which indicates that many 

students need support in this area. This is in line with research showing that 

quadrilaterals appear to be difficult for students to identify (e.g., Ma, 2015). 

Finally, we saw in this study that ET provided detailed insights into the shape 

identification strategies of students with and without LD, without interfering with their 

strategies in a way think-aloud might have: Especially for students with LD, ET has 

great potential since the requirement to describe their strategies might have changed 

how the students with LD approached the task. Future research could build on this and 

use ET to inquire into students’ strategy use also in longitudinal settings and to evaluate 

teaching or targeted support for students in the identification of geometric shapes. 
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Task values are important for learning. However, prior research has indicated a lack 

of studies that have addressed students’ task values in mathematics. In the following 

study (N = 293), we analyzed (1) the relationships between intrinsic, attainment, and 

utility values and (2) how teaching students to solve open modelling problems affects 

these values. Students in the experimental group were taught how to solve open 

modelling problems, whereas those in the control group were taught how to solve real-

world problems with no missing information. Students reported their values before and 

after the intervention. The results revealed positive relationships between values plus 

a trend toward a positive effect of the intervention on utility value. We conclude that 

content-related interventions in modelling can improve motivational outcomes. 

INTRODUCTION 

Motivation comprises reasons for human actions (Middleton et al., 2016) and can be 

seen as a vehicle for human behavior. Prior research has analyzed how different aspects 

of motivation (e.g., values) are related to students’ mathematical well-being (Hill & 

Seah, 2023) or the overall value of mathematics in the context of learning (Eccles & 

Wigfield, 2020). According to Eccles’ expectancy-value theory of motivation (Eccles 

& Wigfield, 2020), students’ mathematics values are very important for their 

achievement and educational choices. Values can be ascribed to different objects, such 

as the domain (e.g., mathematics), a topic (e.g., geometry), or a competency (e.g., 

modelling) (Schukajlow, Rakoczy, et al., 2023). As students who value mathematics 

take comprehensive mathematics courses in high school and choose mathematics as a 

study domain at universities, we addressed values in mathematics in this study.  

One way to improve mathematical thinking is to teach students how to solve modelling 

problems. Solving modelling problems requires demanding processes through which 

information is transferred between the real world and mathematics (Niss & Blum, 

2020). Openness is one important characteristic of modelling problems. However, the 

openness of modelling problems was found to be a source of various barriers that tend 

to arise in the solution process (Schukajlow, Krawitz, et al., 2023).  

The aims of this study were (1) to analyze the relationships between three different 

types of values (i.e., attainment, intrinsic, and utility values; see below) and (2) to 

investigate how a teaching intervention aimed at improving students’ ability to solve 

open modelling problems affects values in mathematics.  
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THEORETICAL BACKGROUND  

Task values as motivational outcomes 

Task values are an important component of affective traits (Hannula, 2012). Values are 

stable motivational dispositions that can be related to learning and achievement. They 

can be distinguished from more temporary variable states, such as experiences of 

competence or autonomy in specific learning situations (Schukajlow, Rakoczy, et al., 

2023). Task values indicate the personal importance of the tasks, such as the value of 

one’s ability to solve a problem, the value of performing a calculation, or the value of 

making a drawing to solve a modelling problem. Expectancy-value theories assume 

that different learners ascribe different values to different tasks and thus, task values 

are subjective (Eccles & Wigfield, 2020). Furthermore, the extents to which one person 

values tasks vary across different tasks and different learning situations, indicating the 

situated nature of task values. In Eccles’ expectancy-value theory, Eccles and 

colleagues proposed three key components of task values: attainment value, 

intrinsic/interest value, and utility/extrinsic value (Eccles & Wigfield, 2020). If a 

student sees mathematics as a part of their personality, ascribes mathematical 

achievement high personal relevance, and strongly identifies with mathematics, the 

student ascribes high attainment value to mathematics. The intrinsic value of 

mathematics concurs with enjoyment in solving mathematical problems and enjoyment 

in engaging in mathematical activities. The utility value of mathematics is reflected in 

the importance of mathematics for present or future plans, such as the importance of 

mathematics for learning in school, school grades, career, future work opportunities, 

or everyday life. Empirical studies have indicated that task values are positively related 

but distinct factors (Eccles & Wigfield, 2020). However, many studies have addressed 

the overall task value level by aggregating attainment, intrinsic, and utility values into 

one score or by using items that referred to the overall value of the presented 

mathematical problems (Böswald & Schukajlow, 2023; Rach, 2023). Very few studies 

have analyzed attainment, intrinsic, and utility values as distinct factors in mathematics 

and offered a more differentiated picture of the development of these motivational 

outcomes. One exception is a study by Gaspard et al. (2015). In this study, the authors 

found positive relationships (Pearson’s correlations ranged from .50 to .71) between 

the attainment, intrinsic, and utility values of lower secondary school students. 

Furthermore, not many studies have analyzed how to improve values in mathematics. 

One potential way to improve students’ values is to teach students to solve open 

modelling problems. But how can this type of problem be described? 

Open modelling problems 

In the real world, many problems are open, and their solutions require assumptions to 

be made. Models of problem solving for open problems distinguish between the 

openness of the initial state, the openness of transformation, and the openness of the 

goal state. In modelling problems, the transformation is open because of the need to 

construct a mathematical model and select appropriate mathematical procedures to 
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solve a problem. Depending on the type of open modelling problem, either the initial 

state or a goal state can be open (Schukajlow, Krawitz, et al., 2023). Problems with an 

open initial state do not include all the information needed for their solution. In 

problems with open goal states, the question is ambiguous, requiring interpretations 

about the quantity to be calculated to solve the problem. We know from prior research 

that dealing with openness is demanding for students and pre-service teachers 

(Galbraith & Stillman, 2001; Stylianides & Stylianides, 2023). In the current study, we 

focused on problems with an open initial state and a closed goal state. Analyses of 

cognitive demands that students face while solving modelling problems with an open 

initial state have indicated that noticing openness, identifying missing quantities, and 

making realistic assumptions about the missing quantities are essential prerequisites 

for processing the problems (Schukajlow, Krawitz, et al., 2023). For example, in the 

“Poster” problem, among other aspects, students should notice that the information 

about the diameter of the poster roll is missing, and they must make an assumption 

about its length. The goal state is closed in this task because the goal of the problem is 

to find out whether the poster will fit in the suitcase. To achieve this goal and solve the 

problem, students should compare the measurements of the poster roll with those of 

the suitcase. To do so, they need to calculate the diagonal of the interior of the suitcase.  

Poster 

Sandy is on vacation in Japan and would like to buy a movie poster 

there and roll it up to take home in her suitcase. However, she is unsure 

about whether it is possible to fit the poster in her suitcase. In a store, 

she finds a poster for 1075 yen. The poster is 105 cm long and 75 cm 

wide, and Sandy's suitcase is 40 cm long, 25 cm wide, and 60 cm high. 

When she rolls the longer side of the poster up, she gets a roll that is 

75 cm long.  

Can she transport the rolled-up poster in her suitcase?  

Figure 1: The open modelling problem “Poster” 

Interventions to improve task values 

Findings from prior research on the effects of interventions that were aimed at 

increasing students’ task values in different domains (e.g., mathematics) and 

specifically on the task values of solving modelling problems are mixed. Several 

studies have revealed that emphasizing the relevance of mathematics by prompting 

students to reflect on it affected task values and related outcomes (Rosenzweig et al., 

2022; Schukajlow, Rakoczy, et al., 2023). Furthermore, the types of problems offered 

to students were shown to affect students’ values. In a study of university students, 

future teachers reported higher intrinsic and utility values regarding profession-related 

tasks than for tasks that were not related to the teaching of mathematics in schools 

(Rach & Schukajlow, 2023). Because of the strong relationship between open 

modelling problems and the real world, students might value this type of problem more 

than problems that are not that strongly related to reality. However, contrary to this 
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theoretical consideration, students and pre-service teachers did not assign higher 

overall value to solving open modelling problems compared with solving word or intra-

mathematical problems (Böswald & Schukajlow, 2023). Two explanations for these 

findings are the higher perceived difficulty of open modelling problems and students’ 

lack of familiarity with this type of problem. Teaching students how to deal with 

openness and how to solve open problems can increase the utility value of open 

problems and more generally the utility value of mathematics. As engagement in 

solving open modelling problems will promote the utility value of mathematics, and 

because of the positive relationships between utility value and the other values, we also 

expected an increase in attainment and intrinsic values.   

RESEARCH QUESTIONS AND EXPECTATIONS 

This study was carried out in the framework of the Open Modelling Problems in Self-

Regulated Teaching (OModA) project. In this project, we have been investigating how 

students solve open modelling problems and how teaching can support students’ 

learning of open modelling problems and improve affective outcomes, including the 

extent to which students value mathematics (Schukajlow, Krawitz, et al., 2023).  

Building on expectancy-value theory and the theory on modelling, the research 

questions in this study were:  

RQ1: Are attainment, intrinsic, and utility values in mathematics positively related 

before the intervention? 

On the basis of expectancy-value theory (Eccles & Wigfield, 2020) and prior empirical 

findings (Gaspard et al., 2015), we expected positive relationships between the three 

types of values. 

RQ2: How does teaching students to solve open problems affect their attainment, 

intrinsic, and utility values? 

We expected that teaching students how to solve open problems (compared with closed 

real-world problems) would increase students’ feelings that mathematics is a part of 

their personality (attainment value), their enjoyment of mathematics (intrinsic value), 

and their perceptions that mathematics is useful (utility value).   

METHODOLOGY 

One hundred eighty-five ninth graders from German middle and high track schools 

participated in this study (103 female; 14.5 years of age). Within each class, the 

students were randomly assigned to one of two groups. Students in the experimental 

group (EG) were taught how to solve open modelling problems, and students in the 

control group (CG) were taught how to solve closed real-world problems. Before and 

after the teaching intervention, students filled out questionnaires on values. 

The EG learned how to deal with openness, missing quantities, and assumptions for 

solving open modelling problems. In the CG, students focused on how to solve 

problems with superfluous information. The problems in the CG did not require 
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students to make assumptions about missing information in order to solve the 

problems. In both conditions, the teaching unit took 4 x 45 minutes. The study was 

conducted during regular classes in schools. Within the EG and the CG, students 

worked in smaller groups to solve the problems and then reflected on their solutions 

with the whole group (EG or CG) at the end of the class.  

Pre-service teachers with bachelor’s degrees in mathematics education served as 

teachers in this study. Before the study, they were given standardized training. To 

balance the effects of the instructor’s personality on students, each teacher taught 

students in both EGs and CGs. 

To assess values, we used well-evaluated Likert scales (ranging from 1 = not at all true 

to 5 = completely true) from prior studies. The scales on attainment, intrinsic, and 

utility values included 3 items each, and the scales’ internal consistencies (Cronbach’s 

Alpha) were at least acceptable (i.e., higher than .78). Sample items from the 

attainment, intrinsic, and utility value scales are: “It is important for me to be a person 

who is good at mathematics” (attainment value), “I like mathematics” (intrinsic value), 

“Mathematics is useful for my future life” (utility value). 

To check the fidelity of the treatment, student assistants observed how the EGs and 

CGs were taught. Student assistants used a standardized observation questionnaire in 

which they were asked to note any deviations from the instructional manuals. In 

addition, we collected all student materials so that we could analyze the treatment 

fidelity. The analysis of the observational questionnaires and teaching materials 

indicated high treatment fidelity. In all classes, the teachers gave the tasks to the 

students in the same order in the EG and CG, and the teachers followed the teaching 

manual closely.   

To address the research questions, we calculated Pearson correlations and conducted 

repeated-measures ANOVAs. In our statistical analysis, we included students who 

participated in the intervention (in the EG or CG) and filled out questionnaires at pretest 

and posttest (N = 185). Students who missed the intervention or one of the tests were 

excluded from the analysis. The percentage of missing values ranged from 16.6% for 

utility value on the pretest to 21% for utility value on the posttest. 

RESULTS  

The analysis of the correlations between the three values at pretest was in line with our 

expectations. Attainment value was positively related to intrinsic value (r = .60, p 

< .001) and utility value (r = .54, p < .001), and intrinsic value was positively related 

to utility value (r = .51, p < .001).  

We conducted three repeated-measures ANOVAs with time as a within-subject factor 

(pretest, posttest) and treatment as a between-subject factor (EG, CG) and attainment 

value, intrinsic value, or utility value as dependent variables. The statistical analyses 

revealed mixed results. Contrary to our expectations, we did not find an effect of the 

interaction between the time and treatment factors on attainment value (MEG, pre (SD) = 
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2.89 (0.93), MCG, pre (SD) = 2.82 (0.95); MEG, post (SD) = 2.77 (1.03), MCG, post (SD) = 

2.59 (1.09); time*treatment: F(1, 183) = 1125, p = .14, 2 = 0.006) or on intrinsic value 

(MEG, pre (SD) = 2.67 (1.03), MCG, pre (SD) = 2.63 (1.08); MEG, post (SD) = 2.43 (1.01), 

MCG, post (SD) = 2.50 (1.11); time*treatment: F(1, 183) = 1093, p = .15, 2 = 0.006). 

These results indicate that teaching students how to solve open problems did not 

positively affect their attainment value or intrinsic value. The analysis of the effects on 

utility value indicated different results. In line with our expectations, the effect of the 

intervention on utility value was significant at the 10% level (MEG, pre (SD) = 3.23 (0.93), 

MCG, pre (SD) = 2.28 (0.94); MEG, post (SD) = 3.27 (0.90), MCG, post (SD) = 3.17 (1.01); 

time*treatment: F(1, 183) = 1093, p = .09, 2 = 0.009). Thus, students who were taught 

how to solve open modelling problems tended to benefit more than students who were 

taught to solve closed real-world problems with respect to utility value.  

DISCUSSION 

The analysis of the relationships between the three values in mathematics indicated 

positive relationships, supporting theoretical considerations from expectancy-value 

theory and results from prior studies (Eccles & Wigfield, 2020; Gaspard et al., 2015). 

One practical implication from this study is that it might be possible to primarily 

address one of the values in a teaching intervention, such as utility value, because the 

other values may then be affected through utility value. 

To analyze how teaching students to solve open modelling problems affects students’ 

motivation, we set up a randomized quasi-experimental study. Because of the 

significance of task values for achievement and educational choices, we selected 

students’ values as motivational outcomes that can be affected by teaching. On the 

basis of expectancy-value theory (Eccles & Wigfield, 2020) and considerations from 

research on modelling (Niss & Blum, 2020; Schukajlow, Krawitz, et al., 2023), we 

hypothesized that if students learned how to solve open modelling problems (i.e., 

problems that are closely related to their real lives), they might subsequently value 

mathematics to a greater extent. After the teaching intervention, changes in students’ 

attainment, intrinsic, and utility values were expected to be more beneficial for students 

in the EG that for students in the CG, who solved closed real-world problems. In line 

with our expectations, we found a positive trend toward an effect of teaching students 

to solve open modelling problems on utility value. This finding means that students 

who learned how to solve open problems tended to report higher utility value compared 

with students who learned how to solve closed real-world problems. This result 

supports theoretical considerations that, while learning how to solve open modelling 

problems, students perceive the relevance of mathematics for real life, and thus, they 

might understand how useful mathematics can be for their future lives or careers. This 

important result is in line with studies that have demonstrated the positive effects of 

interventions on the relevance of mathematics on values (Rosenzweig et al., 2022). 

Furthermore, this result supports the importance of the types of problems that students 

deal with in mathematics classes for the development of utility value. This 
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consideration is hypothesized in expectancy-value theory and received empirical 

support in a prior study (Rach & Schukajlow, 2023). The theoretical implication of this 

study within the framework of expectancy-value theory is the indication that it may be 

possible to increase the fit between students’ personal plans and doing mathematics by 

teaching open modelling problems. Future studies should clarify whether teaching 

open modelling problems fit into students’ already existing plans (i.e., to use 

mathematics in the real world) or whether this intervention helped students develop 

such plans (i.e., helped them see the usefulness of mathematics in the real world).    

Another important result of our study is the lack of effects of teaching students to solve 

open problems on attainment and intrinsic values in mathematics. One explanation 

might lie in how values in mathematics were assessed. Using modelling competence 

as an object of the values might reveal other results. The alignment between the object 

of the intervention and the measures may be a significant factor that affected the results 

of the study. In future studies, researchers should assess values with respect to open 

modelling problems and closed word problems (see an example of assessment in 

Böswald & Schukajlow, 2023). Another explanation might be that making 

mathematics personally important and improving enjoyment in mathematics might 

require more comprehensive instruction. Indeed, prior interventions have rarely 

targeted these values in the past (Rosenzweig et al., 2022), and it is very important to 

develop ideas about how teaching modelling problems can specifically improve 

attainment and intrinsic values. One way to increase intrinsic value might be to use 

contexts that refer to students’ everyday lives (e.g., cities where students live), to adjust 

the context to students individual values (Bernacki & Walkington, 2018) or to ask them 

to pose their own problems (Voica et al., 2020). Furthermore, it is important to clarify 

in future studies what cognitive and motivational states during instruction mediate the 

effects of teaching students how to solve modelling problems on their task values.  
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SIMULATIONS OF PROBLEM-BASED LESSONS: USING A 

CONJECTURE MAP TO RELATE DESIGN AND OUTCOMES 

Gil Schwarts, Patricio Herbst, and Amanda Brown 

University of Michigan, USA 

Virtual simulations are a promising tool for mathematics teachers’ preparation and 

professional development. This paper focuses on a set of simulations of a problem-

based lesson, illustrating how their design informed prospective teachers’ changes in 

decision-making during simulations. Using a design-based approach and conjecture 

mapping, we trace the processes that could be attributed to the observed changes in 

teachers' decisions. The analysis shows that after completing the set of simulations, 

teachers increased their selection of student work that relates to the lesson goal, 

regardless of its correctness. The paper contributes to the understanding of virtual 

simulations as a sustainable tool for teacher preparation and professional learning.  

BACKGROUND AND AIMS  

Practice-based virtual simulations are a sustainable resource for teacher education, 

leveraging emerging technologies to provide mathematics teachers with immersive 

occasions for approximating practice (e.g., Mikeska et al., 2023). This paper explores 

the design of an online, self-paced model for mathematics teachers’ education and 

professional development (PD) that consists of digital simulations of problem-based 

lessons where secondary mathematics teachers make decisions for a teacher avatar.  

The simulations are aimed at supporting teachers in problem-based instruction, that is, 

in teaching lessons that revolve around a novel problem on which students work to 

arrive at a new curricular goal. A main role for the teacher in such lessons is to leverage 

students' genuine ideas to reach the lesson goal. This includes tasks like selecting and 

sequencing student work (hereafter SW) and orchestrating whole-class discussions 

around these pieces of work (see the "five practices" model; Stein et al., 2008).  

The interactive nature of problem-based instruction makes it challenging for teachers 

to prepare for such lessons. Virtual simulations present a valuable means for aiding 

teachers growing in this regard, providing them with an environment of reduced 

complexity where they can practice teaching with avatars (e.g., Dieker et al., 2014). 

However, the processes for achieving such growth are oftentimes implicit. In 

particular, empirical research that specifies how the design of virtual teacher simulation 

informs teacher learning is still emerging.  

A critical aspect of simulation design revolves around determining the type and timing 

of feedback. Simulations may offer immediate feedback, allowing teachers to adapt 

their decision-making in real-time, but this might reduce their presence. Alternatively, 

feedback can be provided after the fact. The nature of feedback varies significantly, as 

evidenced by two U.S.-based simulation models, simSchool (Tyler-Wood et al., 2015) 



Schwarts, Herbst, & Brown 

  

4 - 90 PME 47 – 2024 

and TeachLive/Mursion (Dieker et al., 2014). SimSchool offers didactic feedback by 

assessing the teacher's actions against predetermined criteria for appropriateness. In 

TeachLive, simulations involve behind-the-scenes inter-actors playing students, 

providing adidactic ("soft") feedback through the reactions of the simulated students 

to the teacher's decisions. The latter model prompts the question: in the absence of 

peers, facilitators, and didactic feedback, how do teachers learn in virtual simulations? 

We address this overarching question by presenting the design of pre-programmed 

simulations (without actors) utilizing storyboards to depict classroom scenarios. The 

model relies on adidactical feedback, implemented through visualizations of 

contingencies tied to participants' choices for a teacher avatar. To discuss this design 

and share preliminary results from a cycle of enactment with prospective teachers 

(PTs), we follow a design-based research paradigm. Our focal research question is: 

How and what do PTs learn about problem-based instruction from participating in a 

set of adidactical, online, self-paced simulations of a problem-based lesson? 

THEORETICAL FRAMEWORK  

The design of the represented problem-based lesson (including dialogues and artifacts) 

was guided by key themes from practical rationality (Herbst & Chazan, 2011). In this 

framework, instructional situations are recurrent types of tasks which can be described 

by subject-specific norms. In U.S. geometry lessons, examples of different 

instructional situations are proof, construction, and calculation, and teachers can either 

frame a problem as a case of an instructional situation, or leave it vague (for example, 

consider the difference between asking students to construct a circle, versus finding 

one). Herbst et al. (2023) argue that situational norms and the lesson goal are helpful 

for describing teachers' categories of perception when engaging with student ideas. The 

category of normativity alludes to a teacher’s perception of how closely a student idea 

aligns with the norms of the instructional situation used to frame the problem. For 

example, if a problem is framed as one expecting students to construct, teachers may 

consider a sketched diagram as less normative than a diagram for which construction 

tools were used. Crucially, normativity differs from correctness; it pertains to 

adherence to the norms of the instructional situation, meaning a normative SW might 

be either correct or incorrect (see Figure 3b for an incorrect normative SW). A second 

category of perception is serviceability, which attends to the teacher’s perception of 

the usefulness of a student’s contribution to reach the lesson content goal. In this 

regard, a sketch that introduced ideas relevant to the lesson goal might be considered 

more serviceable, even if it is less normative or incorrect, compared to a construction 

that cannot be leveraged for arriving at the lesson goal (see Figure 3a). Overall, these 

two categories of perception allow researchers to describe the work of mathematics 

teachers handling student work. They were used in our simulation design. 
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METHODS 

Design-based research and conjecture mapping 

Design-based research (DBR) aims to pursue both practical improvement and 

theoretical refinement (Sandoval, 2014, p. 19), through cycles of design, enactment, 

analysis, and revision. To provide adequate argumentative grammar (Kelly, 2004) for 

DBR, conjecture mapping helps explicate the links between design elements, 

theoretical conjectures, and observed outcomes (Sandoval, 2014). Conjecture maps 

consist of the following components: (1) High-level conjecture: a general statement 

about how an intervention intends to support some form of learning; (2) Embodiment: 

the physical artifacts used (e.g., instruments, software, media), the task structure (what 

participants are asked to do) and the social structure (how participants are expected to 

relate to each other during the task); (3) Mediating processes: the processes in which 

the design features are supposed to activate learning (assuming that the design itself 

does not directly produce specific outcomes); and (4) Desired outcomes: the expected 

results of the mediating processes, that should be clearly stated for easy measurement. 

In this paper we elaborate on one cycle of our simulation project, showing how the 

enactment phase relates to the conjecture map and informs its revisions.  

Participants and data analysis  

Our analysis is based on implementing the simulations with 11 PTs from the Northwest 

U.S. (5 male, 6 female). Over a 5-week period as part of their methods course in 

mathematics education, they individually engaged with the simulation set. The PTs had 

opportunities to discuss their decisions in class. The analyzed data comprise the 

decisions made by PTs in the simulations (including both open-ended and close-ended 

items), along with our design documents that informed the conjecture map below. We 

employed mixed methods to discern changes in PTs' decisions: For closed-ended items 

involving the selection and sequencing of student work, we created scores for 

correctness, normativity, and serviceability (details in the embodiment section below). 

Having pre- and post-data on participants' decisions, we employed a two-tailed 

Wilcoxon test to assess the significance of the observed changes. The open-ended items 

(e.g., that asked for justifications for decisions) were subject to content analysis guided 

by the same categories, while also considering emergent themes. By linking scores and 

codes to the design elements, we could articulate and test the design conjectures.  

DESCRIPTION OF INTERVENTION AND PRELIMINARY FINDINGS 

The following section elaborates on the conjecture map's components (Figure 1).  

High-level conjecture. The design of the simulation was part of a broader project 

focused on studying how teachers make decisions in problem-based lessons, and 

enhancing their capacity to teach such lessons in ways that involve student voice. 

Within this project, the simulations build on a collaborative professional learning 

model – StoryCircles (Herbst & Milewski, 2018) – where teachers co-design problem-

based lessons. Our aim in adapting StoryCircles into virtual simulations was to create 
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a scalable, on-demand PD model that does not rely on peers and facilitators. In this 

context, the high-level conjecture is that simulations that provide teachers with the 

opportunity to practice teaching a problem-based lesson that builds on student ideas 

can increase teachers' capacity to anticipate and manage such a lesson.  

 

 Figure 1: A conjecture map for the set of simulations 

Embodiment. We designed four simulations of a lesson centered on a problem that 

asks students to find a circle tangent to two intersecting lines, ultimately leading to the 

tangent segments theorem (Two intersecting lines are tangent to a circle if and only if 

the points of tangency are equidistant from the point of intersection of the lines). Two 

simulations covered the entire lesson: a) "Getting to know the lesson," where 

participants were introduced to the problem, through a teacher-centered lesson that 

discussed possible solutions to the problem and the lesson goal (the aforementioned 

theorem) and were tasked with annotating the lesson's representation; and b) "Teaching 

the lesson with student participation," where participants made decisions for a teacher 

avatar in key moments of the lesson (e.g., framing the problem, selecting and 

sequencing SW, responding to students at the board). The other two simulations 

targeted specific phases in the lesson: c) "Anticipating student work" focuses on the 

phase when students grapple with the problem, and the teacher monitors their work, 

and in d) "Responding to student work," participants saw storyboarded scenes where 

students shared their work publicly and were asked about their goals for handling the 

student contribution. In more detail, in simulation (c), participants viewed a variety of 

SW, sorted the samples into bins (see Figure 2), named the bins, and explained their 

sorting to hypothetical colleagues. Participants then selected and sequenced SW. The 

SW samples were carefully designed to feature variations in correctness, normativity 

(alignment with the instructional situation of construction – e.g., using tools), and 

serviceability (usefulness for arriving at the theorem, e.g., drawing perpendiculars and 

locating the circle's center in their intersection). Respectively, the SW samples were 

apriori coded with "1" and "0" (e.g., Sigma's work in Figure 3a was coded [1,0,1] 

because it is correct, non-normative, and serviceable, while Phi's work in Figure 3b 

was coded [0,1,0] because it is incorrect, normative, and non-serviceable). As 
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mentioned, the SW samples exhibited a variety of combinations of these codes. In 

simulation (d), participants viewed a collection of responding moves that attended to 

serviceable, normative, or generic aspects of student ideas. Participants were offered a 

subset of recommended moves that relate to speech functions they indicated (e.g., 

open/close; support/confront; Milewski & Strickland, 2020) and were asked to choose 

from the proposed moves. 

 

Figure 2: A sorting activity in the Anticipating Student Work simulation 

While in simulation (a) participants could only annotate the lesson, simulations (b), (c), 

and (d) incorporate pre-programmed branches that respond to participants' choices (in 

a "choose your own adventure" style). To achieve this, many decisions are closed-

ended items. However, the simulations also include numerous open-ended items, 

prompting participants to write notes about student work, elucidate their rationale for 

choices, suggest teaching moves, anticipate students' responses, and more. In terms of 

participant structure, in contrast with other models of PD, the simulations engage 

teachers individually. Nevertheless, as outlined above, the system offers various forms 

of feedback, including showcasing how other teachers addressed the same decisions 

and providing opportunities to revise choices. 

 

3a 

 

3b 

Figure 3: Samples of student work that were used in the simulations 

To understand how simulations (c) and (d) could influence the decisions teachers make 

during a complete lesson, participants underwent simulation (b) twice: first in the 

second week (following simulation (a)) and then in the final week (after simulation 

(d)). In summary, the sequence of simulation engagement was: a, b, c, d, b. 

Mediating processes. The meticulous design of each simulation intends to activate 

mediating processes in varying grain-sizes, some are immediate (e.g., sorting student 

work into 3-5 bins instead of just 2—intended to foster awareness of categories beyond 
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correct/incorrect), while others are more complex. Due to space constraints, we 

elaborate on one process: participants' engagement with samples of student work. Our 

mid-level conjecture was that initially, participants would prefer correct and 

normative student work (even when not serviceable) over samples that are serviceable 

but lack correctness or normativity. The associated tasks include sorting various 

student work into bins (Figure 2), naming bins, observing how other teachers have 

sorted it, selecting and sequencing SW, and justifying how these decisions align with 

the lesson content goal. The mediating processes, thus, involve being exposed to a 

variety of student work, the visualization of the consequences of decisions about SW, 

and the demand for justifications of decisions, which together are supposed to lead to 

increased awareness of: 1) categories of perception beyond correctness – specifically, 

links between selected SW and the lesson goal; and 2) the idea that an informed 

selection of SW could leverage the ensuing discussion. 

Desired and observed outcomes. The desired outcome from these processes is an 

enhanced focus on serviceability among participants, manifested in an increased 

selection of serviceable student work and changes in the discourse justifying decisions 

(e.g., changes in adjectives describing student work, reasoning for selection, and 

overall dispositions about teaching through problem-solving). Our preliminary 

analysis indicates the achievement of some of these outcomes. Using the scores 

outlined in the Methods section, we conducted a two-tailed Wilcoxon test to compare 

participants' decisions on selecting student work in the second and fifth simulations 

(which were identical). The results indicate that, while normativity and correctness 

scores did not significantly change, the serviceability score increased significantly (p-

value = 0.026, Z = -2.232). These findings are supported by the content analysis of the 

justifications provided. In the initial round, participants cited reasons for selecting and 

sequencing such as: 

DK: Start with one that has common errors then roll into one that adjusted their 
approach to talk about the relations it made and then end with one that's 

correct. 

GM: I want to start with clearing any misconceptions. 

In the second round, the emphasis changed: 

MZ: None of them are correct but I am hoping they notice something about the 

points that they are choosing for B. 

ZI: […] I then want to introduce Sigma's work because although it is not 

precise, I'm hoping the class can still learn from their idea that the tangent 

line is perpendicular to the radius. 

A surprising finding was that some participants shifted from a conception of 

sequencing that gradually approximates the correct solution (ZS: "it is important to see 

the progression of detail") to selecting student work that features complementary 

aspects of the solution (ZS: "They are each bringing something different to the table") 

or, alternatively, showcasing different ways to solve. We interpret this change as 



Schwarts, Herbst, & Brown 

 

PME 47 – 2024 4 - 95 

additional evidence of participants' heightened awareness of student epistemic agency: 

the latter approach offers more opportunities for generative connections between 

samples of SW. In addition to these findings, the analysis revealed that while in the 

first round the most frequently chosen summary statement was procedural and detailed, 

in the second round, the prevalent statement discussed the solvability of the problem 

but did not provide students with instructions on how to continue. 

CONCLUDING REMARKS 

This paper describes the processes by which a set of virtual simulations support PTs' 

learning about problem-based instruction. This is crucial as the mechanisms of teacher 

learning in virtual simulations are not yet well specified. In addition, we shed light on 

a specific kind of teacher learning that promotes teacher agency. This approach is 

manifested in a key aspect of our design – providing mostly adidactical feedback. In 

choosing such a design, our approach for teacher education coheres with the disposition 

that students (here, PTs) should have chances to develop epistemic agency, rather than 

depend on an outside source of knowledge.  

The conjecture map assisted us in clarifying hypotheses, identifying relationships, and 

distinguishing between expected and unexpected outcomes (Sandoval, 2014). The 

unexpected outcomes also give rise to the identification of emerging mediating 

processes – for example, the idea that sorting SW into bins should support the selection 

of SW – thus informing the revisions of the current map and of the simulation design. 

While the conjecture map helped explicate delicate processes, it has limitations, such 

as our lack of hard evidence that the mediating processes are indeed the reason for the 

observed changes. Moreover, we lack details on the discussions about features of 

student work in the PTs' methods course, and thus the course is not part of the map. 

The small sample size is another limitation. Nevertheless, this limitation allowed us to 

generate a blueprint for the desired outcomes with a larger sample, data that we are 

currently collecting. 

In summary, this work contributes to understanding technology-mediated, self-paced 

teacher learning, offering a novel approach to enhance teachers' readiness for attending 

to and building on diverse sets of student ideas. 

Additional information 

Research supported by James S. McDonnell Foundation grant 220020524. 
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In this paper, we aim to offer a preliminary analysis of two proof lessons from a 

comparative perspective. A case study focuses on German and Japanese grade 8 

classrooms, where a common topic for a proof in algebra is introduced. Adapting 

Boero’s (1999) six phases, we discussed how the two lessons are organized differently 

in ‘pre-activities’, ‘exploration of proof ideas’, and ‘formulation of a proof’. 

INTRODUCTION 

Proof and proving is seen as a well-developed but still developing fields of research in 

mathematics education. Recently, researchers in this field have paid more attention to 

studying the reality of the classroom (e.g., Mariotti et al., 2018; Stylianides et al., 

2023). Another important issue in this field is that more research from an international 

perspective is needed to prevent the scientific studies from only being useful in a single 

national or cultural context (Reid et al., 2022). 

Our primary concern in this research report is to understand how proof and proving are 

organized in an ordinary mathematics classroom. From an international perspective, 

we also investigate and compare the organizations of the teaching of proof through a 

case study in German and Japanese lessons. Some useful knowledge about teaching 

mathematics in both countries is available from the TIMSS video study (Stigler & 

Hiebert, 1999). According to their findings, the teaching patterns of the two countries 

exhibit contrasting approaches: the German pattern is called developing advanced 

procedures and the Japanese pattern is called structured problem solving. Therefore, 

we expected the organization of teaching proof to be different. In this paper, we aim to 

offer a preliminary analysis of two proof lessons from a comparative perspective. For 

this analysis, we use a framework consisting of a set of categories focusing on proof-

related phases in a lesson on which a comparison in both countries can be based on. 

THEORETICAL PERSPECTIVES 

Regarding the theoretical framework of the phases in classrooms, the Theory of 

Didactical Situations (TDS) (Brousseau, 1997) offers three basic types of situations: 

situations of action, situations of formulation, and situations of validation. Although 

these types of situations can be applied to mathematics lessons in general, we need 

more focused categories to better understand the context in which proof occurs.  
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Researchers have proposed different theoretical frameworks to characterize the nature 

of proof. The existing literature suggests that ‘proof’ is not a stand-alone entity, but it 

is associated with other aspects. For example, Balacheff (1987) proposed a framework 

comprising knowledge, formulation, and validation. This framework allows us to 

understand the complexity of mathematical proof at different levels. Mariotti et al. 

(1997) proposed a model of the Mathematical Theorem consisting of a system of 

relations between statement, its proof, and the theory within which the proof makes 

sense. Related to this model, the Italian colleagues also offered a concept of cognitive 

unity, meaning the potential continuity between generation of a conjecture through 

argumentation and construction of its proof. Furthermore, in relation to the notion of 

cognitive unity, Boero (1999) conceptualized six phases of mathematical activities 

concerning theorems: 1) production of a conjecture, 2) formulation of a statement, 3) 

exploration of the content of the conjecture, 4) selection and enchaining of arguments 

into a deductive chain, 5) organization of the enchained arguments into a proof, and 

6) approaching a formal proof. Adapting Boero’s (1999) distinction, we developed a 

framework consisting of the following seven categories, as listed in Table 1 with their 

corresponding characterizations and possible relationships with Boero’s six phases. 

Categories Descriptions of activities (examples) Boero (1999)  

Pre-activities Understanding the tasks, working on the 

examples 

- 

Exploration of a 

statement 

Discovering a statement (conjecture), 

understanding the statement 

Phase 1 

Formulation of a 

statement 

Representing a statement according to 

shared textual conventions 

Phase 2 

Exploration of 

proof ideas 

Discovering proof ideas, understanding the 

proof ideas 

Phase 3 

Formulation of a 

proof 

Constructing a proof, presenting the proof Phases 4–6 

Reflection Evaluating a proof, explaining a proof to 

others, comparing proofs 

- 

Application 

activities 

Working on similar proving tasks - 

Table 1: Categories for describing proof lesson structure 

These categories can be used to describe the structure of a proof lesson and explain 

classroom phenomena, focusing on different activities regarding a statement and its 

proof. Our categories allow us to describe a relatively wider moment of activities from 

educational points of view, while Boero’s (1999) distinction allows for a more detailed 

analysis of the activities in ‘formulation of a proof’. As the categories play a descriptive 

role, rather than a prescriptive one, some categories may not appear, or two (or more) 
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categories may be combined into one category. Additionally, the order of the categories 

is often organized chronologically, but it depends on the didactical and epistemological 

necessity (this is similar to the assumptions of didactical situations in the TDS). 

The research questions herein are as follows: RQ1) How are mathematics lessons of 

proof and proving structured in the cases of Grade 8 classrooms in Germany and 

Japan? RQ2) What are the commonalities and specificities of proof and proving in the 

two lessons in terms of the categories proposed in this paper? To answer these 

questions, we offer a comparative case study but do not claim that the case study is a 

representative case for all classrooms in each country.  

METHODOLOGY 

Context and data collection 

This study is a part of an international research project on argumentation and proof 

from a comparative perspective. The case study is conducted by focusing on the lessons 

that introduce algebraic proofs in German and Japanese Grade 8 classrooms. In the 

German national standards, proofs are included as a competency (related to 

‘argumentation’). However, this does not mean that proofs are taught systematically in 

classrooms, as this depends on different institutional factors (such as school types and 

provincial curricula). Concepts or theorems related to proofs are usually taught in 

geometry and little in algebra. In the Japanese national curriculum, proof is a content 

to be taught in middle schools (Grades 8–9) in both algebra and geometry domains. 

Proofs and related theorems are taught more systematically in geometry than in algebra 

domain. There is a curricular constraint in that the term ‘proof’ should be introduced 

in Grade 8 geometry. When algebraic proofs (e.g., a proof about the sum of two even 

numbers) are taught in Grade 8, the term ‘explanation’ is used instead of ‘proof’ until 

the time of teaching geometry proofs.  

Data were collected from Grade 8 classrooms with ethical commitments in both 

countries in 2023: a ‘common’ school (called Oberschule) in Germany and a public 

ordinary school in Japan. To make the data analysis as comparable as possible, we 

selected a common topic for both sides: ‘the sum of three consecutive numbers (is 

divisible by three)’. This topic is used as the first introduction to a proof in algebra. 

The lessons were planned and implemented by the teachers. Consequently, the lessons 

were designed as 2 consecutive lessons (80 mins in total) for the German case and 1 

lesson (50 mins) for the Japanese case. Despite the difference in the durations, we could 

compare the activities of proof and proving in terms of the lesson structure. The lessons 

were videotaped and transcribed. For the German case students’ worksheets, designed 

by the teacher, were also collected. 

The method of preliminary analysis 

The analytical method of our case study entails a qualitative approach with two steps, 

which applied to both cases: 1) identifying episodes from the classroom video and the 
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transcripts, and 2) characterizing a lesson structure in terms of the categories. In these 

steps, we focused on the activities, main tasks, and questions used in the lessons. 

Focusing on the analysis in the second step, we first describe the characterization of an 

overview of the lesson structure for each case, and then explore some aspects of proof 

and proving according to the categories. These illustrative analyses then allow us to 

discuss the commonalities and/or specificities in terms of proof lesson structures. 

RESULTS 

German lesson structure 

Figure 1 shows an overview of a German lesson structure consisting of six main phases, 

which are nearly corresponding to the tasks presented in the worksheet. Although the 

lesson was basically developed as a form of whole-class instruction, in Phase V, there 

was a ‘differentiation’ in this classroom: a group of students (G level/standard) was 

asked to work on verbal and algebraic proofs by rearranging partial arguments as a 

whole proof, and another group (E level/higher) was asked to construct an algebraic 

proof by themselves. We will illustrate some of the activities from Phases I to V. 

 

Figure 1: An overview of a German lesson structure 

Phases I and II (Pre-activities). The lesson began with calculating tasks (such as 

‘7+8+9’, ‘129+130+131’) and asking students to find ‘smart’ strategies for 

calculations. In Phase II, three strategies were given in the worksheets and students 

discussed if the strategies worked correctly. For example, one of the strategies, ‘this is 

3 times the number in the middle’, is explained by the operations such as 

‘(129+1)+130+(131-1)=130+130+130=3*130=390’. The teacher wrote this approach 

on the blackboard during interactions with the students. Thus, the tasks and activities 

in the ‘Pre-activities’ focused on the strategies of calculation providing a motivation. 

Phase IV (Exploration of proof ideas). After the teacher introduced a statement ‘the 

sum of three consecutive numbers is divisible by three’ in Phase III, students worked 

on three prototypical justifications referring to reasons why the statement is true. All 

justifications were expressed as verbal, figurative, or numerical representations rather 
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than algebraic ones. For example, one justification given by a fictive character (Student 

1) on the worksheet was as follows: ‘The sum is three times the number in the middle. 

Then I can divide this by three, without any remainder’. In this class, the teacher asked 

a student (Mila) to explain this idea. 

T (00:43:59): Right, so [...] the sum is three times the number in the middle. Student 1 
already showed this a moment ago. [...] Then I can divide this by three 
without a remainder. [...] Why does this work? […] Mila. 

Mila (00:44:19): [...] Because you got, for example you got 8, and then on one side, you 
have got 7 and on the other side you have got 9. And for one you take 
something away and for the other one you put it on top. And then you can 
divide it by three, because then there are three equal numbers. [T writes 
“7+8+9” on the board, and underneath “8+8+8” and underneath “3*8”]  

The teacher and Mila discussed the reasons underlying a general pattern such as ‘there 

are three equal numbers’ with examples (7+8+9=8+8+8=3*8). We could interpret 

these activities as the “exploration of proof ideas”.  

Phase V (Formulation of a proof). Task 4 offers two different proofs (for G level). At 

the end of Phase V, the teacher wrote an additional proof with variables on the 

blackboard (Figure 2). The teacher constructed this proof by interacting with students 

and often asked them about the meaning or reason for the proof text. For example, the 

following is the excerpt regarding the meaning of “3x”. The teacher emphasized that it 

is important to write a text in order to understand the reasons behind it.  

T (01:12:20): Right, [...] three times x. And now, someone has to explain to me, why this 
is divisible by three? [...] Divisible by three. Rodger. 

Rodger (01:12:34): Because we have three times the same number.  

T (01:12:36): Right. So, I have this on the board now, as a shortcut, I told many of you, 
you need to comment this, because like this, without what I have said, you 
do not really understand this. This is why I wrote it all down for you. 

 

“3*middle number” 
x         middle number 
 

(x-1)+x+(x+1) 
=x+x+x 
=3x 
This is divisible by 3,  

because it is three times x. 

Figure 2: A written proof on the blackboard (original in German, on the left) 

Japanese lesson structure 

Figure 3 presents an overview of a Japanese lesson structure comprising seven phases. 

There is a main task at the beginning of the lesson that guides the activities over the 

different phases. There are some key questions to describe the corresponding phases 

(see a table in Figure 3). We will illustrate some activities from phases I to VI. 



Shinno, Bredow, Knipping, Hakamata, Miyakawa, Otani, & Reid 

  

4 - 102 PME 47 – 2024 

 

Figure 3: An overview of a Japanese lesson structure 

Phases I (Pre-activities). In the first phase, the teacher clarified the meaning of ‘three 

consecutive numbers’ and then asked students to work on the task with examples. The 

students presented six examples: 0+1+2=3, 10+11+12=33, 100+101+102=303, etc. 

Therefore, ‘pre-activities’ are viewed as a moment to understand the given task.  

Phases II (Exploration and formulation of a statement). In response to the teacher’s 

question ‘Are there any properties?’, the students answered ‘multiples of three’. The 

students found this inductively based on the examples. Then the teacher wrote it as a 

‘conjecture’ on the blackboard. Subsequently, the teacher emphasised if the conjecture 

is always true, as the task refers to ‘it always holds’. 

T (05:02): The important part is that it “always holds.” Does it always hold? 

Nagi (05:04): Probably... 

T (05:05): “Probably” is not enough. It is important that “it always holds.” I want you to 
explain that “it always holds.” What we have now is only six triads. […] 
Do you know how many numbers there are? 

Hana (05:56): Infinite. 

T (05:57): Yes, numbers exist infinitely many. We must explain about infinite numbers, 
because of “always.” 

As different activities related to the statement (such as discovering, formulating, and 

understanding the statement) were developed and interwoven, we identified two 

categories in this phase: ‘exploration of a statement’ and ‘formulation of a statement’. 

Phases III and IV (Exploration of proof ideas). The teacher asked ‘How should we do 

(explain) that “it always holds”?’. Although the students explored this question in a 

group, nobody presented a possible way to explain. In Phase IV, the teacher suggested 

using letters and wrote on the blackboard ‘To explain. Use letters!!’. This phase is also 

the moment to set up a learning goal of this lesson: ‘Conjecture properties of numbers 

and explain that it always holds by using letters’. The conjecture (the sum of three 

consecutive integers is a multiple of three) has been already made in Phase II, so the 
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teacher and the students came to work on the latter part of the goal. Thus, ‘proof ideas’ 

explored by them refer to using letters to prove the conjecture. 

Phase V (Formulation of a proof). Figure 4 shows a proof written by the teacher on the 

board. The proof is called ‘explanation’ due to the curricular constraint; it counts as a 

standard proof that is commonly taught in Japanese classrooms. The proof was mainly 

led by the teacher, but some parts (e.g., how to express three consecutive numbers by 

using letters) were derived by interacting with the students. The teacher emphasised 

how the proof was structured. We could interpret, from the teacher’s remark, that the 

proof consisted of three parts: introduction, main body, and conclusion. 

 

(Explanation) 
Let n be the smallest integer of three consecutive integers, the three 
consecutive integers are represented as n, n+1, n+2. } From now on, we use n (letter) 

The sum of three consecutive integers is: 
 n+(n+1)+(n+2)= 3n+3= 3 (n+1) 
Since n+1 is an integer, 3(n+1) is a multiple of three. 

(Conclusion) Therefore, the sum of three consecutive integers becomes a multiple of three. 

Figure 4: A written proof on the blackboard (original in Japanese, on the left) 

Phase VI (Reflection). The teacher mentioned that how to organise a proof was similar 

to how to organise a presentation in general: introduction, contents, and conclusion. At 

the end of this phase, the teacher concluded: ‘It’s easy to understand if you explain in 

this way. I think it always flows like this when we explain it. So try to look at the text 

in that way. This is also applicable in mathematics. OK? [36:00]’. We considered this 

as a meta-level comment on the proof which is included in ‘reflection. 

DISCUSSION AND CONCLUSION 

The characterizations of the lesson structures by the categories allowed us to better 

understand how proof and proving were organized and developed in the two lessons. 

This section presents and discusses some results from a comparative perspective. 

According to Figures 1 and 3, some common categories are organizing both lessons 

(pre-activities, formulation of a statement, exploration of proof ideas, formulation of a 

proof, and application activities), while our analysis shows some specificities of proof 

and proving in terms of the transitions between the categories. For example, the ‘pre-

activities’ in the German lesson include the exploration of calculation strategies, that 

are connected to the activities in the ‘exploration of proof ideas’, in which the role of 

generic examples (Balacheff, 1987) is crucial. The ‘proof ideas’ in the German case 

include different representations for the justifications, which provide the reasons why 

the statement is true. In the Japanese case, some concrete examples, presented in the 

‘pre-activities’, worked for discovering the conjecture, but not as generic examples to 

bring out the reasons why. The ‘proof ideas’ in this class only refer to the necessity of 

using letters. The emphasis is on how to prove that the given statement is always true. 

For the German case, proving are also the activities containing different approaches to 

justifications in the ‘formulation of a proof’ phase, which are developed from the 

‘proof ideas’. Although the teacher only wrote the proof with variables on the board, 
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another type of proof (‘verbal proof’) was included in Task 4. Regarding the written 

proof, the teacher explained that to write a text was to understand the reason behind it. 

For the Japanese case, the written proof (Figure 4) is the acceptable product in this 

class. Proving without the basis of generic examples is directly related to the 

construction of proof with variables. The written proof showed how a proof should be 

structured. This is also emphasized in the ‘reflection’ which is a category only found 

in the Japanese case. Regarding the ‘application activities’, both lessons involve an 

additional task applying the proof to an analogous statement (5 consecutive integers). 

Our case study demonstrates how the seven categories, adapted from Boero (1999), 

can be used for a comparative approach to investigate proof lessons in different 

countries. This may contribute to advancing research on proof and proving from an 

international perspective (Reid et al., 2022). Based on the preliminary results, a deeper 

comparative analysis with theoretical and methodological elaborations is needed to 

understand which aspects are considered as cultural specificities in the two lessons.  
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MAPPING COGNITIVE ENAGEMENT AND MOTIVATION: 

FINDINGS FROM THE ORRSEM PROJECT  

Karen Skilling  

University of Oxford, United Kingdom 

The ORRSEM Project is concerned with secondary mathematics teachers’ 

Observations, Recordings and Reports of Student Engagement and Motivation. A 

framework is presented that maps important motivational theories to types and levels 

of engagement, bringing achievement motivation and mathematics education research 

together. The findings from 4 teacher workshops sought teachers’ descriptions of 41 

engagement characteristics. Specifically, the 15 cognitive engagement characteristics 

are detailed because they are fundamentally valuable for educational outcomes, yet 

they are the least clearly conceptualized aspects of engagement research. The findings 

revealed that experienced teachers’ are adept at identifying and describing the 

nuanced phases of self-regulation strategies and metacognitive processes. 

INTRODUCTION  

The influence of motivation and affective factors on student engagement for learning 

mathematics is considered as crucial and complex (Eccles, 2016). Although 

behavioural and overtly emotional engagement are more readily observed by teachers, 

subtle emotions and cognitive engagement are harder to identify and more difficult to 

clearly describe (Skilling et al, 2016). Cognitive engagement characteristics are 

focused on in this paper because they are the least clearly conceptualized aspect of 

engagement research (Skilling et al., 2016) despite being identified as fundamental to 

valuable educational outcomes (Michou et al., 2021) and performance (Lingel et al., 

2019). One way to understand teacher engagement and motivation beliefs is through a 

research based and teacher informed tool, which provides a mechanism for noticing, 

articulating and communicating all types and levels of observed student engagement 

in mathematics classrooms. Understanding teachers’ beliefs about how their students 

are engaging is relevant and important, as these shape instructional choices that can 

directly act to promote the extent to which students engage in mathematics learning 

and influence student outcomes, both of which are of concern in England. 

The recently published Programme for International Student Assessments (PISA) 2022 

Report for England results (Ingram et al, 2023), provide important details about the 

performance and mathematics experiences of English students, and have implications 

for teachers and teaching. In addition to capturing performance data, questionnaires 

sought students’ views about their attitudes and beliefs and experiences in school, 

which acknowledges the role of affective and motivational factors that influence 

student engagement in learning settings. Compared to the OECD average of 75%, only 

63% of English students felt that they belonged in school. The data also revealed that 
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36% of English students believed that their intelligence cannot be changed and 

regardless of how much study was done, they would not be good in mathematics or 

English. Although a healthy number of students (96%) want to do well in mathematics, 

only 44% of students reported mathematics was their favourite subject. The results 

emphasise the idiosyncratic nature of the mathematics learning experiences of many 

secondary students. Discrepancies and tensions are found, between wanting to do well 

yet not spending enough time on homework practice: or believing that mathematics is 

important, yet having a fixed mindset of their intelligence (Dweck, 2016).  

What is it that teachers can do to more effectively support students’ engagement and 

experiences with mathematics leaning? While the majority of students in England 

reported that their mathematics teachers provided extra help in mathematics lessons 

(80%), continued teaching until understanding is reached (72%), and showed interest 

in pupil learning (71%), it would be helpful to understand how teachers’ know when 

and in what ways they can support individual students with their mathematics learning. 

This is critical for both improving learning outcomes and providing more positive 

mathematics experiences. 

In many countries mathematics education is a core curriculum subject and is seen as a 

gateway subject for higher education study, STEM related careers and employment. 

Therefore, because engagement is crucial for encouraging student participation, 

interest, and learning in mathematics, it is important to investigate the extent to which 

teachers can identify all types of engagement. One way to elicit teacher’ understanding 

of engagement is through a research based and teacher informed tool, which provides 

a mechanism for noticing, articulating and communicating all types and levels of 

engagement in mathematics classrooms. One of the aims of the ORRSEM Project is to 

refine such a tool that connects engagement characteristics more obviously and clearly 

link relevant motivational theories to specific types of engagement.  

THEORETICAL BACKGROUND 

In learning contexts, various sources of motivation are recognized as being reflected in 

student engagement such as: goals, needs, self-efficacy, control, value, and related 

responses such as fear of failure, avoidance, anxiety, mastery approaches and self-

regulation. These factors are represented by various motivational theories and in 

combination, can indicate adaptive (positive) and maladaptive (negative) drivers of 

student engagement. The Engagement framework proposed by Fredricks, Paris and 

Blumenfeld (2004), which delineates behavioural (participation), emotional/affective 

(feelings, values, attitudes and interest) and cognitive (self-regulation and 

metacognition) types of engagement, is underscored by major motivational theories. 

Figure 1, represents a clear mapping of relevant motivation theories to types and levels 

of engagement and underpins the ORRSEM Teacher Tool. 
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Figure 1: Mapping motivational theories to engagement 

Looking specifically at cognitive engagement in the right hand side of Figure 1, this is 

mainly associated with the work of Pintrich (2004) and Zimmerman (2008), and 

includes self-regulation strategies for learning and metacognitive processes to describe 

the three main phases (forethought, performance, and reflection) and their sub-phases. 

The forethought phase refers to the activation of prior knowledge before commencing 

work such as setting goals; assessing what is known; and considering strategy use. 

Affective aspects are also relevant such as the valuing and interest in learning, and a 

student’s self-efficacy for successfully reaching the goals set and what is driving their 

goals (intrinsic or extrinsic factors). The performance phase involves using and 

managing the strategies to reach desired goals (Pintrich 2004). Importantly, this 

includes efforts to modify, or change actions to maintain progress towards the goal and 

reduce possible distractions from reaching goals. This phase also includes monitoring 

progress through self-observation and keeping track of performance (Zimmerman, 

2008). The reflection phase includes the self-reflection and learners’ efforts to review 

and make judgements about their overall performance through feedback experiences 

with the task, including self-evaluation of what is being  learned. Another aspect of 

this phase is the students awareness of how they are reacting in the learning process 

(their meta-awareness) and the effectiveness of their cognitive, affective, and 

behavioural choices (Zimmerman, 2008). While some students may spontaneously use 

a range of these subphases to manage their learning, many will not, therefore teachers 

can support students to become more skilful at autonomously self-regulating. The 

extent to which teachers’ promote student engagement and autonomy for meeting 

students’ innate psychological needs has been discussed by Reeve, (2009. Although 

autonomy is a separate construct from cognitive engagement, it is closely connected to 

motivational factors relevant to learning such as feeling a sense of belonging and 

competence.  
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In a study which focused on the cognitive engagement beliefs of secondary 

mathematics teachers, there was an almost equal split between teachers believing that 

their role was to promote students to support their own learning and those believing 

that they should act as the support person for students (Skilling & Stylianides, 2023). 

The main reasons given by teachers for their respective beliefs were connected to 

autonomy and its antithesis (control), for example: providing more or less 

structure/control to the students; and giving students more direction or information, 

versus encouraging student independence/autonomy. A Cognitive Engagement 

Framework (CEF) resulted from this study (Skilling & Stylianides, 2023), which 

conceptualized cognitive engagement through descriptions of phases and sub-phases 

relevant to self-regulation strategies and metacognitive processes. These phases and 

sub-phases are reflected in cognitive engagement characteristics (cells C1 to C15 in 

Figure 2) of the ORRSEM Teacher Tool where they are used in a mathematics specific 

context. The overall aims of this phase of the ORRSEM Project were to inform teachers 

about the different types of student engagement and associated motivation constructs, 

and refine the ORRSEM Teacher Template. The key research question asked: What 

engagement characteristics do mathematics teachers identify as important? 

METHODOLOGY 

Over an 18-month period, The ORRSEM Project worked with 16 teacher participants 

(T01-T16) from nine secondary schools (A-I) to better understand teacher’ beliefs 

about, characteristics of, and practices for student engagement in mathematics. This 

paper reports details about the teacher participants descriptions of engagement 

characteristics which were mainly informed by the online workshops with small groups 

of teachers (the second phase of the research project). Details of the 14 of the teachers 

from eight of the schools (all state based schools in counties near to or in London) who 

took part in one of four workshops are recorded in Table 1. 

Workshop # Number of Participants Schools (A-I) 

# 1 5 (T: 01, 03, 07, 08, 15) A, C, D, H 

# 2 4 (T: 04, 12, 13, 14) C, F, G, H 

# 3 3 (T: 05, 06, 09) C, D, E 

# 4 2 (T: 02, 11) B, F 

Table 1: Workshop number, participants, and schools 

The participants’ years of teaching experience spanned between 2 and 20 years. Two 

teachers had 1-5 years’ experience,  three had  6-10 years’ experience, and nine had 

over 10 years’ experience. The participants attended an online workshop on a day that 

was convenient to them, resulting in four online workshops over a two week period 

with varying number of participants attending (see Table 1). The workshops lasted for 

90 minutes. They began with a brief introduction by the researcher who outlined the 

definitions and conceptions of engagement in research literature and relevant 
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underlying motivation theories. The participants were also introduced to a framework 

of engagement characteristics for each type of engagement: behavioural (n=13); 

emotional (n=13); and cognitive engagement (n=15). It was important that the 

engagement characteristics were considered in light of engagement theory (Fredricks 

et al, 2004) and underlying motivational theories. In this way it can be argued that 

construct validity (Harrits  & Møller, 2021) is established. 

The aim of the workshops was to use the characteristics from the prior research 

(Skilling et al, 2016) as a basis for the participant teachers to discuss their engagement 

beliefs and experiences in mathematics classrooms and reach a shared understanding 

of each characteristic. Importantly, the participants were invited to modify, refine, 

make additions or redactions of any characteristics they collectively agreed upon. In 

this way, each workshop group explicitly discussed engagement characteristics and 

reached an agreement on how each characteristic could be described and exemplified 

in ways that they deemed effective for mathematics teachers. Using the ‘Board’ 

function on Teams, each workshop group could annotate specific characteristics on the 

template provided. At the end of each workshop the annotated templates were 

downloaded and the recorded workshop conversations were transcribed for analysis. 

Approach to analysis 

The researcher scrutinized the contributions each workshop group made for each of the 

characteristics. Print outs of the workshop boards were compared to note similarities 

and differences in descriptions. Then the researcher distilled the contributions of all 

four workshop groups to summarise the teachers’ reports for each of the 41 engagement 

descriptors. A second researcher was asked to interpret the summaries made by the 

lead researchers and randomly chose 10% of the summaries for checking. They reached 

a 91.67% agreement which is within the recommended rater-reliability (Krippendorf, 

2004). The next section reports the distilled responses by each type of engagement and 

provides justification for the resulting ORRSEM framework. 

FINDINGS 

The number of responses for each of the 41 descriptors for each type of engagement 

were similar. Specifically, for behavioural engagement, there were an average of 33 

responses per workshop; for emotional/affective the average number of responses was 

31.3; and for cognitive engagement the average was 33. As mentioned, the findings in 

this paper will focus on the cognitive engagement descriptions from the teacher 

workshops which are  presented in Figure 2.  A total of 100 descriptions were made 

for cognitive engagement and were evenly spread between cells C1 to 15.  
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Figure 2: Cognitive Engagement Descriptions - Summarised teacher responses 

It can be seen from Figure 2 that different shades have been used to indicate broad 

levels of engagement. Cells C1 to C6 indicate low engagement or disengagement; cells 

C7 to C10 indicate varying or non-substantial engagement; cells C11 to C15 indicate 

substantial levels of engagement. In the ‘Summarised Teacher Responses’ section of 

Figure 2, particular words and phrases have been bolded. These reflect the phases and 

subphases of self-regulation and metacognition discussed in the relevant literature. 

As expected there are more positive mentions of specific self-regulation and 

metacognitive activities at the substantial engaged range (C9 to C15) of Figure 2, 

however it is particularly valuable that the teachers’ identified characteristics that were 

missing from, or acted to, undermine students’ cognitive engagement in cells C1 to C8. 

For example, dominant characteristics between C1 and C8 included not activating 

knowledge (‘failing to recall’, ‘not knowing what path to take’, ‘guessing’, ‘looking at 

the work of others’, ‘difficulties making connections’). Aspects relevant to 

performance were also identified such as, not enacting strategies or regulating (e.g. 

‘using the same methods’, ‘trying every problem in the same way’, ‘spending time on 

single questions’). In terms of reflection, a ‘robotic approach to self-checking’, lack of 

care about the solutions, ‘repeating the same mistakes’ and ‘not engaging in feedback’ 

was reported. Reports relevant to goal orientation indicates this was performance 

driven, focusing on correct questions rather than mastering the method or strategy. 
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Some self-reaction comments in the variably engaged cells, reflected affective aspects 

such comparing oneself to classmates, being competitive, ‘stressed about assessments’ 

and ‘discouraged with low marks’. 

In contrast, the main characteristics reported between cells C9 and C15 included 

substantial activation of knowledge and ‘making links between topics’ and ‘across 

different mathematics strands’, as well as ‘recalling formula’. Having an ‘end goal and 

not being distracted from it’ was recounted. Numerous mentions of strategy use 

(choosing between wide and multiple strategies), for working through solutions and 

understanding methods. This was evidenced through ‘talking with other students and 

debating work’, ‘asking questions ahead of class’, ‘discussing reasoning’. Goal 

orientation was achievement focused, indicated by ‘caring about whether right or 

wrong’, understanding the steps and best approach for solutions and ‘seeking the 

boundaries of knowledge’. Reflection characteristics were also evident such as 

‘engaging in feedback and self-assessment’, ‘not repeating mistakes’ and ‘moments of 

realisation’. Typically, characteristics of cognitively engaged students, can quickly 

identify and recall relevant knowledge, knowing when and why to use particular 

strategies, checking their progress on tasks and overall improvement, responding to 

feedback, asking questions and reflect on their learning goals and their understandings. 

DISCUSSION AND CONCLUSION 

Although teacher practitioners may not be knowledgeable about motivation theory and 

constructs they recognise the effects of motivational and affective factors by the 

patterns of behaviours and reactions observed in mathematics classrooms (Skilling, 

2016). It is crucial to better inform teachers about the possible motivational factors 

driving student engagement for several reasons. Teachers may become more alert to 

signals that indicate shifts in a student’s behavioural, emotional and cognitive attention. 

It may also assist teachers to identify the diversity of individual students’ engagement 

patterns, resulting in teachers’ being better equipped to shape student support.  

In the results reported in this paper, it is evident that the teachers were adept at 

identifying types of cognitive actions and engagement and articulating these by 

drawing on their experiences in mathematics classrooms. The nuances descriptions by 

the teachers resonates with every phase and subphase that are described in self-

regulation and metacognition literature, and included affective factors that are 

associated with psychological investment in learning and student efforts. These 

findings are in contrast to previous studies where the reduced scope and frequency of 

cognitive characteristics indicated this aspect of engagement was not well understood 

by teachers (Skilling et al., 2016). A key difference in the ORRSEM study was the 

planned phases of the study to include collaborative teacher workshops to draw on 

teacher knowledge and experiences. The opportunity to discuss the association 

between engagement and motivation factors before the workshops began may well 

have assisted with teacher clarity. The opportunity to collaborative discuss student 

engagement with other teachers and identify aspects specific to mathematics was 
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crucial and resulted in mathematics specific engagement characteristics and an 

important contribution to mathematics education research. An obvious limitation is the 

scale of the project, however a specification for an ORRSEM app for digital recoding 

of teachers engagement observation has been prepared and funding is being sought. 

Additional information 

The ORRSEM Project received John Fell Funding. I thank Sara Berkai and Cindy 

Wong who acted as Research Assistants for different phases of the project. 
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AGE MATTERS WHEN IT COMES TO STUDENTS’ ATTITUDES 

TOWARD ONLINE MATHEMATICS ASSESSMENTS  

Erica Dorethea Spangenberg  

University of Johannesburg 

This study established how students’ attitudes toward online mathematics assessments 

relate to age due to the shift to online learning during COVID-19. Quantitative data 

were collected through an adapted Attitudes Toward Mathematics Inventory from 734 

students in seven South African schools. Although enjoyment, perceived usefulness, 

ease of use, and self-confidence in engaging in online mathematics assessments decline 

with age, they are significantly lower for students 13-16 years old compared to those 

older (17-22 years) and younger (10- 12 years). Intrinsic motivation is statistically the 

same for older and younger students but significantly lower for students who are 13-

16 years old. This study suggests further research on affective aspects influencing 

specific types of online mathematics assessments. 

INTRODUCTION 

During COVID-19, several studies have been conducted on the affordances and 

challenges of online teaching in mathematics (Engelbrecht et al., 2020). However, 

Collimore et al. (2015) suggested further research on students’ attitudes toward online 

assessments to ensure students’ engagement in and learning from online assessment 

tools. Focusing on students’ attitudes toward online assessments is essential, as positive 

attitudes toward online assessments may improve students’ enjoyment, self-

confidence, and motivation when engaging with mathematics content, which may 

determine how to proceed with online assessments. Besides, the age of learners may 

also play a role in attitudes, especially considering Zuo et al. (2021), who found that 

age significantly affects perceived online learning experiences. Consequently, the 

study aimed to establish how students’ attitudes toward online mathematics 

assessments relate to age. 

THEORETICAL FRAMEWORK 

The self-determination theory coined by Deci and Ryan (1985) theoretically 

underpinned the study. This theory suggests that students have three basic 

psychological urges (competence, autonomy, and relatedness) to fulfill to ensure 

effective functioning and wellness (Deci & Ryan, 2015). Within this theory, (1) 

enjoyment, as a symptom of wellness, is viewed as an essential positive attitude related 

to intrinsic motivation; (2) intrinsic values are associated with wellness; and (3) social 

and environmental factors satisfying psychological inclinations for autonomy, 

competence, and relatedness, associated with self-confidence and perceived 

usefulness, expedite enjoyment. For this study, attitudes are inclinations and aversions 

toward online assessments in mathematics consisting of five dimensions: (1) 
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enjoyment; (2) self-confidence; (3) perceived usefulness; (4) ease of use; and (5) 

intrinsic motivation, which structure the conceptual framework. The attitudes toward 

mathematics inventory (ATMI) (Tapia & Marsh, 2004) also foregrounded these 

attitudinal dimensions, which were adapted to gather data for this study. 

Students are driven by emotions when they experience challenging undertakings like 

being assessed online in mathematics. According to Yilmaz et al. (2022), if students 

enjoy such tasks, they cope, stay interested, and perform in mathematics and are 

intrinsically motivated to develop goal-orientated behaviour toward mathematics. 

Current studies focusing on enjoyment in online mathematics assessment at the school 

level are scant despite several studies focusing on enjoyment in mathematics learning 

(Rodríguez et al., 2021). Yilmaz et al. (2022) also acknowledged that online learning 

is barely a flavoured undertaking at the school level, and research on emotions in online 

learning is limited. A study by Rodríguez et al. (2020), which could also apply to online 

assessments, found that students from 13 primary schools in Spain who were 9-13 

years old experienced mathematics learning as pleasant and perceived mathematics 

content as valuable. The participants also believed they were competent in doing 

mathematics.   

Self-confidence in online assessments in mathematics refers to a person’s assurance of 

being competent to excel in mathematics online tests compared to others (Bringula et 

al., 2021). In addition, self-confidence in using online tools ensures performing well in 

online mathematics assessments (Acosta-Gonzaga & Walet, 2018). Thus, students’ 

self-confidence to engage in mathematics activities and the ease of using online tools 

may impact their success in mathematics being assessed online. However, students’ 

self-confidence in being assessed online in mathematics may change as they progress 

in grades. This sentiment aligns with Foster et al. (2022), who conducted diagnostic 

multiple-choice mathematics questions online with 7302 UK primary and secondary 

school students and found that students’ self-confidence declines as they age. 

Tapia and Marsh (2004) identified utility value referring to the significance of an 

endeavour or product to be useful or prominent in acquiring a preferred result, as an 

attitudinal dimension towards mathematics. However, Zuo et al. (2021) separated this 

dimension further into two different constructs – perceived usefulness and ease of use, 

which were also adopted for this study. Perceived usefulness signifies beliefs that 

online learning enhances performance, while ease of use implies that using 

technological tools to learn is effortless. Therefore, instead of signifying utility value, 

this study foregrounded perceived usefulness as students’ views about online 

assessments providing evidence of their competence in mathematics and ease of use as 

students’ perceptions of the easiness or difficulty they encountered when engaging in 

online assessments in mathematics. Zuo et al. (2021) found that the perceived 

usefulness of online teaching mainly contributed, while the ease of technological tools 

played a moderate role in the overall learning engagement of 118.589 Chinese students. 

Age had the most significant impact on perceived online learning experiences, and 

school location reflected vast inequities. At the same time, there were no significant 
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differences in terms of gender and the use of technology tools. Opposingly, Thurm et 

al. (2022) found that secondary school students from Flanders, Germany, and the 

Netherlands view the utility value of mathematics as moderate. They revealed that 

students who received synchronous teaching with high-order didactical approaches had 

a conducive environment to study and portrayed positive attitudes toward mathematics. 

These students reported more positive beliefs about online assessments than those from 

educationally disadvantaged backgrounds. Findings from these studies may suggest 

that students’ perceived usefulness during online assessments decreases as they 

progress in age, especially in the light of Foster et al. (2022), who revealed a decline 

in students’ attitudes toward mathematics during the administration of assessments in 

an online space in the transition from primary to secondary school. 

Intrinsic motivation refers to undertakings executed for their purpose, deep-rooted 

significance, and pleasure (Liu, 2021). Scherrer and Preckel (2019) added that intrinsic 

motivation is not controlled or strengthened by sources outside a person, thus 

externally motivated, but through amusement, discovery, and own actions. As intrinsic 

motivation has proved to be an essential predictor for learning success in mathematics 

(Pelikan et al., 2021) despite a significant decline in its levels as the students age 

(Scherrer & Preckel, 2019), the dimension is subsumed as essential to establish 

students’ attitudes toward online assessments in mathematics. Pelikan et al. (2021) 

found that students who perceived themselves as competent in mathematics during 

COVID-19 when they had to learn online, were more intrinsically motivated than those 

who believed they were less competent. On the other hand, Liu (2021) revealed that 

avoiding challenging activities in mathematics, such as online assessments and failure, 

may be detrimental to intrinsic motivation to engage in mathematics.  

In summary, Rodríguez et al. (2021) found that students’ perceived usefulness is 

related to their perceptions about their competence in mathematics and intrinsic 

motivation to engage in the subject, and, thus, the key to their self-confidence, 

enjoyment, and well-being when learning mathematics. Hence, the following null 

hypotheses were tested in the study: 

• H0: There is no significant difference in the enjoyment of online mathematics 

assessments of learners in different age groups. 

• H0: There is no significant difference in self-confidence towards online 

mathematics assessments of learners in different age groups.  

• H0: There is no significant difference in perceived usefulness towards online 

mathematics assessments of learners in different age groups.  

• H0: There is no significant difference in ease of use towards online 

mathematics assessments of learners in different age groups.  

• H0: There is no significant difference in intrinsic motivation towards online 

mathematics assessments of learners in different age groups.  
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METHOD 

This exploratory study adopted a qualitative method. A survey comprising 40 Likert-

type scale items with a five-point scale amended from the Attitudes Toward 

Mathematics Inventory (ATMI) for high school students (Tapia & Marsh, 2004) was 

distributed to participants. The instrument comprised five dimensions: enjoyment; self-

confidence; perceived usefulness; ease of use; and intrinsic motivation. The ATMI was 

chosen for its proven evidence of content validity to measure attitudes toward 

mathematics in several research studies for different age groups and contexts (Afari, 

2013; Anastasiadis & Zirinoglou, 2022;  Simegn & Asfaw, 2017). 

Seven hundred and sixty-two participants from upper primary (10-12 years old), lower 

secondary (13-16 years old), and upper secondary (17-22 years old) school levels in 

seven South African schools were randomly selected based on voluntary participation 

and who had experience of online mathematics assessments during COVID-19. 

Surveys were distributed to them for completion.  

Twenty-eight students’ collected data were omitted due to missing information. Thus, 

data from 734 questionnaires were analysed using the statistical software package 

SPSS version 28. Eleven negatively worded items were reverse coded to ensure 

consistent questions’ directionality and prevent distorted responses from participants. 

The ATMI is an established standarised instrument and conforms with construct and 

content validity to measure students’ attitudes toward mathematics. However, to 

confirm face validity, eight teacher researchers peer-reviewed and modified the 

instrument to ensure that the participants would accurately understand the items 

regarding the online mathematics assessments and that the language was accessible 

within the study’s context. Internal validity was addressed by employing Principal 

Components Analysis (PCA), and reliability was established by determining 

Cronbach’s α coefficients.  

 RESULTS 

PCA was performed in an exploratory manner to discover the shared attitudinal 

dimensions toward online mathematics assessments, as the wording of the items of the 

ATMI was changed to fit the study’s context. The Kaiser–Meyer–Olkin (KMO) test 

(KMO value = .96) confirmed the sampling adequacy and showed a marvellous sample 

for the factor analysis. Bartlett’s test of sphericity (χ2 (666) = 13017, p = .0000 < .001) 

indicated that the correlations between items were adequately significant for PCA. The 

internal structure of the 40 residual items was tested with orthogonal rotation (varimax) 

with Kaiser normalisation. The rotation converged in seven iterations. Two factors 

loaded less than .40, and one item did not correlate with the other variables. Therefore, 

these three variables were eliminated. The highest loading was considered for items 

loaded simultaneously on multiple factors. The Kaiser–Guttman rule was used to 

identify the components with a related eigenvalue greater than one. Five attitudinal 

dimensions had eigenvalues greater than the Kaiser’s criterion of 1 and, added together, 
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accounted for 54.4% of the variance and were thus used for analysis. The items were 

assessed, and subsequently, clusters of items were named as they naturally transpired 

and according to the researcher’s interpretation of the items, namely enjoyment (eight 

items), self-confidence (eight items), perceived usefulness (six items), ease of use (ten 

items), and intrinsic motivation (five items). 

The Cronbach’s alpha (α)  coefficient for the 37 test items was .95. Thus, the internal 

consistency of the scale items was assumed to be excellent. Respectively, all five 

attitudinal dimensions had good reliability: enjoyment (α =.88), self-confidence (α = 

.86), perceived usefulness (α = .85), ease of use (α = .89), and intrinsic motivation (α 

= .83). 

A Shapiro-Wilk test was employed to assess normality. As the data across the five 

attitudinal dimensions were non-parametric (significant value smaller than .05), a 

Kruskal-Wallis test was performed to establish whether statistically significant 

differences existed between the age groups. Attitudes toward online assessments in 

mathematics were significantly lower for the participants who were 13-16 years old 

compared to older (17-22 years) and younger (10-12 years) participants across four 

attitudinal dimensions: 

• Enjoyment (H(2, n = 734) = 17.5, p < .001) with a mean rank of 426 (Md = 

29.0) for participants 10-12 years old, 342 (Md = 25.0) for participants 13-16 

years old, and 402 (Md = 28.0) for participants 17-22 years old. 

• Perceived usefulness (H(2, n = 734) = 25.4, p < .001) with a mean rank of 467 

(Md = 22.0) for participants 10-12 years old, 341 (Md = 19.0) for participants 

13-16 years old, and 389 (Md = 20.0) for participants 17-22 years old. 

• Ease of use (H(2, n = 734) = 48.8, p < .001) with a mean rank of 500 (Md = 

39.0) for participants 10-12 years old, 329 (Md = 31.0) for participants 13-16 

years old, and 405 (Md = 35.0) for participants 17-22 years old. 

• Intrinsic motivation (H(2, n = 734) = 26.4, p < .001) with a mean rank of 433 

(Md = 16.0) for participants 10-12 years old, 336 (Md = 15.0) for participants 

13-16 years old, and 412 (Md = 16.0) for participants 17-22 years old. 

For self-confidence, one non-empty group prevented the researcher from performing a 

Kruskal-Wallis test on that dimension and opting for a Mann-Whitney U test. The 

attitudes toward online assessments in mathematics for students who were 10 -12 years 

old regarding self-confidence were higher than those in the other two age groups, with 

participants who were 13-16 years old having the lowest self-confidence: 

• participants 10-12 years old (Md = 31.0) versus participants 13-16 years old 

(Md = 24.0), U = 7285, z = −7.230, p = .001 < .05, r = −.27 (a finding with a 

small practical significance) 

• participants 10-12 years old (Md = 31.0) versus participants 17-22 years old 

(Md = 25.0), U = 4021, z = −5.859, p = .001 < .05, r = −.22 (a finding with a 

small practical significance). 
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• participants of 13-16 years (Md = 24.0) versus participants 17-22 years old 

(Md = 25.0), U = 43101, z = −2.236, p = .025 < .05, r = −.08 (a finding with 

a small practical significance). 

DISCUSSION 

Although lower than the other age groups, participants 13-16 years had the highest 

median for ease of use, followed by enjoyment, perceived usefulness, and intrinsic 

motivation. This finding differs slightly from Thurm et al. (2022), who found that 

secondary school students perceive the utility value of online assessments in 

mathematics to be moderate. Zuo et al. (2021) also revealed that the perceived 

usefulness of online teaching mainly contributed, while the ease of using technological 

tools played a moderate role in the overall learning engagement of their sample. The 

students might have valued online assessments in mathematics easier as they might 

have practised assessments before the actual assessment and could change answers 

before the final submission for assessment. 

Younger participants (10-12 years) enjoyed online mathematics assessments more, 

viewed themselves as better competent, and found online assessments easier to use 

than the older participants (17-22 years). This finding opposes Acosta-Gonzaga and 

Walet (2018), noting that students experiencing feedback from online assessments is 

more enjoyable than helpful. Young students may enjoy online assessments in 

mathematics if they are exposed to fun assessments, for example, mathematics games, 

to be completed. However, older students might have been less flexible in adapting to 

online assessments in mathematics, as they were comfortable with being assessed face-

to-face like in the past. 

The positive correlation between younger (10-12 years) and older participants (17-22 

years) being intrinsically motivated aligns with Acosta-Gonzaga and Walet (2018), 

revealing feedback to be crucial in online mathematical assessments, as it affects 

performance in mathematics positively and stimulates students’ intrinsic motivation. 

The students could be intrinsically motivated by online assessments in mathematics 

because they viewed the online assessment platform as non-judgemental and less 

intimidating and received prompt feedback informing them about their progress at an 

early stage. The students might have also felt more comfortable and in control by 

completing their mathematics assessment online at their own pace and place. 

The higher self-confidence toward online assessments in mathematics of younger 

students compared to the other two age groups aligns with Foster et al. (2022), 

revealing that students’ self-confidence declines as they progress with age. The lower 

self-confidence regarding online mathematics assessments of participants who were13-

16 years old but higher self-confidence in younger and older students could be ascribed 

to either negative experiences when studying mathematics in the past or students being 

in the process of finding a balance between experience and expectations on being 

competent in mathematics, which may change once they have developed an identity. 
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CONCLUSION 

Despite ample recent research on the advantages and shortcomings of online 

mathematics teaching and learning, studies on students’ attitudes toward online 

mathematics assessments and how they relate to age are limited. Therefore, this study 

established how students’ attitudes toward online mathematics assessments relate to 

age. Although enjoyment, perceived usefulness, ease of using, and self-confidence in 

engaging in online assessments in mathematics decline with age, they are significantly 

lower for students 13-16 years old compared to those older and younger. Intrinsic 

motivation is statistically the same for older and younger students but also significantly 

lower for students 13-16 years. 

Extending this research to other contexts may result in more robust support for the 

findings. In-depth interviews and observations while engaging in online mathematics 

assessments can complement and strengthen the study’s results. A longitudinal study 

focusing on changes in students’ attitudes towards specific types of online mathematics 

assessments will also supplement the results.  

This study contributes to current research on affective aspects influencing online 

mathematics assessment. Although it is complex to comprehend the manifestation of 

attitudes, this study offers a starting point for understanding how attitudinal dimensions 

relate to different age groups. It upholds the argument that students’ attitudes toward 

online assessment in mathematics become negative as they become adolescents (13-16 

years).  
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THE ROLE OF MATHEMATICS AND INSTRUCTIONAL 

PRACTICES IN INTEGRATED STEM EDUCATION 

Carina Spreitzer, Verena Kaar, David Kollosche, and Konrad Krainer 

University of Klagenfurt 

The integration of science, technology, engineering, and mathematics (STEM) in 

education has gained momentum, driven by the acknowledgment that real-world 

challenges demand a holistic approach. This study explores the intersection of 

integrated STEM and mathematic. The research assesses eleven existing materials 

according to instructional practices and the role of mathematics. Results reveal a 

comprehensive incorporation of STEM instructional practices. However, the role of 

mathematics is often used as an ancillary discipline, employed primarily as a tool in 

STEM activities. Only a minority of materials explicitly integrate mathematical 

concepts within interdisciplinary contexts. The findings underscore the need for a more 

pronounced role of mathematics in integrated STEM education. 

INTRODUCTION 

Czerniak et al. (1999) already stated that curriculum integration in science and 

mathematics has become popular in the 1990s. They substantiate this hype with the 

argument that “in the real world, people’s lives are not separated into separate subjects; 

therefore, it seems logical that subject areas should not be separated in schools” (p. 

421). Also recently published reviews underpin the increasing research interest in 

Science, Technology, Engineering, and Mathematics (STEM) education (e.g., Bozkurt 

et al., 2019; Kurniati et al., 2022; Le Thi Thu et al., 2021). The main objective of this 

research is to address global issues. The Education 2030 initiative underscores the 

increasing difficulties schools face in equipping students for rapid economic, 

environmental, and social transformations, as well as for emerging jobs and 

technologies, while also tackling unforeseen social issues (OECD, 2018). In response 

to these challenges and the need for an increasing number of STEM graduates, Bøe et 

al. (2011) contend that having qualified STEM professionals is crucial for maintaining 

economic competitiveness. An encouraging strategy in this regard is the adoption of 

an integrated STEM curriculum, providing learners with opportunities for “more 

relevant, less fragmented, and more stimulating” (Furner & Kumar, 2007, p. 186) 

experiences. Secondary school plays a crucial role in the STEM orientation of students 

(Reinhold et al., 2018) and especially the success in mathematics during secondary 

school is a further factor in fostering students for a STEM career (e.g., Kohen & Nitzan-

Tamar, 2021; Nitzan-Tamar & Kohen, 2022). So therefore, the interplay between 

integrated STEM and mathematics is essential in answering the challenges in the next 

years.  
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More and more schools, educational administrations and countries are striving for an 

interdisciplinary STEM subject. The “MINT-MS” (STEM middle school) school pilot 

project was introduced in Austria with the start of the 2022/2023 school year. As part 

of this pilot project, the secondary school curriculum, which in Austria covers grades 

5-8, has been expanded to include an integrated STEM subject (Bundesministerium für 

Bildung, Wissenschaft und Forschung [BMBWF], 2022).  

The IMST (“Innovations Make Schools Top”) project (e,g., Krainer, 2021) supports 

these STEM middle schools in various focal points: networking, material development 

and evaluation. The material development supports the STEM middle schools in two 

ways. One aspect involves the examination and didactic preparation of current 

materials, intending to provide teachers with initial material for their lessons. 

Conversely, due to the lack of explicit teaching materials for the curriculum content so 

far, the second emphasis is placed on creating new teaching materials. 

In existing materials, it is necessary to identify which characteristics should be 

addressed in STEM lessons and what role mathematics in particular can play. So far, 

characteristics of STEM (e.g., Thibaut et al., 2018) have been discussed independently 

of the role of mathematics (e.g., Just & Siller, 2022). The research objective that we 

are pursuing with this article is to assess and jointly discuss a selection of existing 

materials with regard to the characteristics of STEM lessons and the role of 

mathematics. From these results in joint consideration, endeavours for the creation of 

new materials will be derived. 

THEORETICAL FRAMEWORK 

Defining integrated STEM and frameworks 

Moore et al. (2014) propose advocating for the integration of different STEM 

disciplines by focusing on complex application problems. Nevertheless, such a 

definition could unjustifiably exclude STEM education that is interdisciplinary but not 

strictly application-oriented (Kollosche & Schmölzer, in press). 

Honey et al. (2014) present a definition of integrated STEM education which integrates 

application-oriented and non-application oriented approaches: “working in the context 

of complex phenomena or situations on tasks that require students to use knowledge 

and skills from multiple disciplines” (p. 52). In this definition, various forms of 

integration need consideration. Wang et al. (2011) distinguish between 

multidisciplinary and interdisciplinary integration: Multidisciplinarity arises from 

content and skills grounded in specific subjects, compelling students to establish 

connections between subjects encountered in different classes. Interdisciplinarity starts 

with a challenge that requires an understanding of both content and skills from multiple 

subjects. Additionally, Vasquez et al. (2013) introduce the transdisciplinary approach, 

wherein knowledge and skills from diverse disciplines are applied to address real-

world issues. 
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In addition to efforts aimed at defining integrated STEM education, it is imperative to 

develop frameworks that effectively describe and evaluate STEM instruction. To 

advance the creation of valid assessments and protocols for researching integrated 

STEM teaching and learning, it becomes essential to articulate the characteristics of 

integrated STEM education in explicit detail. 

Thibaut et al. (2018) condensed instructional practices through a systematic literature 

review and organized them within a theoretical framework. The theoretical framework 

identifies five fundamental principles associated with integrated STEM teaching. Table 

1 provides an overview of the five principles, accompanied by a brief description of 

each one.  

Inst. practices Description 

Integration of 

STEM content 

“refers to the explicit assimilation of learning goals, content 

and practices from different STEM disciplines.” (p. 8)  

Problem-centred 

learning 

“learning environments should involve students in authentic, 

open-ended, ill-structured, real-world problems to increase 

the meaningfulness of the content to be learned.” (p. 8) 

Inquiry-based 

learning 

“learning environments that engage students in questioning, 

experiental learning and hands-on activities that allow them to 

discover new concepts and develop new understanding” (p. 8) 

Design-based 

learning 

“entails the use of open-ended, hands-on design challenges 

that provide students with the opportunity to not only learn 

about engineering design processes and engineering practices, 

but also deepen their understanding of disciplinary core 

ideas.” (p. 8) 

Cooperative 

learning 

“students should get the opportunity to communicate and 

collaborate with each other to deepen their knowledge.” (p. 8) 

Table 1: Instructional practices in integrated STEM according to Thibaut et al. (2018) 

The role of mathematics in integrated STEM 

While the pinnacle of integration lies in combining all STEM disciplines equally to 

collaboratively work on real-world problems, such a comprehensive approach seems 

too demanding for most projects in STEM education. As a result, the specific 

contributions, potentials, limitations, and role of each subject within the framework of 

integrated STEM education can be explored. This analysis focuses particularly on the 

role of mathematics. 

In their literature study, Just and Siller (2022) illustrate that mathematics is primarily 

used in many STEM activities as a calculation-oriented tool and for presenting results, 

leading to its perception only as a tool. However, fundamental mathematical concepts 

and methods often remain hidden, and the significance of mathematics for reflective 
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decision-making processes is frequently overlooked. This is attributed, among other 

things, to the fact that science, technology, and engineering usually rely on 

mathematical models (Siller & Weigand, 2023). In integrated STEM lessons, 

mathematics could play a crucial role, serving as a platform where new mathematical 

concepts and methods are introduced or mathematical skills are expanded within an 

interdisciplinary context. These findings are taken as an opportunity to examine the 

existing role of mathematics.  

The integrated STEM curriculum in Austria 

The curriculum in Austria designates 11-15 extra hours for integrated STEM 

instruction across the four school years Each school has the autonomy to determine in 

which class and how many sessions of integrated STEM teaching should be conducted. 

The core subject-specific STEM principles primarily concentrate on an interconnected, 

interdisciplinary viewpoint. What holds paramount importance here is the 

understanding of broader contexts, encompassing the development of awareness 

regarding pivotal future issues. In Austria, the content is labelled as “interdisciplinary”; 

however, upon scrutinizing the curriculum, we can denote it as a transdisciplinary 

approach. Proficiencies from diverse disciplines should be utilized to address real-

world challenges, such as environmental concerns, life cycles, or the realms of 

employment and digitization, as outlined in the curriculum (BMBWF, 2022). The 

emphasis on content and the reference to individual subjects are thus highly 

autonomous, left to the school or teacher.  

METHODS  

Existing materials 

In 2022, the BMBWF commissioned IMST to review, further develop and create new 

teaching materials for the STEM subject for the STEM middle school pilot project as 

part of the work package for material development. At the beginning of the 2023/24 

school year, material recommendations were made for the 2nd grade in the subject 

STEM, whereby existing materials were used, including a didactic commentary.  

The materials are very heterogeneous in content as well as structure, ranging from 

material for one lesson to material for up to 29 lessons. The materials were chosen for 

this study for the pragmatic reason that this study, too, is part of the IMST project. 

However, they are also a good selection for this study, as they already underwent a 

quality check, where researchers and teachers from all STEM subjects discussed the 

suitability of the materials along pre-defined criteria such as age-adequacy, curricular 

relevance, teaching methods, interdisciplinarity, and inclusivity. These eleven material 

packages are the content of interest for the further analysis.  

Analysis 

Each of the eleven material packages was coded by two researchers, with the following 

elements annotated: number of lessons, instructional practices for STEM and the role 

of mathematics. The results of the coding procedure were summarised by consensus. 



Spreitzer, Kaar, Kollosche, & Krainer 

 

PME 47 – 2024 4 - 125 

The instructional practices as well as the role of mathematics were categorized based 

on deductive category formation following Kuckartz (2018). We take the categories 

for the instructional practices from Thibaut’s et al. (2018) framework. We classify the 

role of mathematics, following the categorization by Just and Siller (2022), into three 

categories: new mathematical contents, mathematics used as an ancillary discipline, 

or no mathematical reference. The category nature of mathematics is designated to 

STEM learning environments, where new mathematical concepts and methods are 

introduced, or mathematical skills are expanded within an interdisciplinary context. In 

contrast, the classification as an ancillary discipline is used if students apply pre-

existing knowledge, utilizing mathematical terms and procedures as tools for problem-

solving. STEM activities that lack mathematical references are categorized as to having 

no mathematical reference. 

RESULTS 

Table 2 displays the results from the instructional practices in integrated STEM 

analysed in the eleven materials. Each material is assigned a numerical study ID (in 

brackets), which is used for reference in the following text and tables.  

ID Material Number 

of lessons 

IC PL IL DL CL 

[1] Becoming Protectors of the Earth 16-29 x x x x x 

[2] The world’s climate* 3-6 x x x  x 

[3] Paper airplane competition* 6 x x x x x 

[4] Plastic thought in circles* 6-24 x x x x x 

[5] ProtAct17 2-24 x x x   

[6] Cleanly beaded* 4 x x x  x 

[7] Sound* 1-14 x x x  x 

[8] Material properties - A research trip* 9 x x x  x 

[9] Greenhouse effect in a drinking cup* 1-2 x x x  x 

[10] Our forests: Importance, threat, 

protection* 

9-10 
x x   x 

[11] Virtual Lab 1-12 x x x   

Table 2: Instructional practices in integrated STEM materials. IC = Integration of 

STEM content; PL = Problem-centred learning; IL = Inquiry-based learning; DL = 

Design-based learning; CL = Cooperative learning; * Originally in German 

Table 2 illustrates that existing teaching materials largely encompass the instructional 

practices of STEM education. It is noteworthy that only three out of the eleven 

materials exhibit elements of a design-based learning environment. The majority of the 
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materials are in German (8 out of 11), with less emphasis on design-based approaches, 

and engineering is more in the background. This can be attributed to the fact that the 

English-language STEM explicitly includes “engineering”, a term that is not as 

explicitly expressed in the German MINT. Moreover, in the German-speaking school 

system, there is no emphasis on engineering in middle schools. 

ID New mathematical 

contents 

Mathematics used as 

an ancillary discipline 

No mathematical 

reference 

[1] x   

[2]  x  

[3] x   

[4]   x 

[5]  x  

[6]  x  

[7]  x  

[8]  x  

[9]  x  

[10] x   

[11]  x  

Table 3: Role of mathematics in integrated STEM materials 

The findings presented in Table 3 show that mathematical competencies are involved 

in ten out of the eleven reviewed STEM materials. Three of these materials emphasize 

mathematical concepts and methods within an integrated framework, considering both 

theoretical and applied aspects of mathematics. For instance, in material [3], methods 

for reliable data collection are discussed, new statistical measures for data analysis are 

introduced, and possibilities for presenting data are explored. Materials [1] and [10] 

comprise activities that focus on the mathematical modeling of real-life situations, the 

analysis of data, and the formulation of arguments based on them, leading to informed 

decision-making. 

The seven STEM learning environments classified as mathematics as an ancillary 

discipline address real-world problems and projects, primarily examined from various 

scientific perspectives, with mathematics serving as a tool. Mathematical applications 

are limited to the collection of measurement data in experiments and the analysis and 

interpretation of diagrams, lacking an explicit connection to underlying mathematical 

concepts and methods. Upon closer examination of these materials, it becomes 

apparent that the role of mathematics can be strengthened through minor adjustments 

and mathematical excursus. Exemplary we have a closer look at material [2]. In this 

material, mathematics serves as an auxiliary discipline, requiring the interpretation of 
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numbers from tables. The central theme revolves around weather and climate, 

providing an ideal opportunity to introduce negative integers. Focusing on the 

introduction of negative whole numbers aligns seamlessly with the mathematics 

curriculum for the second grade, creating a strong connection with traditional subjects. 

The content delves into the utilization of tables and climate diagrams, extending the 

understanding of negative numbers. This approach not only enriches mathematical 

concepts but also establishes a foundational understanding of negative integers within 

the context of weather patterns. 

DISCUSSION  

Table 2 and 3 highlight that teaching materials, within the framework of integrated 

STEM, encompass a variety of instructional practices aimed at promoting integrated 

STEM teaching. However, this analysis demonstrates that the current involvement of 

mathematics in STEM materials is often confined to an ancillary discipline.  

The absence of specific learning goals of traditional school subjects and the broad 

scope of real-world applications give rise to the challenge that the STEM curriculum 

cannot establish clear connections between learning objectives and conditions in 

STEM and traditional subjects. If integrated STEM education is meant to improve 

competences in mathematics, then it should prioritize a heightened consideration and 

emphasis on the significance of mathematics. Integrated STEM education should 

intelligently build upon the content from traditional STEM subjects, where possible, 

intertwining with these subjects and only venturing into later content from traditional 

STEM subjects where necessary. 
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RELATIONALITY IN PRODUCTIVE STRUGGLE: A SOMALI 

ALGEBRA CONVERSATION 

Susan Staats, Claire Halpert, Alyssa Kasahara, Emily Posson, and Fardus Ahmed  

University of Minnesota, U.S.A. 

This paper analyses relationality as a source of mathematical meaning during 

productive struggle in a multilingual, Somali and English algebra conversation. 

Relationality—meaningful interpretations based on interactions of multimodal 

dialogue, past language occurrences, mathematical writing, and learning 

environments—can take the form of conversational repetition. We show that the 

students’ conversational repetition allowed them to express uncertainty in useful ways, 

exploring what it means to explain mathematically, and transforming the Somali 

meanings of words “add” and “write” in ways that enhanced their work towards 

algebraic generalization. Our analysis deepens the theoretical understanding of 

productive struggle when it involves uncertainty in explaining and sensemaking. 

INTRODUCTION 

Students engaged in productive struggle create mathematical meaning through 

interaction–always with their prior mathematical experiences; nearly always with 

institutionally-framed tasks; and usually through verbal interaction with other students 

and a teacher. Four student activities that may involve productive struggle are: 1) 

getting started; 2) carrying out a process; 3) uncertainty in explaining and sensemaking; 

4) expressing misconceptions and errors (Warshauer, 2015, p. 385). Much productive 

struggle research is focused on teachers’ strategies to sustain it (Warshauer, 2015). 

Relatively little research documents students’ strategies for sustaining productive 

struggle when they are not immediately engaged with the teacher. 

In this paper, we deepen the theoretical understanding of Warshauer’s third dimension 

of productive struggle, uncertainty in explaining and sensemaking, through discourse  

analysis of two Somali-speaking undergraduates’ algebraic problem-solving dialogue. 

Ambiguity or uncertainty is an understudied source of mathematical meaning (e.g., 

Foster, 2011). We examine the insight that “all mathematical meaning is relational” 

(Barwell, 2023, p. 537) with focus on relationality that arises through conversational 

repetition—revoicing and revising previous spoken comments or sentences in a written 

task (Staats, 2021). Our analysis of this multilingual conversation indicates that 

relationality through repetition calls forth uncertainty in explaining and sensemaking 

in two highly productive ways: 1) students’ exploration of what it means to explain 

insights mathematically, and 2) their transformation of shared mathematical meanings. 



Staats, Halpert, Kasahara, Posson, & Ahmed 

  

4 - 130 PME 47 – 2024 

RELATIONALITY AND REPETITION IN MATHEMATICS DISCOURSE 

This paper attends carefully to productive struggle that is noticeable in spoken, 

linguistic shifts as two students discuss an algebra task, but as Barwell points out, 

relationality is not carried exclusively by language: “meaning emerges from the 

interactions between students, the teacher and texts” (Barwell, 2023, p. 537). Forms of 

relationality that are important in this paper include: shifts in meaning compared to 

similar, recent comments from either a student partner or a researcher; spoken 

meanings that reference sentences or images in the task statement; and embodied 

relationality that occurs when students use collaborative writing, drawing or gesturing 

to create mathematical meaning. 

Close analysis of speech, however, is the starting point in this paper to notice 

relationality as a source of mathematical meaning. We use the method proposed in 

Staats (2021) to identify grammatical repetitions, also known as conversational 

repetition or poetic structure. In this approach, a comment becomes a poetic echo of a 

previous comment if they share a repeated word or meaningful component of a word 

and some syntax. Meaning arises in the interplay of similarity and difference across a 

series of comments. These may be short, repeated comments or longer chunks of 

discourse, like a question-and-answer which is repeated several times. For example, 

two poetic sequences extracted from the selections in this paper include: we found 

it…we wrote…we looked for it…we added…you are adding; and later: someone would 

be adding…someone would be adding...someone would be adding boxes…someone is 

adding on a row. As one comment flows into the next, the similar words and syntax 

support a sense of relationality to past comments, but there are also changes in the 

phrasing, so that we end up in a different meaning-place from where we embarked.  

These strings of relational adjustments can indicate important mathematical transitions. 

In pattern generalization tasks (Fig. 1), students’ initial solutions are often numerical 

verification approaches that they sometimes extend through “empirical re-

conceptualization” into a stronger deductive or structural generalization (Ellis, 

Lockwood, & Ozaltun-Celik, 2022). Conversational repetition can assist this process 

by allowing speakers to adjust their recent framing of a task in relation to newly-noticed 

mathematical features. We show that uncertainty—sometimes grammatically-encoded 

and sometimes emerging semantically across repetitions—is a linguistic resource for 

sensemaking and explaining during productive struggle.  

METHOD 

Two Somali-speaking undergraduates, who we call Leylo and Raana, worked for about 

35 minutes in a paid, out-of-class, video and audio recorded setting, on the perimeter 

generalization task shown in Figure 1. Outside of this setting, the two are personal 

friends to each other. The full task (not shown here) was translated from English into 

Somali by other Somali-speaking undergraduates.  
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Figure 1: Perimeter task; two mathematical properties written lower on the page. 

The recordings were translated through the linguistics-based interlinear morphemic 

glossing method described by Edmonds-Wathen (2019) that accounts for the semantic 

and grammatical contribution of all the morphemes, the meaningful components of an 

utterance, as in Leylo’s comment: 

Oh, row aa la darayaa!   Verbatim transcription 

Oh row aa     la     dar-ay-aa   Separation into morphemes 

Oh row LOC ISP  add-PROG-PRES  Abbreviated gloss / morphemic analysis  

Oh, someone is adding on a row!  Free translation into English 

Morphemic glossing abbreviations accurately portray the agency and action within 

Leylo’s comment, that an unspecified actor la (ISP, impersonal subject pronoun) is in 

the process of adding (PROG, progressive ‘-ing’ sense) a row in a location (LOC, 

locative marker) in the present moment (PRES, present tense). Publication constraints 

do not allow presentation of the fully glossed dialogue, but our discussion of repetition 

and relationality is supported by this detailed analysis for the 35-minute conversation. 

DIALOGUE AND DISCUSSION 

After about 20 minutes, Leylo and Raana had noticed that the perimeter can be 

calculated using the calculation block shown in Fig. 1, and that the perimeter “goes up 

by four” as one moves from one case to the next. They shared these results in English 

with the first author, who confirmed them. The first author then noted that their method 

involved a “four, a multiplication, and a number that is changing,” and suggested that 

they could further explain it in relation to the “shapes” of the cases. Before this 

conversation, Leylo and Raana felt certain of their method, but afterwards, they knew 

there was uncertainty associated with what a successful or complete explanation of 

their method might be. Subsequent work, including selections 1 and 2 below1, resulted 

in the visual justification for “going up by four” shown in Fig. 1. 

Productive uncertainty in explaining 

In Selection 1, Leylo with support from Raana developed a question-and-answer 

pattern of talk that was repeated three times, each represented as a stanza (starting at 
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1.1.1, 1.2.1, and 1.3.1). Leylo’s opening comment Sidee ku helikartaa, was a shortened 

form of a written task question that the two had answered in writing earlier, Sidee ku 

helikartaa wareega qaabka X-add / How are you able to find the perimeter of the Xth 

case? Leylo and Raana seem to endorse the task question as a way to develop a valid 

mathematical answer as a relational guide towards the act of doing mathematics. They 

answered the revoiced question at 1.1.1 with repetitions of uu helnay / we found it and 

waa qornay / we wrote, past tense verbs that convey a sense of factual reality, similar 

to their English translations. Most of the action in stanza 1 was portrayed as 

collaborative and completed work, with pronouns translating to we, but Leylo briefly 

used the impersonal pronoun la (later, in 1.3.1, lo) / someone or one, referencing  an 

unspecified person who hadn’t yet noticed any of the task properties. 

Further, these repetitions of the verbs hel- / found flowing into qor- / write were 

instances of relationality, but they also referenced earlier, embodied relationality when 

the two spent minutes collaboratively writing sentences justifying their multiplication 

method, with one dictating while the other wrote, passing the paper back and forth, 

editing the other’s sentences, with extreme rigor and deliberation. When Leylo and 

Raana said waa qornay / we wrote, the only thing that they had collaboratively written 

at that point were sentences explaining their method. It seems likely, then, that qor- / 

write referred to the shared actions of writing sentences, and that selection 1, stanza 1 

expressed the sense that they were certain that their method was correct. 

Selection 1, in three stanzas 

[1.1.1] L:  Ok, so number aa la bedelayaa.  Sidee ku helikartaa?                            

                  Ok, so someone is changing the number. How are you able to find (it)?  

[1.1.2]   L:  Because anaga saa uu helnay, (points at 1st case) 

                               Because thus we found it,  

[1.1.3]                                  L:  waa qornay. (sweeps across the calculations)         

                                                                      we wrote (it). 

[1.1.4]                        R:  Waa qornay.          

                                                                       We wrote (it). 

 

[1.2.1]  L:  So hadda ogin inaa la qorikaro sas (sweeps calculations), sidee ku      

               helikartaa qaabka (points at 5th, 6th cases, and below) ku so xigo?           

                        So if (one) didn’t know that one is able to write like that, how are you  

                        able to find the next case? 

[1.2.2]    L:  So anaga waxaa raadinay, se like, (touching the 5th case)  

                         whenever you like 
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                         So we looked for it, how like, whenever you like, 

 

[1.3.1]  L:  Sidee lo raadiyo marka maxaa ku darnay?    

                   How might someone look for it when we added on? 

[1.3.2]    L:  So halkan haddad sawirtid, (touches 1st case, the 4 above,     

              and then the 1st case again) 

                         So here, if you would draw (it), 

[1.3.3]    L:  Halkaan aad ku daraysaa, 

                         Here, you are adding on,                          

[1.3.4]    L:  Halkaan aad ku daraysaa 

                         Here, you are adding on,                          

[1.3.5]    L:  Lakin wuxuu kacay sideed (touches the 8 above the 2nd case)            

                         But it rose to eight.  

In stanzas 2 and 3, the sidee / how question-and-answer sequence was repeated with 

verbs that express both a richer sense of uncertainty compared to stanza 1, and 

productive struggle to articulate a new mathematical justification. In contrast to stanza 

1—the factual voicing of bedelayaa / is changing (present tense) and of we found 

it…we wrote—in stanza 2, Leylo used the final sound -o in qorikaro / able to write 

which expresses an indefiniteness that is grammatically required by the negative state 

of someone not knowing in ogin (1.2.1). Both final -o and final -tid express this 

“irrealis” or uncertain state of a verb, and often take a translation such as could, would 

or might (1.2.1, 1.3.1, 1.3.2, 2.1.1, 2.1.3, 2.2.1).  

Arguably, working towards a deductive generalization requires an epistemological 

stance of uncertainty or delayed belief towards what might be true mathematically. 

Leylo and Raana’s three question/answer repetitions expressed this new uncertainty 

through irrealis verb markers and an impersonal, not-yet-knowing actor la. Through 

repetition, they associated this indefinite mathematical person with specific 

mathematical investigations that have potential to inspire explanation: looking, 

drawing, and adding on (1.2.2, 1.3.2, 1.3.3, 1.3.4). Selection 1 demonstrates repetition 

as a way to establish a stance of productive uncertainty towards the act of explaining. 

Productive uncertainty in sensemaking 

Importantly, the selection 1 comment regarding dar- / add, How might someone look 

for it when we were adding it on? (1.3.1) was the conversation’s first mention of 

addition. Similar to English, the Somali verb dar- can mean either numerical adding 

or physical appending, attaching. At 1.3.1, we can’t tell which meaning was in play, 

but in the passages after selection 1 and before selection 2, dar- emphasized the sense 

of adding as a numerical operation, with comments like “this one is adding three,” 
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while writing + 3 on the task images. The Somali verb qor- / write has slightly different 

boundaries than English write, because qor- can mean either writing sentences or 

drawing boxes, but in English, one would rarely say that we write boxes. 

Previously, Leylo had drawn the 5th and 6th cases by working with columns rather than 

rows, attaching a left-side column to the 4th  and 5th cases (mentioned in 2.1.2). But at 

2.2.2, the pair realized that they could also build the next case by attaching a row on 

the bottom of the previous case. This breakthrough of drawing rows rather than 

columns seemed to offer an easier way to generalize, that a new row always yields four 

sides in the perimeter that were not previously counted (Fig. 1). The “reversal” 

repetition (Staats, 2021) from 2.1.3 to 2.2.2 brings “rows” in front of daraya instead of 

“boxes” after daraayo, in Somali grammar, marking “rows” as important, new 

information, and removing the uncertainty of the irrealis marker -o. Conversational 

repetition allowed Leylo and Raana to re-specify the meaning potentials of dar- 

towards appending rather than adding, and qor- towards drawing rather than writing.  

Selection 2, in two stanzas 

[2.1.1]  L: But I think this is easier, mid la explaingaraynkaro,  

                  But I think this is easier, which someone would be able to explain, 

[2.1.2]    L:  because waa qoray boxes,  

                         because (I) wrote boxes 

[2.1.3]    L:  lakin I think marka lagu isku darayo the boxes,  

                                       but I think when someone would be adding the boxes onto itself, 

[2.1.4]    L:  Why, I don’t know, which is what I am trying to figure out 

 

[2.2.1]  L:  Marka habad lagu darayo,  

                   When someone would be adding one on 

[2.2.2]    L:  Oh, row aa la daraya! (tracing bottom of 3rd and 4th case) 

                         Oh, someone is adding on a row! 

[2.2.3]    R:  Oh, the rows. Haa! 

                                   Oh, the rows. Yes! 

[2.2.4]   R:  Haa! Hadda firi -- I forgot what I was saying. (holding paper  

                                        near 1st case) 

                                    Yes!  Now look – I forgot what I was saying. 

[2.2.5]   L:  Haa, rows aa lagu daraya, (points to 1st case) so every one,  

                                       habadi, 

                Yes, someone is adding on the rows, so every one, this one here. 
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[2.2.6]                R:  habadi, habadi uu sii raca – (R touches near the 1st   

                                                     case, then slightly to the right.  

                                                 this one here, this one here, must give it, continuing 

[2.2.7]        L:  habadi row uu helayaa (L touches the 3rd shape) 

                                        This one here, the row is receiving it 

[2.2.8]        R:  haa, the bottom, and then it goes like that …  

                                                      (R continues L’s sentence, while tracing across the  

                                                      all the cases’ bottom rows) 

                   yes, the bottom, and then it goes like that… 

As the relational meaning framework suggests, words have a range of meanings that 

are always potentially available (Barwell, 2023).  We can follow the sequential shift in 

meanings by reading an extracted, sequential poetic string of comments across 

selections 1 and 2: 

waa qornay / we wrote (sentences)     1.1.3 and 1.1.4 

ku darnay / we added on       1.3.1 

(numerical or figural is undeterminable)    

waa qoray / I wrote boxes       2.1.2  

daraayo the boxes / someone would be adding on the boxes    2.1.3 

daraayo / someone would be adding     2.2.1 

row aa la daraya!  / someone is adding a row!   2.2.2   

Each comment is discernibly a repetition of a previous comment through shared words 

or morphemes and syntax. This poetic string is a source of relational mathematical 

meaning, because each comment takes meaning from previous ones, sometimes 

stabilizing or continuing meanings and sometimes shifting or extending them. Across 

selections 1 and 2, these comments contributed, first, to a new stance on uncertainty in 

posing mathematical questions and seeking explanations, and then, in making 

ambiguous semantic meanings more specific at a moment of mathematical insight. 

The last moments of selection 2 enact relationality through conversational repetition in 

creative and embodied ways. Raana and Leylo’s spoken embodiment resulted in a 

sentence of generalized explanation from 2.2.5 to 2.2.8. Together they found a novel 

kind of poetic imagery to express the generalization, that one case gives a row and the 

next case receives it, both words expressing movement, transformation and connection 

but from opposing standpoints. And finally, their shared finger movements indicated 

generalization: and then it goes like that, with Raana’s finger tracing towards infinity.  
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CONCLUSION 

Mathematical productive struggle implies change across a series of events within a 

state of uncertainty or ambiguity. Our analysis shows students’ productive struggle  

dialogue can usefully harness uncertainty or ambiguity through shifting grammatical 

and semantic interpretations of the mathematical task. The concept of “shifting” is 

important, that productive struggle emerges through the relationships across comments 

and actions, not within a logical parsing of a single sentence or action. Through 

conversational repetition, students can shift from certainty to uncertainty in a question-

and-answer sequence, inviting new mathematical investigations. Repetition also allows 

speakers to sculpt ambiguous semantic meanings into foundations for new 

mathematical insights. Indeed, productive struggle research that attends closely to 

students’ words and actions could usefully distinguish uncertainty (like irrealis verb 

forms) from ambiguity (like multivocalic words) (c.f. Foster, 2011). Through the 

relationality that is inherent in dialogue, even when a teacher is not present, students 

can sometimes support their own productive struggle, taking complex epistemological 

stances on what it means to know and to believe, mathematically. 

NOTES 

1. The numbering system is [selection.stanza.line], that (1.3.2) references selection 

1, stanza 3, line 2. Underlining indicates comments of interest discussed in the 

paper. Indentation draws attention to stanza structure and repeated phrases, 

based on morphemic glossing. Words in parentheses were not spoken directly in 

Somali but create a smoother English translation. 

2. This study was funded by a Grant-In-Aid of Research from the University of 

Minnesota Office of the Vice President for Research. 

References 

Barwell, R. (2023). Sourcing mathematical meaning as a dialogic process: Meaning-focused 

and language-focused repairs. ZDM–Mathematics Education, 55, 535-550. 

Edmonds-Wathen, C. (2019). Linguistic methodologies for investigating and representing 

multiple languages in mathematics education research. Research in Mathematics 

Education, 21(2), 119-134.  

Ellis, A., Lockwood, E., & Ozaltun-Celik, A. (2022). Empirical re-conceptualization: From 

empirical generalizations to insight and understanding. The Journal of Mathematical 

Behavior, 65, 100928.  

Foster, C. (2011). Productive ambiguity in the learning of mathematics. For the Learning of 

Mathematics, 31(2), 3-7. 

Staats, S. (2021). Mathematical poetic structures: The sound shape of collaboration. The 

Journal of Mathematical Behavior, 62, 100846. 

Warshauer, H. K. (2015). Productive struggle in middle school mathematics 

classrooms. Journal of Mathematics Teacher Education, 18, 375-400.



 

 

 4 - 137 
2024. In T. Evans, O. Marmur, J. Hunter, G. Leach, & J. Jhagroo (Eds.). Proceedings of the 47th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 137–144). PME. 
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Zambia is recognised for its low academic proficiency in south-eastern Africa. Urgent 

attention is needed to develop basic arithmetic skills, as seen in children, resorting to 

methods such as drawing sticks to count for calculations such as 7 + 9, and only one 

in three correctly computing –4 – 2. This study reveals the calculation algorithms used 

by Zambian children in addition and subtraction, including operations with negative 

integers. When providing incorrect answers, children associate calculations with those 

they can already perform correctly. This insight highlights the importance of 

developing instructional strategies that build upon existing abilities to address the 

pressing need for enhancing basic arithmetic proficiency in Zambia. 

INTRODUCTION 

The Sustainable Development Goal 4 (SDG 4) focuses on education, encompassing 

ten targets, one of which emphasises the urgent need to ensure that “all young people 

and a substantial proportion of adults, both men and women, achieve literacy and 

numeracy”. This highlights the importance of fostering basic numeracy skills to 

achieve high-quality education, particularly in developing countries.  

In Southeast Africa, a specific educational assessment known as the Southern and 

Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) reveals 

that Zambia ranks lowest in academic proficiency among the countries (Musonda & 

Kaba, 2011). Regarding the reality in Zambia, for instance, in a calculation such as 7 

+ 9, many primary school students tended to draw seven lines, subsequently add nine 

more lines, and finally count the total number of lines drawn. Reports indicate that 

methods involving “drawing lines” and “counting using fingers” dominate the 

approach to calculations (JICA, 2021). Furthermore, when it comes to addition and 

subtraction involving negative integers, such as in the case of – 4 – 2, reports indicate 

that 8th and 9th-grade students in Zambia use a number line to calculate; however, the 

accuracy rate for –4 – 2 is approximately 33%. This means that only one out of three 

students could correctly perform this calculation (Sudo et al., 2019). These findings 

illustrate the lack of basic computational skills, which poses a significant challenge to 

achieving SDG 4. 

Several patterns of addition and subtraction involve negative numbers. When both 

variables a and b are positive integers, their sum, denoted by a + b, is always a positive 

integer, regardless of their relative sizes. However, regarding variables a and b, the 
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result can be positive or negative depending on the relative sizes of a and b. Similarly, 

concerning negative numbers, –a + b (where both a and b are positive integers), the 

sum can be positive or negative based on the relationship between a and b. For –a – b, 

the difference is always a negative integer, regardless of the sizes of a and b. In 

summary, there were four scenarios: a + b, a – b, a + b, and –a – b. For a – b and –a + 

b, the outcome depends on whether variable a is greater than, equal to, or less than 

variable b. Additionally, viewing –a – b as –a + (–b) allows us to consider the 

subtraction involving negative numbers as the addition of negative integers. 

Considering the relative sizes of variables a and b from this perspective further 

increases the complexity of the calculation patterns. Thus, calculations involving 

negative integers are more intricate than those in which the sum and difference remain 

positive. 

There is a substantial body of research on calculations involving negative integers 

(Sahat et al., 2018; Salsabila et al., 2022). Many of these studies focused on teaching 

addition and subtraction using number lines (Fuadiah et al., 2019). Although Sudo et 

al. (2019) reported that children in Zambia also used number lines for calculations, 

their mastery of this method was insufficient. Sudo et al. (2022) conducted a similar 

investigation in Uganda and reported a correct answer rate (CAR) of approximately 

21% for –4 – 2 calculations. They highlighted that similar to Zambia, the mastery of 

calculations involving negative integers is insufficient in Uganda. 

Sudo et al. (2019) and Sudo et al. (2022) conducted a calculation test comprising 24 

questions that differentiated the sizes of variables a and b in the expressions a + b and 

a + (–b). In this study, we aimed to investigate the actual computational abilities of 

children. The results revealed low levels of computational proficiency. However, 

despite not arriving at correct answers, the specific calculation processes employed by 

children have not been explicitly elucidated. For instance, in Zambia, where only 

approximately 33% of the children provided the correct answer for –4 – 2, it is possible 

that the remaining 67% of the children employed some form of calculation method, 

leading to incorrect answers. This implies that even in cases where the correct answer 

is not achieved, children may utilise a computational algorithm. It is essential not only 

to address instances of incorrect calculations but also to uncover the specific processes 

that children employ, even when arriving at an incorrect answer. This point of view 

has not yet been examined in earlier research. 

In this study, we aimed to elucidate the computational algorithms employed by 

Zambian children in their incorrect answers. Between 2017 and 2019, a survey was 

carried out in eight secondary schools in Zambia. The survey utilized a calculation test 

comprised of 24 questions, which was conducted by Sudo et al. (2019). It is important 

to note that Sudo et al. (2019) utilised data specifically from the 2017 survey. In our 

analysis, we first determined the difficulty levels of the 24 test questions using both 

classical test theory and item response theory. Subsequently, we aimed to uncover the 

typical incorrect answers of the children and reveal the unique computational 

algorithms employed by these children that lead to incorrect answers. This 
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comprehensive approach included data from the entire period (2017–2019) covered by 

the original study, providing a more extensive perspective on the children’s 

computational strategies. 

METHODS 

This analysis focuses on data collected from a survey of 8th and 9th-grade students 

who completed learning addition and subtraction involving negative integers from 

2017 to 2019 in eight schools. The total sample size was 971 children (396 in 2017, 

204 in 2018, and 371 in 2019). The test consisted of 24 questions related to addition 

and subtraction involving negative integers, as presented in columns A and B of Table 

1. For this test, positive integers a and b were used, covering 12 types ranging from a 

+ b to –a – (–b). These types were created by setting the addends or subtrahends as 

positive or negative integers and forming combinations with positive and negative 

integers as augments or minimums. Each type was further divided into Types A and B, 

distinguishing between a > b and a < b. For example, 4 + 2 and 2 + 6 were considered 

the same type (Type (1)), and both Types A and B were included. In the six types 

(Types (2), (3), (6), (7), (9), and (12)), the signs of the sum or difference differed 

between Types A and B. This characteristic adds complexity to the test, which is one 

of the reasons why addition and subtraction involving negative integers are considered 

challenging. Additionally, to simplify the calculations, the values of a and b were even, 

ensuring that the sum or difference in each question was a single digit. 

RESULTS 

The analysis of the difficulty of the 24 questions 

The difficulty of the 24 questions was estimated using both classical test theory and 

item response theory; the results are presented in Table 1. In classical test theory, 

Cronbach’s alpha reliability coefficient was calculated and yielded a value of 0.854, 

indicating sufficient reliability. The difficulty level of each item was assessed based on 

the CAR. To estimate difficulty (Dffclt) using item response theory, the eigenvalues of 

the tetrachoric correlation matrix for all 24 questions were calculated and their 

respective contribution rates were examined. The contribution rates for the first three 

eigenvalues were 36%, 10%, and 9%, respectively, with the first eigenvalue being 

noticeably larger. This indicated that the test satisfied the assumption of 

unidimensionality. The Rasch model, which considers only item difficulty as a 

parameter, was employed to estimate item difficulty using item response theory. The 

histogram of test scores estimated using the Rasch model is illustrated in Figure 1, with 

mean and standard deviation values of –0.003 and 1.024, respectively. 

Table 1: Test questions and their difficulty 

Type Type A CAR Dffclt Type B CAR Dffclt 

(1)  a + b 4 + 2 97% –3.897 2 + 6 97% –4.039 
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(2)  a – b 6 – 4 93% –3.043 4 – 8 48% 0.092 

(3) –a + b –8 + 4 67% –0.934 –6 + 8 51% –0.101 

(4) –a – b –4 – 2 35% 0.755 –2 – 6 33% 0.855 

(5) a + (+b) 4 + (+2) 82% –1.846 2 + (+6) 83% –1.936 

(6) a + (–b) 8 + (–2) 54% –0.246 4 + (–8) 60% –0.550 

(7) –a + (+b) –4 + (+2) 58% –0.435 –4 + (+8) 52% –0.147 

(8) –a + (–b) –6 + (–2) 52% –0.142 –2 + (–6) 54% –0.251 

(9) a – (+b) 8 – (+2) 58% –0.429 4 – (+6) 42% 0.394 

(10) a – (–b) 6 – (–2) 37% 0.619 2 – (–4) 31% 0.969 

(11) –a – (+b) –4 – (+2) 30% 1.043 –2 – (+6) 27% 1.215 

(12) –a – (–b) –6 – (–2) 47% 0.129 –6 – (–8) 39% 0.514 

 

 

Figure 1: Histogram of the test score          Figure 2: Scatter plot of the difficulty  

by type 

The most challenging question, –2 – (+6), has a difficulty level of 1.215. This means 

that a child with a test score of 1.215 had a 50% probability of answering the question 

correctly. Considering the standard deviation of 1.024 for the test scores, this difficulty 

level is considered high. The CAR appeared to be challenging, with only one in three 

children answering correctly. Conversely, the question with the lowest difficulty level, 

2 + 6, had a difficulty rating of –4.039. This indicates the difficulty level at which 

almost all the examinees are likely to answer correctly. The correct response rate was 

97%, indicating that nearly all participants responded to this question correctly. 

Figure 2 illustrates a scatter plot of the difficulty levels for Types A and B across the 

12 types. In Type (2), it is evident that the difficulty level for Type B is noticeably 

higher than that for Type A. Conversely, for the remaining types, although the 
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difficulty of Type B is slightly higher, there is no prominent difference, similar to that 

observed in Type (2). Among the other three types that do not include parentheses, 

Type (1) involves addition without negative integers and has the lowest difficulty level. 

For Type (3), the difficulty levels for Types A and B were –0.934 and –0.101, 

respectively. In Type A, one in three participants made a mistake, whereas in Type B, 

approximately half of the participants provided incorrect answers. In Type (4), both 

Types A and B had high difficulty levels of 0.755 and 0.855, respectively, making it a 

challenging question, with only one in three participants answering correctly. 

The provided set of 24 questions represents fundamental calculations. Specifically, 

among the questions that did not include parentheses, despite covering the basics of 

addition and subtraction involving negative integers, there were instances in which 

only one in three children answered correctly. This suggests a situation where mastery 

of addition and subtraction involving negative integers cannot be deemed sufficient. 

Analysing the wrong answers 

For example, in Type (4), where only one in three children appears to calculate 

correctly, more participants may provide incorrect answers. This suggests that specific 

calculation algorithms may lead to incorrect responses. In this context, we examine the 

nature of these errors. It is worth noting that the analysis focuses on Types (1) through 

(4) without parentheses because including calculations with parentheses from Types 

(5) to (12) complicates the analysis. 

For Types (1)–(4), the top three answers with the highest frequency for both Types A 

and B among the eight questions were examined. Across all eight questions, the correct 

answer (CA) was identified among the top three. The answer with the highest 

percentage, considered the most frequent wrong answer, was labelled WA1 (wrong 

answer), followed by WA2 with the second highest percentage, and the remaining 

answers were categorised as WA3. The percentages were calculated and the results are 

presented in Table 2. 

For Type (1), specifically question (1A) 4 + 2, CA was 6, whereas WA1 and WA2 

were 8 and –6, respectively. The correct response rates for (1A), (1B), and (2A) were 

all above 90%, indicating that the majority of participants could accurately answer 

these questions. Conversely, examining question (4A) –(–4) –2, the percentage of 

WA1 (–2) was 42% higher than the correct answer of –6, highlighting a notable 

misconception among participants. Similarly, (2B) and (4B) exhibit high percentages 

of WA1 at 37% and 28%, respectively. 

Table 2: Classification and proportion of answers of Types (1) to (4) 

Type Type A/B Dffclt CA WA1 WA2 WA3 

(1) a + b 
(1A) 4 + 2 –3.897 6 (97%) 8 (1%) –6 (1%) (1%) 

(1B) 2 + 6 –4.039 8 (97%) 4 (1%) –8 (1%) (1%) 

(2) a – b (2A) 6 – 4 –3.043 2 (93%) –2 (3%) 10 (2%) (3%) 
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(2B) 4 – 8 0.092 –4 (47%) 4 (37%) 12 (7%) (8%) 

(3) –a + b 
(3A) –8 + 4 –0.934 –4 (67%) –12 (22%) 12 (4%) (7%) 

(3B) –6 + 8 –0.101 2 (51%) –14 (19%) –2 (14%) (15%) 

(4) –a – b  
(4A) –4 – 2 0.755 –6 (35%) –2 (42%) 2 (12%) (11%) 

(4B) –2 – 6 0.855 –8 (33%) 4 (28%) –4 (20%) (18%) 

 

      

Figure 3: Result of correspondence          Figure 4: Result of cluster analysis 

                                 analysis 

Therefore, for the five questions (2B), (3A), (3B), (4A), and (4B), correspondence 

analysis was conducted to reduce the information to a two-dimensional plane for the 

CA, WA1, WA2, and WA3 responses. As illustrated in Figure 3, the contribution rates 

for the first and second axes were 45% and 31%, respectively. Subsequently, cluster 

analysis was performed on this coordinate plane, as depicted in Figure 3, and the 

responses were grouped into clusters at a threshold of 0.018, as depicted in Figure 4. 

The upper cluster represents a collection of WA3 responses other than those of WA1 

and WA2. The middle cluster consisted of correct answers (CA). The lower cluster 

comprises a collection of frequently observed incorrect answers, specifically for WA1 

and WA2. Thus, the distinctive characteristics of each cluster suggest the presence of 

unique calculation algorithms that led to incorrect answers, particularly in the lower 
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First, (1A), (1B), and (2A) exhibited high correct response rates and low difficulty, 

indicating that the participants could answer these questions accurately. Assuming this 

premise, for the other five questions, WA1 and WA2 included numbers obtained 
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For example, for WA1 in (2B), 4 can be obtained from 8 to 4. Similarly, in (3B), WA1, 

(2B)CA

(2B)WA1

(2B)WA2

(2B)WA3

(3A)CA

(3A)WA1

(3A)WA2

(3A)WA3

(3B)CA
(3B)WA1

(3B)WA2

(3B)WA3

(4A)CA

(4A)WA1

(4A)WA2

(4A)WA3

(4B)CA

(4B)WA1

(4B)WA2

(4B)WA3

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020

First axis (45%)

S
e
c
o
n
d
 a

x
is

 (
3
1
%

)

0.000 0.010 0.020

(4B)WA3

(2B)WA3

(3A)WA3

(2B)WA2

(3B)WA3

(4A)WA3

(2B)CA

(3B)CA

(4B)CA

(3A)CA

(4A)CA

(4B)WA2

(2B)WA1

(4A)WA1

(3A)WA2

(3B)WA2

(4A)WA2

(3A)WA1

(3B)WA1

(4B)WA1



Sudo, Watanabe, & Chileya 

 

PME 47 – 2024 4 - 143 

where –14 is present, can be obtained through 6 + 8, and WA2, where –2 is present, 

can be obtained through 8 – 6. This suggests an algorithm in which, even if the correct 

answer is not achieved, participants reinterpret the given mathematical expressions into 

a form that can already be calculated, similar to (1A), (1B), and (2A). Additionally, 

(3A), (3B), (4A), and (4B) all involve negative integers as either addends or minute 

ends. For instance, in (3A), WA1, which is –12, can be obtained through –(8 + 4), (3B) 

WA1 can be obtained through –(6 + 8), (4A) WA1 can be obtained through –(4 – 2), 

and (4B) WA2 can be obtained through –(6 – 4). This reveals an algorithm where 

participants write the “–” symbol without considering its meaning as indicating 

negative integers. They then calculate based on subsequent operations if they are 

already familiar with the calculation. 

DISCUSSION 

Using the 24-question test, we determined the difficulty of each question and revealed 

the unique calculation algorithms that led to incorrect responses among the children. 

The results indicate that apart from the three addition and subtraction questions, Type 

(1) Type A, B, and Type (2) Type A, children have not sufficiently mastered addition 

and subtraction, which are elementary school-level topics. Particularly noteworthy is 

the insufficient proficiency in basic calculations, even for questions that do not involve 

parentheses. 

Therefore, we analysed incorrect answers focusing on the four types (Types (1), (2), 

(3), and (4)) of the eight questions, in addition to subtraction involving negative 

integers, excluding parentheses. Two distinct calculation algorithms emerged among 

the children, leading to incorrect answers. The first algorithm involves reinterpreting 

the calculations into a form that can already be solved accurately, similar to Types (1) 

a + b (a > b and a < b) or (2) a – b (a > b). The second algorithm pertains to calculations 

in which negative integers are either addends or minuends, such as Type (3) –a + b and 

Type (4) –a – b. In these cases, the participants wrote the “–” symbol as is and 

proceeded to calculate it based on a method with which they were already familiar. For 

example, –a + b is calculated as –(a + b) and –a – b as –(a – b). Thus, even in the case 

of incorrect answers, it was evident that the Zambian children associated their 

calculations with those they could already perform. 

If, hypothetically, children who employ their unique calculation algorithms based on 

calculations they already know arrive at correct answers, then the accuracy rates for all 

eight questions in Table 2 would exceed 80%. Even in cases of incorrect answers, given 

that children utilise some form of a calculation algorithm, it can be reasonably expected 

that a thorough understanding of the calculation algorithm leading to correct answers 

would significantly enhance the likelihood of arriving at correct solutions. 

Based on the unique calculation algorithms identified for children, where –a + b is 

computed as –(a + b) and –a – b is computed as –(a – b), it appears that there is a lack 

of understanding of the symbol “–” representing negative numbers. In other words, 

there is insufficient understanding of the existence and representation of negative 
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numbers before engaging in addition and subtraction involving negative numbers. 

Therefore, future educational efforts should focus on fostering a comprehensive 

understanding of negative numbers. While this study specifically targeted children’s 

calculations involving negative integers, future initiatives should aim to demonstrate 

children’s actual understanding of negative numbers. Developing specific teaching 

methods based on the results of this study and a fundamental understanding of negative 

numbers is crucial. By conducting such research and developing effective teaching 

strategies, we can contribute to addressing the global challenges of fostering 

fundamental arithmetic skills. 
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Mathematics classrooms need to be spaces where each student experiences a sense of 

belonging, but what does this look like in an elementary mathematics classroom? To 

examine this issue, we designed lessons that allowed all students to see themselves and 

their classmates in the data they examined and thus learn mathematics while learning 

about themselves. We videotaped these lessons and analysed them using the construct 

of Belonging. We found that allowing students to explore ideas about themselves both 

allowed them to experience a sense of belonging as well as engage in the mathematics 

and contextual goals of the activity. We identified target teaching and learning 

practices to achieve these goals. 

RATIONALE  

In last year’s PME plenary Paola Valero shared that “mathematics education does 

something with/in “learners”, that goes beyond transformations in their cognition and 

thinking around mathematical notions and procedures,” (Valero, 2023, p. 56). More 

specifically that “mathematics education leaves marks in children and learners” 

(Valero, 2023, p. 57) which can sometimes leave children alienated from mathematics 

and from the classroom community. For example, Janine, a special education teacher 

in the United States who identifies as a Black woman, shared her experience as a 

mathematics learner during her childhood. 

[In elementary school I am] starting off as a young child thinking I can do anything. Math 

was not a problem. … [Then] I moved from a school that was predominantly BIPOC, 

black, inner city … to a private school, Catholic school, where I was, like, probably a few 

of the black students. … So here I am confused, I am ostracized, I am not called on. I am… 

the expectations for me... [choked up] Sorry. Obviously, that's a painful part, but that is 
where the expectations, even though I was in a private school, were very limited for me 

and I wasn't called upon and sat in the back of the room. This is in the late '80s/'90s. 

Janine carries marks from her mathematics experience that go beyond mathematics 

learning. She did not feel a sense of belonging, and these experiences clearly excluded 

her from the community in the mathematics classroom. In this paper we examine how 

focusing on a sense of belonging in the mathematics classroom might have allowed her 

and more children to feel part of mathematics rather than being harmed by it. Our 

research questions are: How can we create a sense of belonging for children in the 

elementary mathematics classroom? More specifically, can using data about 
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themselves create a sense of belonging for the children in an elementary mathematics 

classroom? 

FRAMING AND LITERATURE REVIEW: BELONGING IN THE 

MATHEMATICS CLASSROOM 

Belonging has been identified as a main indicator of success, persistence, and well-

being (Cwik & Singh, 2022). Belonging increases engagement and self-efficacy, which 

leads to success (Bandura, 1977, Trujillo & Tanner, 2014). Students who are confident 

they belong and feel valued by their instructors and peers can engage more fully in 

learning (Freire, 2018).  

In this paper we define belonging as “a basic human need, a fundamental motivation, 

sufficient to drive behaviors and perceptions. Its satisfaction leads to positive gains 

such as happiness, elation, well-being, achievement, and optimal functioning” 

(Strayhorn, 2019, p. 9). More specifically we follow Watson’s (2024) five factors of 

belonging in mathematics which are: “You see me, I see myself, Others see me, I am 

valued, and I can grow” (retrieved January 2024, Crystal M. Watson). Watson’s five 

factors align with Strayhorn’s sense of belonging as a perceived sense of social support 

and feelings of connectedness. Minoritized students (like Janine above) have been 

shown to experience less of a sense of belonging (Gopalan & Brady, 2019) in general 

and specifically in the mathematics classroom.  

To increase a sense of belonging for all students we build on Teaching Mathematics 

About/With/For Social Justice, extending from the work of the authors from the Middle 

School Mathematics Lessons to Explore, Understand , and Respond to Social Injustice 

(Conway et al, 2023) and from The Benjamin Banneker Association’s  statement on 

Teaching Math for Social Justice. We focus on teaching mathematics WITH social 

justice (TMWSJ), which includes designing interactions within and beyond the 

classroom that attend to participation, status, and positioning. We examine TMWSJ as 

implementing teaching practices that allow students to engage in mathematics 

learning while learning about themselves and the world addressing participation, 

status, and positioning (developed based on Bartell et al., 2017).  These practices 

include: 

1. Maintain a focus on real-world reasoning. 

2. Maintain a focus on mathematical reasoning.  

3. Facilitating socio-political discourse.  

4. Facilitating mathematical discourse.  

5. Eliciting and using evidence of student thinking. 

In addition we draw on the Social Justice Standards (Learning for Justice, 2016) which 

focus on Identity (Relate how identity has many characteristics and affects 

relationships within and beyond the classroom), Diversity (Develop respectful ways to 

discuss similarities and differences with others and begin to think about how diversity 

affects relationships within the classroom and beyond), Justice (Understand the 

https://crystalmwatson.com/
http://bbamath.org/
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difference between personal stereotypes and systemic discrimination, and explore how 

privilege impacts discrimination and justice), and Action (Move students from 

prejudice reduction to collective action). We focus on Diversity in this paper. 

Finally, to create belonging in the mathematics classroom the definition of 

mathematics must be broadened from a narrow view of mathematics as an abstract 

body of knowledge/ideas, the organization of that into systems and structures, and a 

set of methods for reaching conclusions to, instead, mathematics as a verb (not a noun), 

a human activity, part of one’s identity (Thanheiser, 2023). Thus, students must be 

allowed to share their ideas and follow through with those and see themselves and 

others in the mathematics. We focus on two learning practices: Students 

seeing/learning about themselves and others in the class, and Students sharing ideas.  

For our paper we align the 5 Factors of Belonging in Mathematics with Teaching 

Mathematics with Social Justice (specifically the Teaching Practices), a broadened 

understanding of what it means to do mathematics (specifically the Learning Practices) 

as well as the Diversity Domain of the Social Justice Standards. 

METHODS 

In this study we share one set of lessons specifically developed to allow students in a 

first-grade classroom to experience a sense of belonging while learning about 

themselves and others in their classroom. The main goal of the lesson was to provide 

an opportunity for children examine how old the children in their first-grade classroom 

were and to use mathematics to understand this context. This is a complex question for 

first graders as several of them did not know how old they themselves were or how old 

their classmates were. The math goals related to: Asking Questions, as well as 

Collecting, Organizing, Representing, Reading and Analysing Data and Modelling 

with Mathematics. The Social Justice Standard addressed was: 

Diversity 7 Students will develop language and knowledge to accurately and respectfully 

describe how people (including themselves) are both similar to and different from each 

other and others in their identity groups. (Chiariello et al., 2016) 

Together the idea was to allow the students to see themselves and others in the class in 

the data being collected and analyzed and thus experience a sense of belonging in the 

class, learning about themselves and others, and a sense of doing mathematics.  

We launched Lesson 1 by reading a few pages from the book The Same But Different 

(Potter, 2021) and engaging the children in discussing similarities and differences 

amongst themselves in the classroom. This allowed students to explore diversity in 

their classroom. 

For the exploration part the teacher posed the question: How old are the children in this 

class? After a suggestion by a student the class divided itself up into “boys and girls.” 

They counted 10 boys and 10 girls. Then they decided that this was not helpful to 

answer the question. They next suggested each child should say their age one-by-one. 

The teacher recorded the ages as the students shared them and then the class 
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collectively counted that there were thirteen 6-year old students and seven 7-year old 

students in the class (that day). The teacher then represented this data with sticky notes 

in a bar graph. (see Figure 1). Discussions included what would happen to a child 

on/after their birthday (they would move from one column to the next).  

 

Figure 1: Image of data collected on student age both in numbers and a bar graph. 

Lesson 2 launched with a Sesame Street video in which Elmo and Abby explore how 

they are the same and different Sesame Street: Same and Different with Elmo and 

Abby. Then the teacher presented the students with a bar graph made of photos of the 

students, so they could literally see themselves in the data (see Figure 2a) and examine 

the data. There were 22 students present that day. One student had had a birthday 

between the lessons so there was a discussion of how his image moved. 

This activity led into the class creating four questions they were interested in and 

collecting, organization, and representing data (on posters) to answer those questions. 

Each poster had a heading decided by a small group of students who then labeled the 

x axis and put their own pictures on it. The questions examined were: How many pets 

do you have? How many teeth have you lost? What is your favorite fruit? and What is 

your favorite Sonic Character? (see Figure 2b). After each group initially created their 

poster with their question the students moved around the room to include their own 

picture on all the posters. Sometimes students fit into the predesigned categories; 

sometimes they needed to add additional categories. This resulted in 4 posters on which 

the students presented the answers to the question with their own data.  

 

 

Figure 2a: Students verifying their own 

data is part of the data on the class. 

Figure 2b: Final poster on What is your 

favourite sonic character 

https://www.youtube.com/watch?v=uATf5EhLebM
https://www.youtube.com/watch?v=uATf5EhLebM
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Both lessons were videotaped, transcribed for analysis, and coded with MAXQDA 

software using the codes in Table 1. For an example of a coded transcript piece see 

Table 2. 

Teaching Practices Student Learning Practices Belonging 

maintain a focus on real-

world reasoning 

Students seeing/learning about 

themselves and others in the class 
You see me 

maintain a focus on 

mathematical reasoning 
Students share ideas I see myself 

facilitate socio-political 

discourse 
 Others see me 

facilitate mathematics 

discourse 
Social Justice Standards I am valued 

elicit and use evidence 

of student thinking 
SJS - Diversity 7 I can grow 

Mathematics Goals 

Asking Questions/Posing 

Problems 

Collecting Data Organizing 

Data 

Representing Data Reading Data Analyzing Data 

Table 1: Codes for MaxQDA coding. 

Transcript Codes 

Leilani: because last time Benjamin wasn't 
seven and Benjamin is seven 
now. And the seven line was 
smaller because Benjamin 
wasn't there. Now Benjamin is 
seven. And Benjamin is in this 
line that means that is the seven 
line.  

Math - Reading Data 

Learning Practice - Students share 

ideas. 

Learning Practice - Students 

seeing/learning about themselves 

and others in the class 

Belonging - Others see me 

Leilani: And I am six and I do not see 
myself.   

 

Classmate: I see you Leilani you are right 
there 

Belonging - Others see me 

Learning Practice - Students 

seeing/learning about themselves 

and others in the class 

Leilani: Oh yeah Belonging - I see myself 
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Classmate: And I am right here. Belonging - I see myself 

Table 2: Example of coding for a piece of transcript. 

In the figures below we share images of the coded timeline for Lesson 1 (Figure 3), the 

visualization of the co-occurrence of the codes across Lesson 1 (Figure 4). We 

highlight the co-occurrence of the code Students share ideas with the SJS - Diversity 

7 code as well as the Belonging codes (red circle). It also highlights the tight 

connection of the code Students seeing/learning about themselves and others in the 

class with the Belonging codes (green circle). In Figures 5 and 6 we focus the image 

of the coded timeline on the co-occurrence identified in Figure 4. 

 

Figure 3: Timeline of Lesson 1 with coded segments 

 

Figure 4: Co-occurrence of codes for Lesson 1. Each grey line represents a co-

occurrence of codes. Red circle: Students share ideas with the SJS - Diversity 7 code 
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as well as the Belonging codes. Green circle: Students seeing/learning about 

themselves and others in the class with the Belonging codes. 

This relationship can also be seen in Figures 5 and 6 which are selected codes in a 

timeline.  

Figure 5: Co-occurrence Students share ideas with the SJS - Diversity 7 code as well 

as the Belonging codes (red circle in Figure 5) 

Figure 6:  Co-occurrence Students seeing/learning about themselves and others in 

the class with the Belonging codes (green circle). 

RESULTS AND INTERPRETATIONS 

To answer our research questions: How can we create a sense of belonging for children 

in the elementary mathematics classroom? More specifically, can using data about 

themselves create a sense of belonging for the children in an elementary mathematics 

classroom? We analyzed both lessons with respect to all the codes. We highlighted in 

the methods above the co-occurrence of the learning practices codes Students 

seeing/learning about themselves and others in the class and Students share ideas 

with the code for Belonging. These codes co-occurred much of the time as seen in the 

example transcript, lesson visualizations and code relations above. Leilani (see 

transcript above) knew she belonged in the class and she was supposed to see herself; 

when she did not, she voiced her concerns. Her classmate helped her find herself in the 

data. Thus, creating tasks that allow students to see themselves (either in the data or 

literally in pictures within the data) can support students’ sense of belonging. Further, 

students expect to see themselves in the data (because they belong).  

The content of these lessons, while interesting to the students, was not critically 

focused for the most part. As such the SJS - Diversity 7 code was highlighted only 

during the launch activity of Lesson 1 (when discussing the book, The Same but 

Different) but not in the math activities across the rest of the two lessons. However, 

this book may lay a good foundation for examining more critical issues about 

themselves and others in the class and thus connecting the social justice standards 

throughout the lesson.  

Across both lessons the math goals were consistently touched upon thus connecting 

mathematics learning to learning about themselves and their world. At the PME 
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presentation we will include a more complete discussion of the data including the 

teaching practices. Lessons like these or the Name Task (Thanheiser et al., 2023) allow 

all students to experience a sense of belonging as they are designed to allow all students 

to see themselves in the data.  
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ANALYSIS OF THE COGNITIVE ACTIVATION OF 

COMBINATORIAL TEXTBOOK TASKS IN GRADE 11 AND 12 
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University of Potsdam 

Various studies have shown that textbooks and their tasks are essential for 

mathematics learning. This also applies to combinatorics, with which learners often 

have difficulties. Accordingly, the combinatorics chapters of five textbooks for the 

upper secondary school level in Germany were analyzed. The analysis revealed that 

the textbook tasks predominantly require procedural thinking and show little variety 

in other task types (declarative and conceptual thinking). The homogeneity of 

combinatorics tasks in textbooks must be revised as it may impair students' cognitive 

activation, an essential aspect of teaching quality. 

INTRODUCTION 

The cognitive activation of students, one of the three central characteristics of teaching 

quality, is considered a decisive factor for students' learning gains (Fauth & Leuders, 

2022). However, it is problematic that the tasks used in mathematics classrooms often 

have a low overall cognitive activation potential (Jordan et al., 2008). With the help of 

the system of categories on the cognitive activation potential of mathematical tasks by 

Neubrand et al. (2013), the aim is to investigate whether this also applies specifically 

to combinatorics. This could provide an initial indication of why students have 

problems solving combinatorial tasks.  

THEORETICAL BACKGROUND 

Students have significant challenges by solving combinatorial problems (e.g., Annin 

& Lai, 2010). However, textbooks usually classify counting problems according to the 

various basic combinatorial situations (permutation, variation, and combination, each 

with and without repetition) (Fischbein & Gazit, 1988; Batanero et al., 1992) in order 

to provide learners with clear guidelines and procedures. Since the structure and the 

content of the existing textbook guides most teachers or they use it primarily as a 

collection of tasks (e.g., Haggarty & Pepin, 2002), combinatorial tasks from textbooks 

commonly used in Germany will be analyzed regarding their cognitive activation. 

Learning opportunities are described as "cognitively activating" if they encourage 

learners to engage actively with the learning content, which happens at an optimal level 

for them (Krauss et al., 2004). Therefore, Cognitive activation is a decisive factor in 

students’ learning gains (Fauth & Leuders, 2022). For teaching, this means that 

students’ different cognitive prerequisites should be taken into account, the learning 

time should be used optimally for the anticipated competence development, and the 

students should be encouraged to engage in challenging cognitive activities that focus 

on the mathematical content (Leuders & Holzäpfel, 2011). It is problematic that past 
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studies have found a low cognitive activation potential of tasks in German mathematics 

classrooms (Jordan et al., 2008, p. 99). 

In order to provide an appropriate assessment of the level of difficulty and the cognitive 

activation potential of tasks, a specific system of categories for mathematical tasks was 

developed as part of the project "Teachers' professional knowledge, cognitively 

activating mathematics teaching and the development of mathematical competence" 

(COACTIV) (Jordan et al., 2006; Neubrand et al., 2013). Originally, this distinguishes 

between four dimensions. As the subject area of the tasks to be taken into account in 

this article is fixed, Dimension A – Content Framework is not considered. On the one 

hand, this describes the material extent of cognitive activation about the individual 

subject areas (topic areas) and, on the other hand, the extent to which tasks from 

previous grade levels (curricular knowledge) are included. Accordingly, the focus of 

this article is on the dimensions B – Cognitive Framework, C – Elements of the 

modeling cycle, and D – Search space for the solution, as these provide direct insight 

into the cognitive activation potential of tasks, particularly in connection with problem 

solving and modeling (e.g., Blum & Leiß, 2007). 

In order to map the different requirements that can be contained in mathematical tasks, 

the solution process was categorized into three Types of mathematical activities in 

Dimension B – Cognitive Framework: technical task (demand for skills or declarative 

knowledge), procedural task (predominantly procedural thinking required) and 

conceptual task (predominantly conceptual thinking required) (e.g., Neubrand, 2002). 

These three types form the core of the competency model used to evaluate the OECD 

PISA test in Germany (Neubrand, 2002). It should be noted that there can be both easy 

and challenging tasks in all three task types.  

The theoretical model of the modelling cycle (Blum et al., 2007) forms the basis for 

the differentiated representation of cognitive activities in Dimension C – Elements of 

the modelling cycle. Extra-mathematical modelling addresses translation processes 

between reality and mathematics, i.e., the mathematization of real-life situations and 

the interpretation/validation of mathematical results. This extra-mathematical 

modelling can take place directly by specifying a model (standard modelling), not 

directly and when mathematizing with several steps (multistep modelling) as well as 

through the validation, reflection and/or assessment of mathematical models (reflection 

on a model, development, and validation of complex models). Within mathematics, 

translation processes can also take place (inner-mathematical modelling). For example, 

only one specific object or one modelling step may be necessary to solve the task 

(standard modelling). Further knowledge from other mathematical (sub-)fields may be 

required, or several modelling steps may be carried out (multistep modelling). 

Furthermore, it can be encouraged to design a comprehensive strategy so that general 

statements are made, or solutions are critically reflected upon (reflection on a model, 

validation, and strategy development). The importance of the complexity of the task 

text has been proven to be a difficulty-generating feature of PISA tasks (Cohors-

Fresenborg et al., 2004). When dealing with mathematical texts, it is, therefore, 
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essential to consider the extent to which the linguistic sequence of the task corresponds 

to the solution path in a mathematical model. In the Processing of mathematical texts, 

for example, the primary and subordinate clauses may correspond to the steps of 

mathematical processing and linguistic references may be made (direct text 

comprehension), the order of the sentences may correspond to the steps of 

mathematical processing in a more challenging way or not at all (text comprehension 

with reorganization) or logical functions and sophisticated linguistic techniques may 

be necessary for understanding the text (comprehension of logically complex texts). 

Argumentation plays a role in both intra- and extra-mathematical processes, whereby 

a distinction is made between the mere reproduction of standard argumentation 

(standard reasoning), manageable multistep argumentation (multistep argumentation), 

or complex mathematical argumentation and its comparison and reflection 

(development of complex argumentation, proofs, evaluation of argumentations) 

(Jordan et al., 2006).  

In Dimension D – Search space for solution, the Direction of task solution of the tasks 

and the Number of solution paths required are recorded. An important feature here is 

the extent of the solution space, which is based on two criteria: First, whether a task is 

set according to or contrary to the usual direction of learning or representation of a 

concept or procedure (forward or backward). Secondly, whether a task requires 

different solution paths (none, one, or several solution paths). Tasks that fulfill the last 

aspect play a significant role in cognitive activation in the classroom (Blum & 

Wiegand, 2000).  

RESEARCH QUESTION AND METHODICAL APPROACH 

German textbooks for grades 11 and 12 contain many combinatorial tasks so that 

students can be given sufficient learning opportunities to deal with these in 

mathematics classroom. At the same time, various studies show that students face 

significant challenges when they have to solve combinatorial problems (Annin & Lai, 

2010). Against this background, this article aims to investigate the extent to which the 

cognitive activation potential of the tasks to be solved in the textbooks could be 

responsible for these difficulties. Specifically, the following research question will be 

addressed: 

To what extent do 11th and 12th grade combinatorial textbook tasks prove to be 

cognitively activating? 

A total of five textbooks from two publishers that are among the largest in Germany 

were examined, namely Mathematics 11 Basic Course, Mathematics 11 Basic Course 

and Advanced Course (state-specific) and Mathematics 12 Basic Course and Advanced 

Course (state-specific) as well as the Lambacher Schweizer Gesamtband (nationwide). 

A total of two textbooks were coded by two independent coders. The intercoder 

reliability rate was determined using MAXQDA and amounted to .77 and .84, 

respectively, which is why a predominant consensus in the data analysis can be 
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assumed. These values are considered very good according to conventional standards 

(Döring & Bortz, 2016).  

The tasks in the selected 11th and 12th grade textbooks in Germany were analyzed 

based on dimensions B to D of the system of categories by Neubrand et al. (2013) 

presented above. Based on this, the system of categories was adapted and used as an 

evaluation tool for the textbook analysis:  

Dimension Category Properties 

B – 

Cognitive 

Framework 

Type of 

mathematical 

activity 

1 = technical task, 2 = procedural task,  

3 = conceptual task 

C – 

 Elements 

of the 

Modelling 

cycle 

Extra-

mathematical 

modelling 

0 = not required, 1 = standard modelling, 2 = 

multistep modelling, 3 = reflection on a model, 

development and validation of complex models 

Inner-mathematical 

modelling 

0 = not required, 1 = standard modelling,  

2 = multistep modelling, 3 = reflection on a 

model, validation, strategy development 

Processing of 

mathematical texts 

0 = not required, 1 = direct text comprehension, 

2 = text comprehension with reorganization,  

3 = comprehension of logically complex texts 

Argumentation 

0 = not required, 1 = standard reasoning, 2 = 

multistep argumentation, 3 = development of 

complex argumentation, proofs, evaluation of 

argumentations 

D – Search 

space for 

the solution 

Direction of task 

solution 
1 = forward, 2 = backward (“reverse task”) 

Number of 

solution paths 

required 

0 = none, 1 = one, 2 = several 

Table 1: Overview of selected categories of the system of categories, including the 

properties (adapted from Neubrand et al., 2013) 

Because many tasks consisted of questions with subtasks, subtasks were treated as 

independent units of analysis. Accordingly, subtasks of a task are considered as 

independent tasks if they are numbered and have their own instructions. On the other 

hand, tasks that contain several sub-instructions or work steps are regarded as one task. 

This definition of the units of analysis corresponds to that used in COACTIV (Jordan 

et al., 2006). Only tasks for which there are no solutions are analyzed, therefore 

example or sample tasks are not examined. 
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RESULTS  

When analyzing the five textbooks, it was found that both the textbooks Mathematics 

11 Advanced and Basic Course and Mathematics 12 Advanced and Basic Course list 

the same tasks in the combinatorics chapter. These textbooks are therefore listed 

together below. In total, all 108 combinatorial tasks in the textbooks (43 tasks in 

Mathematics 11, 34 tasks in Mathematics 12, and 33 tasks in the Lambacher 

Schweizer) were analyzed about the categories according to Neubrand et al. (2013).  

The combinatorial tasks in the textbooks are very similar in their classification in the 

system of categories of the COACTIV study. In the following, the coding for the task 

below (Figure 1) will be carried out as an example. 

 

Figure 1: Combinatorial example task from Mathematics 12, translated by the author 

This task is a procedural task because it requires modelling, and the processing phase 

mainly requires procedural thinking. Furthermore, the extra-mathematical and inner-

mathematical translations prove to be standard modelling. The extra-mathematical 

translation can be carried out directly, as the model is close at hand, and the inner-

mathematical translation can solve the task with one modelling step, as only one 

concrete object is considered. In addition, direct text comprehension is assumed here, 

as the existing main and subordinate clauses (in German) are arranged in the order of 

mathematical processing, which is also reflected in the direction of task solution as the 

discussion proceeds along the usual line of thought (forward). Furthermore, on the one 

hand, no argumentation is required, as no types of reasoning are required and, on the 

other hand, no explicit solution paths are required (none). 

The analysis of all tasks shows the following results: 

Category in Dimension B 
Mathematics 

11 

Mathematics 

12 

Lambacher 

Schweizer 

Type of mathematical activity    

1 = technical task 9% 0% 3% 

2 = procedural task 88% 97% 91% 

3 = conceptual task 2% 3% 6% 

Table 2: Analysis of the textbook tasks in Dimension B 

About Dimension B, the category Type of mathematical activity shows that the tasks in 

the textbooks are mainly procedural tasks that require modelling and procedural 

thinking. On the other hand, there are only a few tasks in which conceptual thinking 

(conceptual task) in the processing phase or in which only technical knowledge 

(technical task) is required. 
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Dimension C in the category Extra-mathematical modelling mainly contains tasks that 

require standard modelling (63% in Mathematics 11, 68% in Mathematics 12, and 73% 

in Lambacher Schweizer). This means that the tasks mainly require direct translations 

between the actual situation and the mathematical world, as the model is (directly) 

given. Only about a third of the tasks in the respective books require multistep 

modelling (28% in Mathematics 11, 29% in Mathematics 12, and 24% in the 

Lambacher Schweizer), where mathematization involves several steps or different 

mathematical topics. In the Inner-mathematical modelling category, the tasks almost 

exclusively require standard modelling (86% in Mathematics 11, 97% in Mathematics 

12, and 94% in Lambacher Schweizer), where the approach is implicitly suggested in 

the task and only one modelling step is required to solve it. In the Mathematics 11 

textbook, no inner-mathematical modelling is required in 9% of the tasks; these tasks 

prove to be technical tasks in which only technical knowledge is required without any 

contextual connection. In the category Processing of mathematical texts, around half 

of the tasks (58% in Mathematics 11, 44% in Mathematics 12, and 52% in Lambacher 

Schweizer) are characterized by few or hardly any text. In these tasks, the order of the 

sentences corresponds to the steps of the mathematical processing, and the task texts 

consist mainly of simple main sentences without subordinate clauses. The other half of 

the tasks (42% in Mathematics 11, 56% in Mathematics 12, and 48% in the Lambacher 

Schweizer) are characterized by direct text comprehension, in which the order of the 

sentences does not directly correspond to the steps of the mathematical processing and 

the task consists of several main and subordinate clauses, so that linguistic references 

must also be made. In the Argumentation category, almost all tasks analyzed can be 

characterized by the fact that no argumentation is necessary (98% in Mathematics 11, 

97% in Mathematics 12, and 97% in Lambacher Schweizer). There is only one task 

per textbook in which standard reasoning is required. In this low-level reasoning, 

standard reasoning is reproduced, e.g., the reasoning must be developed in one step or 

purely mathematically. 

Category in Dimension D 
Mathematics 

11 

Mathematics 

12 

Lambacher 

Schweizer 

Direction of task solution    

1 = forward 100% 100% 100% 

2 = backward (“reverse task”) 0% 0% 0% 

Number of solution paths required    

0 = none 100% 100% 100% 

1 = one 0% 0% 0% 

2 = several 0% 0% 0% 

Table 2: Analysis of the textbook tasks in dimension C 



Thomas & Pöhler 

 

PME 47 – 2024 4 - 159 

In Dimension D, in the categories Direction of task solution and Number of solution 

paths required, the tasks are predominantly designed in such a way that, on the one 

hand, calculations should conform to the common direction of mathematical concept. 

On the other hand, no concrete or alternative solution path is required for any task 

(100% in all textbooks). For the former, this means that the discussion of the tasks 

follows the usual direction of thought in mathematics and that they cannot be described 

as reversal tasks. The second means that the textbooks neither specify a concrete path 

in the tasks nor require several possible solutions. 

DISCUSSION AND CONCLUSION 

Mathematical content that is taught – such as combinatorics – is often experienced 

through the working on tasks, and the students' mathematical activity is usually 

concentrated on dealing with these tasks. They are a vehicle for the students' cognitive 

activities (Jordan, 2006). In the textbook chapters on combinatorics, students can also 

be confronted with various tasks that provide the basis of potential learning 

opportunities. The analysis of the selected popular textbooks for the upper secondary 

level in Germany has shown that all five textbooks offer students very similar tasks.  

Overall, it is also clear that the tasks in the chosen textbooks are exceptionally 

homogeneous and not very varied. There are no significant differences between the 

state-specific and the nationwide textbooks. Although only a selection of textbooks 

was examined, the analyses provide initial indications that the tasks contained in the 

textbooks could be more cognitively activating. Since the cognitive activation of 

students is seen as a decisive factor for their learning gains, this monotony of tasks 

needs to be revised. Since most teachers use the textbook as a collection of tasks and 

observation studies show that the lessons need to be cognitively activating (OECD, 

2020), this study can provide initial indications that the lessons are not as cognitively 

activating, even if only selected textbooks were analyzed. Teachers should be aware of 

this problem and provide learners with further learning opportunities so that they can 

handle the challenges. The balanced complexity of the individual dimensions (e.g., 

through a quantitatively balanced range of tasks) is essential to activate students 

cognitively.  
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LANGUAGE AS A TRANSPARENT RESOURCE FOR 

DEVELOPING MATHEMATICAL UNDERSTANDING 

Pauline Tiong 

Simon Fraser University 

While the notion of language as a resource is not new and of increasing interest in 

mathematics education research, not many researchers focus on understanding the 

notion from the perspectives of teachers. Motivated by an interest to understand the 

existing state of how teachers are noticing and using language (particularly the 

mathematics register) as a resource in the mathematics classroom, this paper reports 

the findings from a task-based interview conducted with one teacher. By accounting 

for the teacher’s responses to the interview through the lens of language-related 

dilemmas and orientations, I was able to glean insights into how she notices and uses 

language (particularly the mathematics register) as a transparent resource primarily 

for developing understanding in the teaching and learning of mathematics. 

LANGUAGE AS A RESOURCE IN THE MATHEMATICS CLASSROOM 

Since the 1990s, the notion of language as a resource for the teaching and learning of 

mathematics has been crucial in shifting the deficit-oriented perspective to language in 

mathematics education research, particularly in the context of multilingual classrooms 

(e.g., Adler, 2002; Moschkovich, 2002). Most researchers have also moved beyond 

asking the question of whether language can be a resource in mathematics education. 

Instead, the question they are asking in recent research is how better to help teachers 

use language as a resource by focusing on the development of teachers’ language-

responsiveness in mathematics teaching and learning (e.g., Adler, 2021; Prediger et al., 

2019). Considering Vygotsky’s (1934/1986) works which have elaborated at length the 

intricate connections between thought (mathematical thinking) and (mathematical) 

language, it is indeed necessary for teachers to be cognizant of how to use language 

better as a resource in the mathematics classroom.  

However, there seems to be little focus in understanding the existing state of how 

teachers are noticing and using language as a resource in their classrooms. Moreover, 

language in most research has become more encompassing and may not only attend to 

the mathematics register (Halliday, 1975; Pimm, 1987), which more accurately 

represents what is commonly referred to as mathematical language. Notably, the 

mathematics register is deemed to serve the function of thinking about (and 

communicating in spoken or written forms) mathematical ideas and meanings (Pimm, 

1987). Thus, the mathematics register can be considered a tool for thinking and 

communicating mathematics (Vygotsky, 1934/1986), and viewed as an important 

resource for mathematics education. This led to my attempt in wanting to study how 

teachers are noticing and using language (particularly the mathematics register) as a 
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resource for mathematics teaching and learning. Specifically, I seek to explore this 

phenomenon through the lens of teachers’ language-related dilemmas and orientations. 

TEACHERS’ LANGUAGE-RELATED DILEMMAS AND ORIENTATIONS 

Language-related teaching issues or dilemmas were first proposed by Jill Adler (2002) 

in her work, primarily in the contexts of multilingual classrooms. The notion of 

teaching dilemmas, first proposed by Lampert (1985), refers to situations of tensions 

which teachers may face in their teaching practice when there seems to be “no one 

‘right’ solution” (Adler, 2002, p. 49) that can resolve the tensions, from the perspective 

of teachers. Building on this, Adler identified three dilemmas teachers face in relation 

to the use of language in (multilingual) mathematics classrooms, namely: (a) the 

dilemma of code-switching where teachers need to decide whether to change the 

language of instruction to develop students’ mathematical understanding when 

decisions made to change the language of instruction may compromise the learning of 

the mathematics register; (b) the dilemma of mediation where teachers need to decide 

whether to intervene to validate students’ meanings during group discussions or 

presentations when decisions made to intervene may compromise students’ 

opportunities to develop mathematical communicative competence; (c) the dilemma of 

transparency where teachers need to decide whether to teach the mathematics register 

when decisions made to teach the language explicitly (or making language a visible 

resource) may compromise the development of student mathematical understanding 

(where language works as an invisible resource). While these dilemmas were surfaced 

through Adler’s work in multilingual classrooms, she suggested that they can be 

similarly faced by any teacher who uses the mathematics register as a resource for 

teaching and learning. Correspondingly, Zazkis (2000) has extended the dilemma of 

code-switching to include situations when teachers may need to decide between the 

use of the mathematics register and everyday language, rather than across different 

languages in a relatively monolingual context. 

By contrast, Susanne Prediger et al. (2019) discussed how teachers’ orientations can 

often influence their practices. In other words, a teacher’s language-related orientations 

are likely to lead to a different focus or treatment, in terms of pedagogical approaches 

and actions, of language as a resource for mathematics teaching. Consequently, they 

identified five language-related orientations as being crucial in influencing teachers’ 

practices in the mathematics classroom. These include the extent which mathematics 

teachers assume responsibility for language learning as a goal; strive for pushing 

rather than reducing language in relation to language demands (such as noticing, 

supporting and developing language in the context of mathematics teaching); focus on 

the discourse level rather than on word level only in learning the mathematical 

language; have integrative perspectives instead of additives only to the learning of 

language in teaching mathematics; focus on conceptual understanding before 

procedures which necessitates the use of language (i.e., the mathematics register) as a 

resource for mathematics teaching.  
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While both theoretical constructs – teachers’ language-related dilemmas and language-

related orientations – have been used to study teachers’ use of language in mathematics 

classrooms, they each focus on a very specific aspect that inform how teachers notice 

and use of language as a resource in mathematics teaching and learning. As such, I see 

value in how both constructs can be used in a complementary manner to account for 

what and how teachers notice and use language (particularly the mathematics register) 

as a resource in the teaching and learning of mathematics.  

A TASK-BASED INTERVIEW WITH KAREN 

Data for this paper was drawn from my dissertation study, which focused on addressing 

the phenomenon of interest using task-based interviews. A total of eleven experienced 

mathematics teachers were interviewed and their teaching contexts ranged from 

elementary school level to tertiary level. Each task-based interview included a series 

of reflection tasks (Zazkis & Hazzan, 1998) designed to illuminate specific situations 

for teachers to reflect on their own practice and experiences (Mason, 2002), in terms 

of how language would be used in their mathematics classrooms. The tasks were 

presented in the form of dialogues which simulated situations with language-related 

dilemmas in relation to the use of the mathematics register (Adler, 2002). In particular, 

the teachers were asked to reflect upon what they noticed, in terms of the language 

students were using, and how they would respond if they were the teacher in the 

situations illustrated. To analyse the interview data, I adopted Mason’s approach of 

account-of and accounting-for, as the method to understand how the teachers would 

notice and use language in their mathematics classrooms. Based on the interview 

responses, I first created an account-of what each teacher noticed in terms of language 

use (particularly the mathematics register) and their corresponding actions/ reactions 

in relation to the given tasks. Subsequently, the accounts-of were analysed with the 

intent of accounting-for how and why they would use language in their classrooms 

through understanding their experiences with language-related dilemmas (Adler, 2002) 

and their language-related orientations (Prediger et al., 2019) respectively.  

In my dissertation study, I observed two main categories in which language has 

typically been noticed and used by teachers in the mathematics classrooms, namely as 

a resource for developing mathematical understanding, and as a resource for 

mathematics talk. However, due to the size of this paper, I can only share a snapshot 

of the findings to the first category through the case of Karen, a university instructor 

who primarily considers language as a resource to develop mathematical 

understanding. A snippet from the account-of Karen’s interview responses to one 

particular task is also presented to illustrate some of the findings. 

Account-of Karen’s responses to one task (graphs of rational functions)  

The task depicts an (fictional) account of two secondary students, Ethel and Theo, 

discussing their observations about the dotted lines (asymptotes) in the graphs using 

(more) everyday language. As they were trying to recall the term asymptote, the 

teacher, Ms. Wilson, intervened and highlighted a series of register terms (in bold).  
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Table 1: Diagram of graphs given in the task. 

Ethel:  Look at these graphs, they all have these lines [pointing to the dotted lines] 

which the graphs go very near to. They can be straight up or lying down?  

Theo:  I see them too. I think Ms. Wilson used a special term. Eek, but I can’t 

remember. But, are these the same thing? There’s like more of them, there’s 

a slanted one, and they can cut each other. Ms. Wilson, we have a question. 

These lines that the graphs go closer and closer to but can never touch or 

meet the lines. We know there’s a name for it but ....  

Ms Wilson:  Ah, you are talking about asymptotes, A-SYMP-TOTES. Yes, these lines 

are all asymptotes. Both of you made the good observation that the graphs 

are A-PPROA-CHING these lines, asymptotes, going closer and closer 

without touching, or rather, IN-TER-SEC-TING them. They can be VER-

TI-CAL, what you mean by straight up, HO-RI-ZON-TAL, what you 

mean by lying down and also OB-LIQUE, for those slanted lines. 

In the interview, Karen first noticed how Ethel and Theo were “noticing the difference 

between the dotted lines and the other lines” and listing the various properties of the 

dotted lines (asymptotes), based on their reading of the graphs. To her, the students 

seemed to know “what’s happening, they just don’t have the word for it, they’re 

actually reaching for the word” or the “classification” for the dotted lines in the task. 

She immediately shared that, unlike the other tasks, it would be a “more clear-cut” 

situation where “terms in math show up”. Hence, she would step in and say, “that’s an 

asymptote”, as it would be “helpful to talk about it”. Other than introducing or 

reminding students of the term asymptote they seemed to be looking for, she added that 

she would ask students to define asymptotes and clarify if the properties they had listed 

are true for all asymptotes. Upon reading what Ms. Wilson said in the task, Karen first 

expressed hesitance in doing what Ms. Wilson did, which was to correct “things they 

(students) have said that aren’t wrong, just maybe aren’t as precise as they could be”. 

Karen added that she might even use terms such as “these guys” to refer to the dotted 

lines prior to introducing the term asymptotes to “make math more approachable to 

students”. Depending on her rapport with the students, she would probably introduce 

mathematics terms gradually (instead of at once) while code-switching with what the 

students said and emphasising that what they said were not wrong. She added that “tone 

matters quite a bit” when introducing new or proper terms to students. Other than not 

correcting students at once, she would instead use gesturing or questioning to better 

understand what students were thinking first, before introducing the terms. 
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She further elaborated on her reluctance to “gate keep” the use of language or be 

“privileging certain terms over another without any obvious benefit”. She explained, 

“words are right because we’ve decided they're right, as mathematicians”. If what the 

students said meant the same idea, she would lean towards a more “casual” way of 

communicating in her classroom, while introducing formal language when necessary. 

For example, she would introduce terms either when students asked for them (e.g., 

asymptote) or when the terms help to define or make ideas clearer or simpler (e.g., 

approaching, vertical, horizontal) for presentations or written work. To her, “that’s how 

terms in math show up” and they are not “defined for fun”. As Karen mentioned the 

use of more precise use of language during students’ presentation and written work, as 

compared to students’ discussions, I asked if that was her preference to how students 

use language in her classroom. She commented that her preference would depend on 

“how formal (oral and written) it is and who your audience is”, elaborated that she 

would often tell students that there are three “different levels of convincing people”, 

which include themselves, a friend and an enemy and explained that language use 

would need to be increasingly precise from everyday or colloquial to more formal or 

mathematical when convincing oneself to a friend to an enemy. She gave an example 

on how it would be “too much” to “throw in nine different terms into a paragraph that 

is meant for someone who’s not in the mathematical community”. 

When asked if there were instances when she had taught formal mathematical terms 

explicitly (like what Ms. Wilson did), Karen shared what she did when teaching 

differential equations before. At the start of the class, she told the students that she had 

to teach them a few terms, including general solution, particular solution, and 

arbitrary constant. Her reason (to her students too) was that these terms would be 

frequently used in subsequent lessons, and she could not be “saying the solution that 

comes up when you’re solving a differential equation, and it has a constant in it” 

whenever she referred to the general solution. She explained that she would always 

“preface” the teaching of the terms or words in her class as “words sometimes exist 

without reasons” in the mathematics classroom and students might not know why they 

needed to know the words. She further mentioned that if she had to be “pedantic about 

it […] there’s a mathematical community where students should know the words that 

other people are using”. She added that it is her responsibility to help students “feel 

comfortable in the mathematical community”, rather than “feel alienated by words they 

cannot use” or not know when they are learning mathematics. 

Accounting-for Karen’s case through language-related dilemmas  

From the account-of Karen’s responses to the various tasks, she did not seem to face 

any obvious tension though she noticed the respective language-related dilemmas 

(Adler, 2002) in the tasks. Except for one instance (near the end of the interview) when 

she began to question her stand in deciding not to mediate students’ use of language 

when they were not wrong, she was generally clear in her considerations with regard 

to when to code-switch, mediate use of student language or teach language explicitly 

(particularly the mathematics register) in relation to the tasks. 
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In relation to the dilemma of code-switching, it is evident that she would use both the 

mathematics register and everyday language, and would not hesitate to code-switch 

between registers whenever necessary, in the teaching and learning of mathematics. 

Specific to how language should be used, she often stressed the importance of meeting 

students at their comfort level and readiness in using language to learn mathematics. 

For instance, she might even use “these guys” before introducing the term asymptote. 

She commented that introducing or new or difficult concepts using everyday or 

informal language first would help to “make math more approachable to students”.  

In relation to the dilemma of mediation, Karen mostly demonstrated clarity in deciding 

when and how much she would mediate students’ use of language in relation to the 

tasks. Broadly, her key considerations would be students’ level of understanding and 

their need for language in communicating mathematical ideas. She would typically 

mediate the use of language in situations which she deemed as necessary to clarify 

students’ confusion or disagreements and deepen their understanding of the concepts 

to be learnt. She would also be more inclined to introduce or use the mathematics 

register if students had reached a certain level of understanding and required certain 

language to progress further in their discussion. For example, she would certainly 

provide students with the term asymptotes, because the students had showed awareness 

of the concept and had requested for the term in the task. She would then make use of 

the opportunity to (re-)introduce the term and re-affirm or further their understanding 

of asymptotes. But unlike Ms. Wilson, Karen would be hesitant to “correct” the other 

terms when the students were not wrong in their thinking and merely imprecise in their 

language. She would only introduce selective terms, such as vertical and horizontal, 

but not oblique. She explained that vertical and horizontal are simpler words, 

commonly used in everyday contexts, while there did not seem to be more benefits in 

using oblique instead of slanted. She would also introduce and use approaching which 

“means that things are getting closer together in a really simple way”. However, she 

emphasised that, “there’s nothing wrong with saying getting closer and closer without 

touching” and, hence, she would not insist students to use approaching, as it would be 

“privileging certain terms over another without any obvious benefit”. Thus, she would 

not be overly concerned if students did not use the proper language in their verbal 

discussions if they could clearly describe the mathematical concepts in their own words. 

In relation to the dilemma of transparency, Karen was similarly decisive and articulate 

in responding to when and why she would teach the mathematics register explicitly. 

Again, if a decision to teach language explicitly were to value-add (and not 

compromise) the development of mathematical understanding and the ease of 

mathematical communication, she would generally be more inclined to do so. For 

example, she did not agree with Ms. Wilson’s approach of teaching language without 

involving students in the sense-making process of the terms. She opined that such an 

approach would be overwhelming for students and not meaningful pedagogically in 

helping students develop mathematical understanding. Nonetheless, there had been 

instances when she would “teach the mathematics register more” explicitly (make 
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language visible) first. For example, when teaching differential equations, Karen 

shared how she taught the necessary terms, such as particular solution and general 

solution, to students right from the start and made it a point to explain why she needed 

to do so. In particular, (re-)explaining what the term general solution meant each time 

she had to refer to it would probably not be effective in the teaching and learning 

process. However, she added that her primary intent would be placed on building 

students’ awareness of the register and help them be familiar and comfortable with the 

language of the mathematics community.  

Accounting-for Karen’s case through language-related orientations 

On the whole, Karen’s actions in managing the different language-related dilemmas 

collectively substantiated a positive inclination towards the five language-related 

orientations (Prediger et al., 2019). Firstly, language is likely a learning goal in 

Karen’s classroom, based on how she would assume the responsibility to help students 

develop both understanding of mathematical concepts and the corresponding register 

required to talk about the concepts. This was evident in her example of the differential 

equations class. Moreover, her preference for students to be using language more 

precisely in formal settings and with a larger audience suggests that her students would 

likely be learning language alongside learning mathematics, in preparation for those 

situations. Thus, she would unlikely reduce language in her mathematics classroom. 

However, she emphasised that she would not blindly push for the use of certain 

language if there were to be no need for it, as she would not want to “gate keep” the 

way students can use language to access and make sense of mathematics (e.g., the use 

of slanted). Instead, she would balance the push for language such that language 

functions as a resource with which she could utilise to create an environment where 

students can be comfortable and willing to use language to learn mathematics.  

Additionally, based on how she attended to the meaning of the student discourse, rather 

than the specific words students used, Karen generally orientated towards the use of 

language at the discourse level rather than word level. For instance, when Ethel and 

Theo did not use the word asymptote to describe their observations, she was not overly 

concerned about their lack of the word. She was instead actively looking out for 

evidence showing how they were able to describe the characteristics of asymptotes in 

their own words. In particular, she commented, “it sounds to me like they know what's 

happening, they just don't have the word for it”. It was, hence, a “clear-cut” situation 

for the term asymptote to show up. In her perspective, the learning and use of language 

has to be motivated by and integrated within the learning of mathematics, rather than 

be an additive component. As she would then involve the students in discussion to 

clarify their understanding of asymptote, in terms of the definition and the 

characteristics, it further suggests that Karen would likely place a strong focus on 

developing conceptual understanding in her mathematics classroom. In another task, 

which involved a subtraction of two integers, it was also noted that she did not 

immediately focus on correcting the procedures but considered how to clarify students’ 

understanding of the procedures in a more conceptual manner. 
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A SMALL DISCUSSION  

Through accounting-for how Karen would notice and use language through the lens of 

language-related dilemmas and orientations, it is evident that her primary concern with 

language in the mathematics classroom resides with students’ use of language to 

acquire and develop understanding of mathematical concepts. Specifically, language 

functions as an important resource for mathematical thinking and learning, where both 

the mathematics register and students’ everyday register play important roles. As such, 

she would strive to keep a good balance between the visibility and invisibility of 

language as a resource for mathematics teaching and learning. Using Adler’s (2002) 

notion of a transparent resource, language is likely a transparent resource used by 

both Karen and her students to develop mathematical understanding in her classroom. 

Perhaps, as a final note for future research, it was interesting to observe how language 

tends to take a more secondary role as a resource, rather than a primary one in the 

mathematics classroom, to most (if not all) the teachers in my study. Notably, even 

Karen, who would deem language as an important resource for developing 

mathematical understanding, commented:  

it is my job to get them to be precise, but my first job is to get them to do math. And then 

my second job is to get them to be precise, so that they can communicate to an audience.   
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We report on a new assessment to help address the problem: How may a feasibly large-

scale written-test, informed by a 6-scheme constructivist model, measure students’ 

fractional reasoning in different countries? We developed and validated the 35-item 

measure as a proxy of labor-intensive assessment forms of this model. We used mixed 

methods to develop it in English, translate it to Chinese, and analyze its properties to 

verify that (a) it is reliable ( >0.95) and valid (unidimensional) and (b) each scheme’s 

items constitute a stand-alone, reliable ( >0.7) strand. We present initial findings of 

student responses (USA, n=61; China, n=217) that indicate similarities in their 

reasoning and discuss implications of our design, validation processes, and findings 

about students’ fractional reasoning to theory, future research, and practice. 

We address the problem: How may a large-scale written-test, informed by a 6-scheme 

constructivist model, measure students’ fractional reasoning in different countries? 

Such an assessment tool is important in support of conceptually teaching and learning 

fractions – one of the most challenging areas in elementary mathematics (Lamon, 

2007). Our measure builds on studies that stressed the hindering role that a part-of-

whole concept of fractions may play in such learning in students (Tzur, 2019). Instead, 

we draw on an alternative of fostering reasoning about fractions as multiplicative 

relations, or measures (Simon et al., 2018). Specifically, we follow Tzur & Hunt’s 

(2022) description of an 8-scheme progression of such reasoning (see Framework), 

itself a summary of a constructivist research program in this area (Steffe & Olive, 2010). 

Commonly, inferring into students’ reasoning involved qualitative methods, but this is 

labor intensive, with small samples. Recently, Wilkins et al. (2013) developed written 

forms to assess students’ fractional reasoning. However, it requires an expert judgment 

of each response is indicative of the scheme being assessed. Training such experts and 

their work of scoring are, again, labor intensive. Thus, drawing on Kosko’s (2019) item 

design for multiplicative reasoning, we examined the feasibility of measuring students’ 

reasoning, at a large scale, based on their written responses as given. 

THEORETICAL AND CONCEPTUAL FRAMEWORK 

We draw on a constructivist stance (Piaget, 1985) and its core notion of assimilation 

into one’s available schemes (von Glasersfeld, 1995). Our design of items followed 

Tzur and Hunt’s (2022) description of an 8-scheme progression comprised of two, 4-

scheme clusters, one based on iterating and the other on recursively partitioning 

fractional units. In our measure we focused only on the first 6 schemes (FR-6), and on 
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a multiplicative reasoning (MR) with whole numbers. This choice reflects our findings 

with USA students who were yet to construct the two most advanced schemes. For 

compatibility, we kept this choice also in the Chinese version. 

In the iteration-based cluster, first in the progression is an equipartitioning (EP) 

scheme, involving reasoning about unit fractions as a multiplicative relation (e.g., 1/3 

is a unit that the whole is 3 times as much of it) and on the inverse relations among 

such units (e.g., 1/3>1/4 because 3<4). Second is a partitive fraction (PF) scheme, 

involving operating on composite fractions (e.g., 3/7+2/7=5/7, or 3/7*2=6/7). Third is 

an iterative fraction (IF) scheme, involving operating on any composite fraction (e.g., 

considering the effect of iterating 1/3 seven times as 7/3 of the “whole” and/or of 

iterating a unit of 3/3 twice + 1/3). Fourth is a reversible fraction (Rvrs) scheme, 

involving undoing the process that produced a composite fraction (e.g., partitioning 4/7 

to produce 1/7 of the “whole,” which is then repeated 7 times to reproduce the whole). 

In the recursive partitioning cluster, fifth within the measure, is a recursive partitioning 

(RP) scheme, involving finding a unit fraction of a unit fraction of the “whole” (e.g., 

1/3 of 1/5 is 1/15, because the whole is 15 times as much of it). Sixth is a fraction 

composition (FC) scheme, involving multiplicative coordination of unit and composite 

fractions (e.g., 1/3 of 2/5 of the whole is anticipated to produce two units, 1/15 each).  

METHODS 

This study was part of two larger projects (see acknowledgments). Here, we present 

the FR-6 measure (35 items) and report on the development and validation processes 

conducted with human-subject permission from the first author’s institution. 

A Measure of 6 Schemes in Fractional Reasoning (FR-6) 

The first, full version of the FR-6 measure consisted of four items per fractional 

scheme, with four additional items to measure a related aspect of the EP scheme 

(inverse relations) and the RP scheme (equivalent fractions). A simpler version 

consisted of items to assess the first three schemes (FR-3). As our model stresses 

reasoning multiplicatively about fractional units, we also included three items to assess 

students’ MR. All items were designed in line with Kosko’s (2019) items for assessing 

MR. He used simple diagrams of relationships among units to minimize text to be read 

and avoid some of the issues associated with interpreting student responses to word 

problems. Figure 1 shows only one item for each scheme (two for Rvrs, initial and 

revised). Items for each scheme’s subscale differ only in their numerical values. Based 

on our experts’ feedback, we ordered items randomly, with one exception: to motivate 

students we chose the first three items to be the easiest (MR, EP, and PF). 
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Figure 1: Examples of each scheme’s items ([names] are not given in the measure). 

Validity and Reliability 

We used a 6-phase process to develop and validate the FR-6 measure in English. First, 

using tasks from prior research, the first author designed one item for each scheme. 

Second, based on 3 experts’ feedback, he created all items for the MR and FR schemes, 

along with practice problems included in an “Assessor’s Classroom Guide” (ACG). 

Third, he sent this full draft to an 8-expert panel, who responded with: (a) keep as is, 

(b) keep with reasoned changes, or (c) omit. The experts’ feedback included no “omits” 

but many suggested changes to accentuate the way each item enables inferring the 

student’s available scheme. Fourth, he used their feedback to create a full, first edition 

version. He used it (a) in a clinical interview with a participant of our teaching 

experiment and (b) to obtain further feedback from two experts in multi-language 

education. Fifth, he shared the ACG with teachers who administered the FR-6 measure. 

Sixth, he used Rasch modeling (Bond & Fox, 2015) to cement construct validity.  

We then utilized a back-translation strategy to create a comparable FR-6 measure in 

Chinese. The second author (a Chinese native speaker) first translated the English 

version into Chinese. Next, the fourth author, who never saw the original version (a 

Chinese native speaker with BA and MA in the USA), translated the Chinese version 

back into English. The first author then compared the original and back-translated 

English versions, highlighting a few incompatible phrases. Last, the third author (a 

Chinese native speaker with PhD in the USA) checked highlighted phrases in both 

English versions to reconcile differences and finalize the Chinese version. This back-

translation process guarantees the English and Chinese versions are equivalent. 

Data Collection 

We conducted our study with 4th-6th graders (n=217) in a high SES, urban, primary 

school in northeast China and 8th graders (n=61) in a low SES, urban, middle school in 
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the southwest of the USA. Teaching fractions in both countries typically begins at 

grade 4. Yet, our work with those USA students indicated that the needed variance may 

be obtained from middle school students and, hence this difference in grade levels. 

Graduate research assistants (GRA), along with classroom teachers, used the ACG to 

administer the measure to all students present in a regular mathematics class. 

Data Organization 

To ensure reliable data organization, in each country we trained the GRA to work in 

pairs while entering the data (without identifiable information) into an Excel 

spreadsheet that automatically coded those entries. For IF responses we used “0” for 

incorrect, “1” for correct on mixed numbers only, “2” for correct on improper fractions 

only, and “3” for correct on both. For the other six schemes, we used “0” for incorrect 

and “1” for correct responses. First, we trained GRA while entering ~20% of student 

responses. When the GRA gained competence, they entered the remaining data. We 

then used those organized data as a basis for Rasch modeling, also creating an SPSS 

file that included both raw and Rasch person-ability scores to run all other analyses. 

Data Analysis 

We first used Winsteps 5.6.2 to conduct Rasch modeling of the FR-6, FR-3, and each 

scheme separately. This allows converting ordinal scales (raw scores) to interval scales 

that (a) warrant using parametric statistics and (b) assist in determining the properties 

of a measure (Bond & Fox, 2015). Using the Rasch modeling, we determined reliability 

using its Cronbach’s 𝜶 values and other properties (e.g., dimensionality). We also used 

(a) principal component analysis (PCA) to find if each scheme can be considered as a 

stand-alone strand (factor), (b) PROCESS macro for SPSS (Hayes, 2021) to run 

mediation (linear regression) analysis of the effect of early schemes on upper-level 

ones, and t-tests (SPSS) to find if subscale differences are statistically significant. 

RESULTS 

Reliability is a necessary but insufficient condition for construct validity (Nunnally & 

Bernstein, 1994). We thus begin with reliability analysis, then use Rasch modeling and 

PCA to establish unidimensionality of the measure and of each scheme. Finally, we 

provide analyses of student responses that seem common to both countries. 

FR-6 Measure Consistency Analysis 

Using Cronbach’s  from Rasch modeling, we found that in both countries the entire 

FR-6 measure (35 items), the FR-3 measure (16 items), and each scheme (4 items) 

separately have high alpha values (0.77-0.96), except for MR (see Table 1). 
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 FR-6 FR-3 MR EP PF IF Rvrs RP FC 

China .96 .91 .53 .81 .81 .81 .85 .90 .90 

USA .95 .88 .65 .77 .90 .91 .89 .93 .86 

Table 1: Cronbach’s  of the FR-6 and FR-3 measures and of each scheme. 

Analysis of each scheme’s Cronbach’s  if an item is eliminated indicated this is 

possible for all schemes except for Rvrs. It also showed the need to add an item to the 

MR scale. We revised the measures accordingly and, so far, administered it to another 

group of 7th graders (n= 53) in the USA. Table 2 shows the revised -values (# of items 

in parentheses; for the 13 items of the FR-3 subscale, =.83). 

 FR-6 (29) MR (4) EP (3) PF (3) IF (3) Rvrs (4) RP (3) FC (3) 

USA .91 .71 .85 .86 .78 .69 .86 .76 

Table 2: Cronbach’s  of the FR-6 measure and each scheme (post-revision, USA). 

Rasch Modeling 

First, we found that variances explained by the measure in China and the USA, 

respectively, are 45.4% and 43.0% of the total variance – nearly the same as the model-

expected variances of 45.1% and 42.9%. Each of the three and five contrasts in China 

and the USA, respectively, which show unexplained variances, was found to include 

scheme subscales. Second, all items show mean square (MNSQ) Infit and Outfit values 

between 0.5-1.5, which are considered productive for measurement, and all Point-

Measure correlations are positive and large (USA: ≥ +0.57; China: ≥ +0.46).  

Principal Component Analysis (PCA) 

Using PCA in each country (SPSS), with KMO and Bartlett’s tests (> .9, p < .001) and 

high communality levels (> .6), indicated the likelihood of finding such sub-

dimensions. Unrotated component matrices and scree plots showed three components 

with eigenvalue > 1.0 in China and five in the USA. For each scheme separately, PCA 

indicated that it includes only one component with eigenvalue > 1.0, and all item 

loadings on each component were high (> .7). Along with the Rasch modeling, these 

findings led us to conclude that the FR-6 is a unidimensional, multi-strand measure – 

with each scheme being a stand-alone, unidimensional strand (subscale). 

Similar Patterns in Student Responses 

Using Rasch difficulty levels, we noticed a pattern common to Chinese and USA 

participating students (Figure 2). It corroborates scheme theoretical ordering within the 

iteration-based cluster – EP has the lowest difficulty-level (33.2, 35.9), then PF (45.4, 

48.2), and then IF (69.2, 55.7), or within the recursive partitioning cluster - RP (47.9, 

57.5) is lower than FC (59.1, 64.4). Independent samples t-tests between each pair of 

those schemes showed they are all statistically significant. 
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Figure 2: Rasch difficulty-level of each scheme. 

However, it does not corroborate the conjecture that Rvrs is more difficult than IF, with 

the issue seemingly being Rvrs item design. Our initial (first edition) design of items 

for this scheme likely allowed students who had the EP or PF schemes to correctly 

respond to each Rvrs item. We thus redesigned the Rvrs items. Early findings from 

using the revised FR-6 (USA) indicated that it improved the construct validity of the 

Rvrs subscale, but it is still easier than IF (see Discussion). 

Concept-Path Regression Analysis 

To further corroborate the theoretical model, we conducted linear regression of the 

extent to which lower-level schemes predict more advanced ones. Figure 3 presents 

this concept-path “map,” with standardized  coefficients entailing the slope in the 

corresponding linear equation (we show a path in China, as it lends further support to 

the Western-born model). For example, -values of EP as a predictor of PF (0.7), IF 

(0.4), Rvrs (0.61), RP (0.72), and FC (0.56) are all statistically significant at p<.001. 

 

Figure 3: Concept-path of linear regression -values (*<.05, **<.01, ***<.001). 

DISCUSSION 

Our study, in two different countries (China, USA), showed that this measure can serve 

as a feasible, valid and reliable, large-scale written measure of the first six schemes of 

fractional reasoning. It supported this claim for the entire FR-6 measure, for the first 

three schemes (FR-3), and for each scheme as a stand-alone strand. Assessors can thus 

use these eight scales as proxies for interviewing and/or using measures of open-ended 
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items that require labor intensive scoring and training. Below, we discuss implications 

of our findings for theory building and future research, and for practice. 

Implications for Theory Building and Future Research 

Our findings (Figures 2 and 3) seem to corroborate the 6-scheme (out of 8 in two 

clusters) progression in fractional reasoning (Tzur & Hunt, 2022). In the measure, the 

first cluster includes the Equipartitioning (EP), partitive fraction (PF), iterative fraction 

(IF), and Reversible (Rvrs) schemes; the second includes the recursive partitioning 

(RP) and fraction composition (FC) schemes.  

As for IF being more difficult than Rvrs, two conjectures can inform future studies. 

First, an issue could be the Rvrs item design. The ordering of IF and Rvrs has been 

identified through teaching experiments in which tasks for the Rvrs were much more 

challenging than tasks we used in the measures. In those experiments, a student would 

be given just a linear figure (no marks), told it is a fraction of the “whole” (e.g., 4/7), 

and asked to use it to produce the whole. In a written form, such a task entails the 

student has to produce a drawing of the “whole,” which requires a person to score 

student responses – which contradicts a key goal of our measure development. Our 

revised tasks focused on recognizing the unit fraction that produced the given fraction 

(e.g., one of 4 parts is 1/7 of the whole). These tasks miss the second part of the scheme 

– producing the whole by iterating the 1/7. Moreover, they provide marks that allow a 

student to use EP or PF in responding to the item. Second, at least for some students 

with a strong PF scheme, solving Rvrs tasks may be conceptually more accessible than 

to reason with the IF. 

Implications for Practice 

The original, and the revised (shortened) versions of the FR-6 and FR-3 measures, have 

been administered and scored by teachers in our projects, following a classroom slide-

show guide (the ACG) and a spreadsheet into which they entered student responses “as 

is.” The spreadsheet automatically presents student outcomes at an individual and 

classroom levels. For practice, our study thus implies that teachers can use these 

measures, as well as each scheme’s subscale, not only as a summative but also as a 

formative form of assessment. Specifically, once students are assessed on one of these 

measures, a teacher can (a) identify the scheme they seem to have, (b) determine the 

scheme to foster next, and (c) use only the subscale of the next scheme to assess each 

student’s construction of it. Of course, until further research clarifies the above 

theoretical issue, assessing the Rvrs scheme may require interviewing students who 

could solve the tasks but are yet to construct this scheme. 
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GRUNDVORSTELLUNGEN IN UNIVERSITY MATHEMATICS –

THE DEFINITION OF THE LIMIT OF A SEQUENCES 

Karyna Umgelter and Sebastian Geisler 

University of Potsdam 

In this paper, we analyse the presentation of the definition of the limit of a sequence 

using the theory of Grundvorstellungen. Grundvorstellungen are mental images that 

lie behind mathematical concepts and support the development of valid concept 

images. The sample consist of six definitions presented by six different lecturers at 

German universities. The results show that lecturers usually address at least one 

Grundvorstellung when introducing the definition of the limit of a sequence. However, 

it is questionable, if this is enough to form a coherent concept image of the limit of a 

sequence. Finally, we give implications for further research. 

INTRODUCTION 

It has long been a known fact that many students struggle with studying mathematics 

and, as a result, often drop out from their mathematics study programs during their first 

year at university (Geisler, 2020). In particular, researchers criticise lecturing as a 

common way of teaching mathematics (e.g., Paoletti et al., 2018). Moreover, Viirman 

(2021) indicates the lack on research on teaching practices in mathematics lectures. For 

a better understanding of teaching actions of lecturers in mathematics lectures, 

Fukawa-Connelly (2014) emphasizes the need for new theoretical approaches. 

Especially the presentation of definitions as a central part of mathematics lectures 

should be investigated in more detail, also because several studies report that students 

struggle dealing with new concepts (e.g., Bills & Tall, 1998). In this paper, we are 

going to analyse the presentations of the definition of the limit of a sequence as it is a 

core topic in real analysis lectures with the focus on the theoretical approach of 

Grundvorstellungen. Grundvorstellungen are essential for robust understanding of 

mathematical concepts (e.g., Greefrath et al., 2021). In the following, we present the 

embedding of Grundvorstellungen in the theory of concept formation and summarize 

the results on presentation of definitions from previous research. 

THEORETICAL BACKGROUND 

Concept definition, concept image, mathematical aspects and 

Grundvorstellungen of mathematical concepts 

Mathematical concepts form the core of mathematics (e.g., Halverscheid & Pustelnik, 

2013). Tall & Vinner (1981) emphasize the importance of the distinction between 

formal definition of mathematical concepts and cognitive processes behind it. They 

describe concept definition as “a form of words used to specify [the] concept” (Tall & 

Vinner, 1981, p. 152). In the context of concept definition, Greefrath et al. (2021) 
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describe mathematical definitions as a composition of different mathematical aspects 

of that concept. In other words, mathematical aspects emphasize different 

characteristics of concepts in various problem situations (Greefrath et al., 2016). They 

are the product of mathematical analysis of concepts (ibid.) and leave no room for 

interpretations (Greefrath et al., 2021). 

Unlike concept definitions, concept images “describe the total cognitive structure that 

is associated with the concept, which includes all the mental pictures and associated 

properties and processes” (Tall & Vinner, 1981, p. 152). Tall and Vinner (1981) draw 

attention to the fact that students’ concept image can conflict with the concept 

definition, therefore it is a major challenge to contribute to the development of correct 

concept images to get full understanding of a concept definition. In this sense, Fukawa-

Connelly and Newton (2014) underline the importance of presentation of informal 

content in mathematics lectures like examples. Moreover, Capaldi (2020) points to the 

fact that lecturers’ activities concerning presentation of definitions influence students’ 

concept images. Therefore, students could develop different concept images related to 

the same definition of a concept in courses given by different lecturers (Capaldi, 2020).  

Grundvorstellungen (or GVs, for short), also called Basic Mental Models, are intended 

to help with the development of viable concept images (Greefrath et al., 2021). They 

provide substantive interpretation of a concept (Greefrath et al., 2016) and “are 

prerequisites for dealing with mathematical concepts in an insightful way” (Greefrath 

et al., 2021, p. 650). Mathematical aspects can form the basis for a specific GV and 

several GVs can be assigned to a specific mathematical aspect (Greefrath et al., 2016). 

The key difference between concept images and GVs is that Greefrath et al. (2016) 

distinguish GVs in normative GVs that are the product of didactical analysis of 

mathematical concepts, and individual GVs that are the product of individual learning 

processes and can be a part of concept images (Greefrath et al., 2021). In the theory of 

Tall and Vinner (1981), this specification does not occur. For successful learning 

processes it is important to bring individual GVs closer to normative GVs, whereby 

several GVs are necessary for a broad understanding of a mathematical concept 

(Greefrath et al., 2016). Because GVs are central for development of robust concept 

images, the presentation of different visualizations and examples is necessary. 

Presentation of definitions in mathematics lectures 

Although the research on teaching actions of lecturers in mathematics lectures at 

universities based on observations of actual teaching is scarce (e.g., Viirman, 2021), 

there are several empirical studies on presentation of mathematical concepts. 

Nevertheless, we were unable to find research on presentation of definitions with a 

focus on GVs in mathematics lectures. In the following, we summarize the research on 

presentation of formal and informal representations of definitions that are substantial 

for the development of helpful individual GVs that are in line with normative GVs.  

Overall, results of observational studies indicate large differences in the presentation 

of concepts by different lecturers. Based on observations of 11 lectures by 11 lecturers, 



Umgelter & Geisler 

 

PME 47 – 2024 4 - 179 

Paoletti et al. (2018) noticed that only one lecturer did not present any formal definition 

in his lecture. Observing 11 advanced mathematical lecture courses, Fukawa-Connelly 

et al. (2017, p. 577) conclude that “[i]nstructors present informal content, including 

examples, informal representation, [...] during their advanced mathematics lectures, at 

least some of the time”. Observing the lectures by one lecturer, Essien (2014) indicates 

that the lecturer introduced formal definitions without any motivation and presented 

only one or two examples to each of it. Although the studies report about the 

presentation of formal and informal representations of definitions, it is not clear which 

or if any GVs were addressed by lecturers.  

Based on observations of mathematics lectures by three different lecturers, Chorlay 

(2022) presents deeper analysis of the presentation of the definition of the limit of a 

sequence. Overall, he found great differences in motivation of the concept, presentation 

of formal definition, examples, and illustrations: only one lecturer worked out the need 

of defining limits of sequences; two lecturers gave well thought out informal definition, 

used illustrations and demanding examples. All lecturers presented a formal definition 

introducing various parts of the definition in non-linear order and suggested a specific 

𝜀 when working on examples although 𝜀 should be arbitrary. One lecturer gave an 

informal definition leading to the development of misconceptions that could be the 

reason for the development of individual GVs that are not in line with normative GVs.  

Cottrill et al. (1996) report about difficulties in understanding and dealing with the 

formal definition of the limit of a sequence among students. Typical misconceptions 

regarding the limit of sequences are the confusion of the limit of the sequence with its 

value because of the lack of understanding of infinite processes (Cottrill et al., 1996), 

and the conviction that the infinite process itself is a limit (Vinner, 1991).  

THE PRESENT STUDY 

Research question 

Empirical research regarding teaching of mathematical concepts at universities, 

especially “based on observations of actual lecturing” (Viirman, 2021, p. 467) is rare. 

For this paper, we are going to analyse the presentation of definitions in advanced 

mathematics lectures with the focus on normative GVs using the definition of the limit 

of sequences as an example. Although there are several studies on concept images and 

concept definitions, the literature search did not produce any results concerning 

teaching of definitions with a focus on GVs at universities at all. Therefore, we want 

to answer the following research question: What normative GVs do lecturers address 

to present the definition of a sequence and which differences in addressing these 

normative GVs can be identified between the lecturers?  

Mathematical aspects and Grundvorstellungen of sequences 

Greefrath et al. (2016) state two mathematical aspects of sequences: the dynamic aspect 

and the static aspect. Considering the dynamic aspect, two points matter: “recognizing 

the possibility of construction of a null sequence” (ibid, p. 103), and “recognizing the 
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limit or limit value, whereby “almost all” sequence elements are located” close to the 

limit value (ibid, p. 103). For the static aspect, “a follower element is sought from 

which all further follower elements lie in a given environment of an object” (ibid, p. 

104). The static aspect is central for understanding the 𝜀- 𝑛0-definition of a limit (ibid.). 

 

Figure 1: Aspects and Grundvorstellungen of the limit of a sequence (left) adapted 

from Greefrath et al. (2016, p. 97) and visual representation to the definition of the 

limit of a sequence (right), own representation. 

Based on the mathematical aspects of the concept of limits (see Figure 1 left), Greefrath 

et al. (2016) identify three normative GVs: approximation, neighbourhood, and object. 

In the sense of the approximation GV, “striving towards or approximating of the 

sequence members’ values to a fixed value or object provides the idea of approximation 

GV as an intuitive vision of the limit value” (ibid., p. 105). It should be mentioned that 

the sequence elements of an infinite convergent sequence (𝑎𝑛)𝑛 ∈ℕ come arbitrarily 

close to the limit 𝐿 from a certain 𝑛0 onwards. The neighbourhood GV (see Figure 1 

right) is characterized by the following idea: “For every neighbourhood around the 

limit value, no matter how small it is, from a certain sequence element onwards all 

further elements lie in this area” (ibid., p. 105). It should be mentioned that the 

sequence elements of an infinite convergent sequence (𝑎𝑛)𝑛 ∈ℕ  are in the 𝜀 -

neighbourhood from a certain 𝑛0 onwards. Moreover, 𝑛0 depends on 𝜀. Following the 

object GV, “limits are viewed as mathematical objects [...] that are constructed or 

defined by a sequence [...]” (ibid., p. 96). Thus, the limit of a sequence should be 

viewed as a mathematical object with which one can continue to operate.  

Methodology 

In this paper, we present the results of observations of the presentation of the definition 

of the limit of the sequence given by six different lecturers (we call them Lecturer A, 

Lecturer B, Lecturer C, Lecturer D, Lecturer E, Lecturer F) from five public 

universities in Germany: Lecturer A and Lecturer B gave their lectures at the same 

university for pure mathematics students and upper secondary pre-service teachers, 

Lecturer D and Lecturer E gave their lectures for upper secondary pre-service teachers, 

Lecturer C gave the lecture for secondary pre-service teachers, and Lecturer F gave 

the lecture for pure mathematics students. The lecture given by Lecturer E was audio 

recorded and board presentations were photographed, the lectures given by other 

lecturers were video recorded. Lectures on real analysis for pure mathematics students 

and upper secondary pre-service teachers are quite similar at German universities 
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regarding their content. Observing the presentation of the definition of the limit of the 

sequence, we coded whether normative GVs regarding the limit of the sequence (see 

above) were addressed by lecturers, and the way the GVs were addressed. To ensure 

the reliability of the coding, we discussed the results with another mathematics 

educator researcher until we reached consent. 

RESULTS 

Overall, we identified two different approaches to the presentation of a formal 

definition of the limit of a sequence. For the first approach, the definition of the limit 

of a sequence given by Lecturer A, Lecturer B, Lecturer C, and Lecturer D can be 

summarized as follows: if for each 𝜀 > 0 there is an 𝑛0 and |𝑎𝑛 − 𝐿| < 𝜀 for 𝑛 ≥ 𝑛0, 

the sequence (𝑎𝑛)𝑛 ∈ℕ is convergent and 𝐿 is a limit of the sequence 𝑎𝑛. For the second 

approach, Lecturer E and Lecturer F used the definition of the limit of zero sequences: 

if  (𝑎𝑛 − 𝐿) is a zero sequence, a sequence (𝑎𝑛)𝑛 ∈ℕ is convergent. Next, we analyse 

the presentation of the definition by each lecturer with the focus on addressed GVs. 

Lecturer A did not address the approximation GV while presenting the definition of the 

limit of a sequence. Instead, we observed the neighbourhood GV. Lecturer A presented 

a sketch (similar to the right part of figure 1) of an arbitrary convergent sequence 

(𝑎𝑛)𝑛 ∈ℕ a number line and explained how sequence members behave on the interval 

(𝐿 − 𝜀, 𝐿 + 𝜀) starting from an 𝑛0. Moreover, he explained that 𝑛0 depends on 𝜀, the 

interval (𝐿 − 𝜀, 𝐿 + 𝜀) is arbitrary small and contains “almost all” sequence elements. 

In addition, Lecturer A characterised divergent sequences through an infinite number 

of sequence elements that are outside the interval (𝐿 − 𝜀, 𝐿 + 𝜀). Then, he presented 

several examples and nonexamples of convergent sequences: (𝑎)𝑛∈ℕ , (1
𝑛
)
𝑛∈ℕ

 and 

(−1)𝑛
𝑛∈ℕ

. In case of the sequences (𝑎)𝑛∈ℕ and (−1)𝑛
𝑛∈ℕ

, Lecturer A used one sketch 

each to explain the behaviour of the sequence members on the interval (𝐿 − 𝜀, 𝐿 + 𝜀). 

We could not observe any GV addressed by the presentation on the example (1
𝑛
)
𝑛∈ℕ

. 

Concerning the object GV, Lecturer A presented only the notation of the limit of 

convergent sequences lim
𝑛 →∞

𝑎𝑛 = 𝐿 as a part of the definition, but he did not discuss 

possible operations with the limit of the sequence in more detail. Thus, the object GV 

was only strived. 

Lecturer B addressed the approximation GV using a sketch to explain the distance of 

the sequence elements to the limit 𝐿. He mentioned that the distance between 𝑎𝑛 and 

𝐿 can be “as small as we wish” in case “we choose 𝑛0 big enough”. Moreover, Lecturer 

B used another sketch to address the neighbourhood GV. He highlighted that for a 

certain 𝜀, all sequence elements from a certain 𝑛0 lie in the neighbourhood of 𝐿, and 

this applies to all 𝜀. Like Lecturer A, Lecturer B also presented only the notation of the 

limit of convergent sequences lim
𝑛 →∞

𝑎𝑛 = 𝐿 as a part of the definition related to the 

object GV without any discussion of operations with the limit of the sequence. 
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Lecturer C first addressed the approximation GV using the example (1
𝑛
)
𝑛∈ℕ

. He 

stressed, that with increasing 𝑛, the sequence elements get closer and closer to 0. Next, 

Lecturer C added a sketch of the example (1
𝑛
)
𝑛∈ℕ

 to explain the 𝜀 -𝑛0 -Definition 

defining 𝑛0 = 4 for 𝜀 = 0.5 addressing the neighbourhood GV. For this example, 𝑛0 

was chosen unfavourable because 𝑛0 = 3 would have been the smallest 𝑛0 fulfilling 

the definition. Furthermore, he states that the smaller the interval, the larger 𝑛0 should 

be chosen, and all sequence elements from a certain 𝑛0 are in the neighbourhood of 𝐿. 

Then, he underlined, that 𝐿 does not have to be an element of the sequence. Presenting 

two more examples of convergent sequences (𝑛+1
𝑛
)
𝑛∈ℕ

 and ( 3𝑛+1

10+5𝑛
)
𝑛∈ℕ

, Lecturer C 

demonstrated how 𝑛0 can be calculated for different 𝜀 and emphasized several times 

that all sequence elements from the certain 𝑛0 are in the certain 𝜀-neighbourhood. We 

did not observe any presentations related to the object GV. 

Lecturer D addressed the neighbourhood GV using the example (1
𝑛
)
𝑛∈ℕ

. She used a 

sketch of the sequence and define its limit 𝐿 = 0 without any explanation although at 

this point the approximation GV would be useful to work out the limit value. Then, she 

addressed the neighbourhood GV adding the 𝜀-neighbourhood and stating, that for all 

𝜀, a “sufficiently large” 𝑛0 can be chosen so that all sequence elements with 𝑛 ≥ 𝑛0 

are in the 𝜀 -neighbourhood. Lecturer D has indeed introduced the concept of 

divergence as the opposite of convergence, but she did not explain it in detail. Instead, 

she briefly mentioned that rules will subsequently be developed with which the limits 

can be easily calculated. Mentioning this, the object GV was briefly addressed but not 

explained in more detail. Then, Lecturer D presented several examples and 

nonexamples for convergent sequences: (−1)𝑛
𝑛∈ℕ

, (𝑛)𝑛∈ℕ , (|𝑞|𝑛)𝑛∈ℕ  for |𝑞| < 1 

and |𝑞| > 1 . Only presenting the example (|𝑞|𝑛)𝑛∈ℕ  for |𝑞| < 1 and |𝑞| > 1 , she 

mentioned that limits can be added up and that is a part of the object GV. We did not 

observe that any GVs were addressed in other examples and the approximation GV 

was not addressed at all. 

To define the limit of a sequence, Lecturer E used the definition of a zero sequence. 

Defining a zero sequence, he addressed the approximation GV and explained that the 

inequality |𝑎𝑛| < 𝜀 must apply to all 𝜀, so that |𝑎𝑛| is getting “smaller and smaller”, 

“goes towards” 0, and 𝑛0 depends on 𝜀. Next, he presented the examples (1
𝑛
)
𝑛∈ℕ

 and 

(|𝑞|𝑛)𝑛∈ℕ for |𝑞| < 1 without striving any GVs. Later, Lecturer E defined the limit of 

a sequence using the definition of a zero sequence, mentioned that a convergent 

sequence “strive towards a certain number”, and presented the notation lim
𝑛 →∞

𝑎𝑛 = 𝐿. 

Here, we identified the approximation GV, and the object GV as the use of zero 

sequences for the definition of convergent sequences. Finally, Lecturer E defines 

divergence as the opposite of convergence and give an example  (−1)𝑛
𝑛∈ℕ

 without 

using any GVs. We could not observe the neighbourhood GV at all. 



Umgelter & Geisler 

 

PME 47 – 2024 4 - 183 

Lecturer F defined the limit of a sequence also using the definition of a zero sequence. 

Based on the neighbourhood GV, she used a sketch of the 𝜀 -neighbourhood and 

mentioned, that for a certain 𝜀 all elements from a certain 𝑛0 are, “maybe not from the 

start”, in the neighbourhood of 0. Also using the example (1
𝑛
)
𝑛∈ℕ

 she stressed that the 

search is for an 𝑛0 from which all sequence elements are in the 𝜀-neighbourhood and 

demonstrated how 𝑛0  can be calculated for different 𝜀 . Later, Lecturer F used the 

definition of a zero sequence to define the limit of a sequence, presented the notation 

lim
𝑛 →∞

𝑎𝑛 = 𝐿  and gave an example ((−1)
𝑛

𝑛2
+ 5)

𝑛∈ℕ
 stating that limit is 5; these 

correspond to the object GV as described above. 

CONCLUSION AND DISCUSSION 

Researchers point to the lack of empirical research on mathematics lectures based on 

observations (e.g., Viirman, 2021) and highlight the need for new theoretical 

approaches (Fukawa-Connelly, 2014). Therefore, we observed the presentation of the 

definition of the limit of the sequence given by six lecturers using the theory of 

Grundvorstellungen. The results show that the limit of the sequence was defined in 

these lectures through the 𝜀-𝑛0-Definition-approach or through the definition of a zero 

sequence. In total, we observed the approximation GV by four lecturers and 

neighbourhood GV by five lecturers; three lecturers used both GVs. The object GV 

were observed by five lecturers, but it was not addressed in detail. Moreover, the 

example (1
𝑛
)
𝑛∈ℕ

 and the nonexample (−1)𝑛
𝑛∈ℕ

 were presented by several lecturers 

and seem to be common. As the lecturers did not address all normative GVs regarding 

the limit of the sequence in their lectures, their students could develop insufficient 

concept images concerning this concept. Students also could develop different concept 

images for the concept of the limit of a sequence due to the lecture they attend.  

There are some limitations in or study. As our sample is not large, further observations 

are necessary. Furthermore, we observed only the definition of the limit of the sequence 

using the GVs, therefore research on presentations of further definitions and related 

normative GVs is needed. We expect that the object GV would be treated in more detail 

with the presentation of further content concerning sequences. Also, the development 

of students’ individual GVs should be investigated. Nevertheless, our research shows 

that it is possible to observe definitions presented in mathematics lectures regarding 

the addressed GVs. As normative GVs have not been worked out for all concepts 

relevant in university mathematics, more theoretical research is necessary. In addition, 

we recommend specific training for lecturers because most of them have no 

pedagogical training at all and are therefore not aware of the role of GVs for teaching 

and learning concepts. 
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STRESS MATTERS? A CORRELATIONAL AND EXPERIMENTAL 

STUDY ON THE IMPACT OF STRESS ON FRACTION NUMBER 

LINE ESTIMATION 

Wim Van Dooren and Jordy Heusschen 

Centre for Instructional Psychology and Technology, University of Leuven, Belgium 

We investigated the impact of stress induction on the accuracy with which upper 

primary school learners conduct a fraction line number estimation task. The accuracy 

was investigated in a stress free and stress-induced condition, and reported stress 

levels were compared across conditions. A distinction was made between learners who 

are considered average mathematics performers as opposed to weak mathematics 

performers. Overall, stress induction led to lower accuracy, both for average and weak 

learners, while weak learners experienced a stronger increase of stress due to stress 

induction. Implications are discussed.  

THEORETICAL AND EMPIRICAL BACKGROUND 

Rational number sense through number line estimation 

A well-developed number sense is crucial for the later learning of mathematics, and 

for functioning in today’s society (e.g., Rittle-Johnson et al., 2016). One of the most 

challenging hurdles for learners regarding number sense is to develop a good 

understanding of rational numbers. They have been found to be substantially more 

difficult to understand than natural numbers, even for adults (Vamvakoussi & 

Vosniadou, 2004; Van Hoof et al., 2017). A common category of difficulties relates to 

the differences between rational and natural numbers. The natural-number prior 

knowledge interferes with the learning of and reasoning about rational numbers. 

Learners for instance think that 0.53 is larger than 0.7 because it is longer (a technique 

that would work for natural numbers), or that 8/13 is larger than 4/5 because 8 and 13 

are larger than 4 and 5 (Vamvakoussi et al., 2018).  

Researchers generally assume that numbers are represented on a mental number line, 

ordered left-right and from small to large (e.g., Booth & Siegler, 2006). In line with 

this idea, research on numerical magnitude understanding often uses number line 

estimation (NLE) tasks (Schneider et al., 2018), and most often the number-to-position 

task whereby a segment of the number line with a beginning and endpoint are given 

and a specific target number needs to be positioned. The accuracy of the estimates is 

then an indication of the numerical magnitude representation. Also in number line 

estimation, the estimation of rational numbers (and particularly fractions) has been 

found particularly difficult. Iulcano and  Butterworth (2011) found that both children 

and adults made less accurate estimates of fractions than of natural numbers and 

decimals. The current paper therefore takes a closer look at the estimation of fractions 

on the number line. 
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In recent years, researchers have come to understand that estimates on a number line 

do not occur directly, but are highly strategy based. Ashcraft & Moore (2012), for 

instance, saw that accuracy is higher for numbers close to the endpoints and to the 

midpoint, suggesting that learners use benchmarks. Specifically for number line 

estimations involving fractions, Van Dooren (2023) documented the variety in 

strategies that learners use, and how the adaptive use of strategies results in better 

performance.  

The impact of stress on mathematical performance 

It is well-known that learners experience varying degrees of stress while performing 

mathematical tasks. Some may have a degree of mathematics anxiety (e.g., Ramirez et 

al., 2018). Stress has been shown to negatively affect the available working memory, 

and through this mechanism affect performance on various cognitive tasks (e.g. Luehti 

et al., 2008), including mathematical tasks (e.g., DeCaro et al., 2010). This is 

particularly so for mathematically challenging tasks, such as those involving rational 

numbers. Working memory has also been convincingly been related (both 

correlationally, LeFevre et al., 2010, and experimentally, Askhenazi & Shapira, 2017) 

to performance on (natural) number line estimation tasks.  

Most research regarding the impact of stress on mathematical and other cognitive tasks 

has been conducted in (young) adults. Research in school-age children is rare. An 

exception is the study of MacKinnon McQuarry et al. (2012) that showed that six-year 

olds with mathematical learning difficulties perform worse on both working memory 

tasks and mathematical tasks, and that the reported stress level correlated with 

performance, both in the group with and without mathematical learning difficulties, 

whereby children with learning difficulties reported higher levels of stress than those 

without.  

RATIONALE FOR THE STUDY 

The current study wants to take further steps in understanding the impact of stress on 

mathematical performance in school-age children. In our study, we do not only want 

to investigate the correlation between experienced stress and performance; we also 

want to look at the relation in an experimental way, in order to establish whether the 

relation can be seen as causal. Thus, we will not only look at self-reports of experienced 

stress, but also experimentally induce stress by means of time pressure. The study will 

thus work in two phases: a stress-free phase and a stress-induced phase.  

We also want to get a clearer view on whether the mathematical ability of learners acts 

as a moderating variable, because previous research has indicated that children with 

lower mathematical abilities tend to experience more stress which may be one of the 

causes of their weaker performance. Regarding mathematical performance, we want to 

focus on the estimation of fractions on a number line, as we know from previous 

research that this is a challenging task. 
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Detailed research questions and overall hypotheses will be presented after we have 

clarified the method and the design of our study.  

METHOD 

Sample 

A total of 273 students from the 4th, 5th and 6th grade of primary schools in Flanders 

(Belgium) and the Netherlands participated in the study, with a mean age of 10.26 years 

(SD = 0.95), with approximately equally many boys and girls. They came from 7 

different schools and belonged to 16 class groups. Informed consent was obtained from 

the parents of all participating children, and the study protocol received ethical 

approval prior to execution.  

For each learner, we obtained a measure of their overall mathematical ability, by 

looking at the results of a standardized mathematical achievement test. Based on 

percentile scores, this test divides learners to groups (from A to E), whereby groups D 

and E represent the weakest performing 25% of the students. In our sample, 22.2% of 

learners could be considered to have a weak mathematical ability, and they will be 

compared to 77.8% learners with an average mathematical ability.  

Stress Scale 

Learners filled in the stress scale at three time points in the study. The scale was based 

on a study by Meulman (2016), and consisted of a line of 20cm long divided in 5 

intervals, respectively referring to “no stress”, “light stress”, “quite some stress”, “a lot 

of stress” and “a great lot of stress”. Children could mark their stress level anywhere 

on the number line. The stress scale was administered three times throughout the 

experiment: At the very start, after the stress free phase, and after the stress-induced 

phase. The measurement at the very start was a baseline measurement, allowing to 

accurately measure the impact of the stress caused by solving the number line 

estimation task in two different conditions.   

Number line estimation task 

Learners solved a number-to-position number line estimation task in which each 

number line had 0 and 1 as endpoints, and a total number of 30 fractions needed to be 

estimated: 15 in a stress free condition, and 15 in a stress-induced condition. Both 

subsets were counter-balanced, so that some learners got the first half of the fractions 

in the stress free condition and the other half in the stress-induced condition, and vice 

versa.  

Within each subset, 10 fractions were considered as experimental items, and data 

analysis was only conducted on these items. They had double digit denominators and 

were considerably more difficult to estimate (e.g., 4/15; 9/19). The remaining 5 

fractions had single-digit numerators and denominators (e.g., 1/3), and were considered 

as rather easy buffer items, aiming at keeping students motivated for conducting the 

task. They were mixed randomly with the experimental items. 
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Experimental procedure and conditions 

After filling in the initial stress scale, learners solved the first set of 15 number line 

estimations under a stress free condition, implying that they were given all the time 

they needed to complete the task. Afterwards, learners had to indicate the amount of 

stress that they experienced while conducting that task. 

Next, they were given another set of 15 number line estimations, but in a stress-induced 

condition. Stress was induced by imposing a time pressure: The time to estimate a 

given fraction was limited to 5 seconds. This was realised by allowing learners to turn 

to the next number line page only when the teacher announced this by a sound signal, 

and by again having students turn their page at the end of the 5 seconds. The 5 second 

time limit was determined in a pilot study as the median time in which learners 

estimated the fractions without time pressure. It was considered as a measure that 

would induce stress, but not to shorten the time so much that an appropriate estimation 

would be impossible. 

RESEARCH QUESTIONS AND HYPOTHESES 

The following research questions were put forward, each time with hypotheses. 

RQ1: What is the impact of stress induction and mathematical ability on number line 

estimation performance, and is the impact of stress induction similar in average and 

weak learners?  

We expect that stress induction will lead to a lower performance as compared to 

a stress free situation, and we expect this effect to be larger in students with a 

weaker mathematical ability.  

RQ2: Is there a difference in the reported stress level between average and weak 

learners, and is this the case both in the stress free and stress-induced condition?  

We expect that weak learners will report higher stress levels than average 

learners, and that these difference will be more pronounced in the stress-induced 

condition than in the stress free condition.  

RQ3: Is there a relation between the reported stress level and performance on the 

number line estimation task? 

We expect that there will be a negative correlation between the reported stress 

level and performance on the number line estimation task. We additionally 

expect a negative correlation between the increase in stress level (by comparing 

the stress reported after completing a task with the baseline measurement) and 

performance on the number line estimation task. 
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RESULTS 

Research question 1 – Number line estimation accuracy 

Given that the reported stress levels substantially differed across grade levels (4th grade 

M = 51.02, SD = 37.30; 5th grade M = 50.00, SD = 27.83; 6th grade M = 28.75, SD = 

51.32), grade level was taken as a covariate in all analyses where stress level is a 

predictor. 

The accuracy of learners’ estimates on the number line was quantified by the most 

commonly used measure in the number line estimation literature, i.e. the percentage of 

absolute error (PAE). The fraction 2/11 is situated at 36.36 mm on the 200 mm number 

line. If a learner marks the fraction at 40mm, the PAE score is 1.82%, which is 

calculated as follows: 

 

Table 1 reports the accuracies (PAE scores) of average and weak learners in both 

conditions. There was a main effect of condition on the performance on the number 

line estimation task, indicating a higher performance (thus lower PAE) in the stress 

free condition than in the stress-induced condition (F(1, 270) = 36.36, p < 0.001 ŋ² = 

0.064). Average students performed better than weaker students (F(1.270) = 152.88, p 

< 0.001 ŋ² = 0.22). Contrary to our expectations, the absence of an interaction between 

both indicates that the effect of stress induction was similar in weak learners and in 

average learners (F(1.270) = 0.45, p = 0.50 ŋ² = 0.001). 

 

Group Stress free 

condition 

Stress-

induced 

condition 

Average 

Average learners (n = 211) 4.78 (4.64) 6.91 (5.39) 5.84 (5.52) 

Weak learners (n= 60) 13.18 (11.99) 16.73 (12.74) 14.96 (11.37) 

Total group (n = 279) 6.64 (7.77) 9.08 (8.64) 7.86 (8.32) 

Table 1: Mean PAE of average and weak learners in the stress free and stress-induced 

condition (SD between brackets) 

Research question 2 – Reported stress levels 

First of all, we conducted a manipulation check to confirm that the reported stress level 

would be higher in the stress-induced condition than in the stress free condition. This 

was indeed the case: It was on average 25.83 (SD = 21.95) in the stress-free condition 

and 51.32 (SD = 31.98) in the stress-induced condition.  

In the baseline measurement, weak learners already reported a somewhat higher stress 

score than average learners (Mweak = 24.80, Maverage = 29.47). However, when looking 
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at the increase in stress in the stress free phase as compared to the baseline, there was 

no difference in that increase between both groups (Mweak = 9.98, SD = 28.83, Maverage 

= 3.97, SD = 20.06, t(270) = -1.51; p = 0.14). When looking at the increase in stress 

from the base line to the stress-induction phase, however, in line with the expectations 

a significant difference between both groups was observed (Mweak = 34.55, SD = 28.85, 

Maverage = 22.91, SD = 25.67, t(270) = -3.01; p < 0.01), indicating that the increase in 

reported stress was much greater in the weak learners than in the average learners.  

Research question 3 – Reported stress levels in relation to accuracy 

Various correlations between the stress levels that are reported by learners and their 

accuracy in the number line estimation task can be considered. First of all, we saw a 

positive and significant correlation between the stress level reported at the baseline 

measurement point and the accuracy in the stress free and stress-induced phase 

(respectively r = 0.13, p = 0.03; r = 0.21, p < 0.001). Also the stress reported in the 

stress free phase and the accuracy in the stress free phase correlated positively 

(r = 0.17, p = 0.05), and finally also the stress reported in the stress-induced phase and 

accuracy in the stress-induced phase correlated positively (r = 0.27, p < 0.001). 

Also the increase in stress levels can be correlated with accuracy. The increase in stress 

level from the baseline measurement to the stress free phase did not correlate with 

accuracy in the stress free phase (r = -0.06, p = 0.30), but the increase in stress from 

the baseline measurement to the stress-induced phase did correlate with the accuracy 

in the stress-induced phase (r = 0.16, p = 0.01). 

CONCLUSIONS AND DISCUSSION 

We investigated the impact of stress on the accuracy with which upper primary school 

learners conduct a challenging mathematical task, i.e. estimating fractions on a number 

line. The impact of stress was investigated both correlationally (by relating the reported 

stress level to the accuracy) and experimentally (by letting students solve the same task 

under a stress free condition and a stress-induced condition). We thereby looked at 

whether the effects would be different for learners who are considered of average 

ability as opposed to those who are considered to be weaker (as determined by a 

standardized mathematics achievement test).  

First of all, it was observed that inducing stress (by putting students under a reasonable 

time pressure) indeed led to a lower accuracy on a number line estimation task. As 

such, this is not surprising given what is already reported in the literature for other 

tasks, and it is also not surprising that for a task where a precise, fine-grained and 

stepwise strategical approach is important (Van Dooren et al., 2023). But more 

importantly, we found that inducing stress was equally detrimental for accuracy in 

average than in weak students, while we had expected this effect to be stronger in weak 

students. It is possible that the stress induction that we implemented indeed was already 

rather strong even for average students, in a challenging task such as fraction number 

line estimation. 
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Second, regarding the stress levels that were actually reported, we indeed saw that they 

were substantially higher in the stress-induced condition than in the stress free 

condition, thereby providing a manipulation check. Weak learners start at a slightly 

higher stress baseline than average learners, but particularly in the stress-induced 

condition, stress levels reported by the weak learners are far higher. 

Finally, we also observed correlations between the reported stress levels and 

accuracies, and between the increase in stress level due to stress induction and 

accuracies. Hence, where some learners experience a smaller stress increase due to the 

stress induction, they on average also suffer less from a decrease in accuracy than 

learners who experience a larger stress increase.   

While this study is experimental and psychological in nature, and took place in a very 

controlled setting (although within the classroom), it does focus on a task that has 

curricular relevance (fraction number line estimation) and that is shown to be difficult 

for learners. The study has various limitations, such as the experimental setting which 

may be quite artificial, but this is also somehow a strength being able to show causal 

relations. A correct time pressure may have been different for different students (and 

different grade levels), but this was impossible to implement. Also the way in which 

stress was measured is open to criticism. Other ways of measuring this may be more 

qualitative (such as interviewing participants on their feelings during a task), but also 

physiological measures (such as skin conductance, pupil dilation) may be informative.  

Understanding the impact of stress when conducting mathematical tasks is of great 

importance for practice, and the insight that weaker students may experience more 

stress than stronger students is crucial. Even while we were not able to show that the 

weaker students experienced a larger decrease in accuracy due to stress than average 

students, a stronger increase in stress as such is also undesirable in its own right. Time 

pressure may act differently for stronger and weaker students, and it may be that there 

are still large interindividual differences in sensitivity to time pressure, that do not boil 

down to the difference between weaker and stronger learners, but to other learner 

characteristics. This certainly deserves further research. Similarly, future research 

could investigate whether similar effects occur in other mathematical tasks.    
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HUMAN GRAPHS AS MATHEMATICAL DRAMATIC 

CODIFICATIONS 

Katherina von Bülow 

Simon Fraser University 

In this paper, critical educator Paulo Freire’s theory and method of 

codification/decodification is applied, by means of a drama technique, to mathematics 

education. A classroom activity, in which students’ bodies form a frozen tableau 

representing data on wealth disparity, is described. The study focuses on students’ 

perceptions of their own relationship with the social issue and with mathematical 

representations of the data. Students’ discussion and written reflections on the activity 

are analysed thematically. A parallel is drawn between shifts in students’ recognition 

of themselves within the issue of social concern and shifts in their critical perceptions 

of mathematical representations of the data. 

INTRODUCTION 

Mathematics can serve to model and represent real data and patterns related to social 

justice issues. In mathematics education, we might create, re-create, interpret, change, 

and consume such mathematical representations. Critical researchers and educators ask 

how these mathematics activities work to position students with respect to the real 

social issue, mathematics, and themselves. In this paper, I consider the mathematical 

representation, through graphing, of numerical data that entails a social disparity 

concerning a population that includes the students themselves. Students may have 

different perceptions—or levels of awareness—of the social disparity, of their own 

relative part in this disparity, of mathematics as a possible way to connect with the 

issue, and of themselves as subjects in the mathematics classroom. My research aims 

to investigate and work with these levels of perception at the individual and collective 

levels. In this context, it is useful to think with Paulo Freire, who theorized education’s 

work in the development of people’s perception of reality and of themselves as subjects 

able to reflect and act on reality.  

THEORETICAL FRAMEWORK 

In Pedagogy of the Oppressed (1970/2000), Freire develops a theory and method of 

liberating, challenge-posing education. In Freire’s method, educators first select 

elements of reality from students’ “background awareness” (p. 83), where they exist 

objectively but are not yet objects of cognition and action. These must be elements that 

are present in situations that both involve basic contradictions and are part of students’ 

lived experience. Each such situation is then “codified”, that is, abstracted into an 

object, image, or short oral prompt that “shows some of [the situation’s] constituent 

elements in interaction” (p. 105), in such a way that students will be able to recognize 

the situation, and to recognize themselves as subjects, together with other subjects, in 
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the codification (p. 114). The codification is presented to students, who collectively 

face it and are challenged by it to respond, so that “rather than students receiving 

information about this or that fact, they analyse aspects of their own existential 

experience represented in the codification” (Freire, 1985, p. 52). For example, Freire 

(1970/2000) recounts how a photograph of a local worker who is drunk functioned as 

a codification for a group to unveil the complexities of alcohol use and of a worker’s 

experience within their community and context. Freire argues that, since students 

apprehend the challenge not as a theoretical question but within a context where the 

contradiction is interrelated with other issues, their responses tend to be critical and 

thus less alienated, and that in their responses they express their personal themes and 

view of the world. This reflexive response process, called decodification, stimulates 

“perception of the previous perception”, “knowledge of the previous knowledge” (p. 

115), and new perceptions and knowledge. Freire emphasizes that codifications should 

be “simple in their complexity and offer various decoding possibilities” (p. 115). It is 

in this unveiling process of decodification that “generative themes” (p. 96), that is, 

unfolding personal themes related to “key contradictions in people’s lives” (Gutstein, 

2012, p. 26), emerge, forming the curriculum for further investigation. 

I am interested in the potential of drama for Freirean codification in mathematics 

education. As explained by Villanueva & O’Sullivan (2020), role-playing offers 

opportunities to reflect upon meanings that are created by one’s own experience as well 

as collectively by the group. Thus, role-playing functions “as both an individual and 

socially reciprocal concept[, which] deepens its capacity for critical reflection and 

aligns it further with Freirean codification” (p. 529). In a dramatic codification, 

students are presented with a challenge related to a social situation, which as described 

above must involve a contradiction or disparity that is related to students’ lived 

experience. The students act the situation out using a drama technique, such as role-

play or frozen tableau, that is adapted to a classroom environment. Since one of the 

goals in this research is to investigate and work with perceptions of mathematics as a 

helpful partner in one’s connection with social issues of concern, the situation under 

consideration must involve or have a link to mathematics. I submit that the link(s) 

between the action and mathematics can be explicitly clear from the beginning or be 

strong enough to emerge naturally in discussion afterwards. Henceforth, I will use the 

name MSJ (as in mathematics and social justice) dramatic codification to refer to this 

pedagogical method. Since students share the experience of being acting subjects both 

in the classroom and in the real-life situation, teachers and researchers can then invite 

students to reflect and express, through both discussion and individual writing, how 

they think or feel themselves in relation to the mathematics, the social context of the 

classroom, the social issue(s) of concern, and how these aspects are linked. As pointed 

out by Sean Chorney (personal communication, August 21, 2023), MSJ dramatic 

codifications can be both a teaching and a research method. 

Circling back to the issue of mathematics representations, I am particularly drawn to 

dramatic codifications because they can centre elements, such as students’ bodies, 
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movement, emotional expression, and interaction, that can otherwise be under-

represented in mathematics classrooms. In the pilot study I present here, students are 

asked to represent data showing the distribution of wealth in households in Canada, 

but to do so using their bodies, as a human graph, instead of using pencil and paper. 

There are similarities between this activity and Polly Kellogg’s (2006) “Ten Chairs of 

Inequality” activity. However, rather than using chairs as a proxy for wealth, I am 

interested in maintaining the idea of graphing as a mathematical representation of data, 

while offering students the opportunity to question how graphs can be made. An 

unhelpful distance may be created between mathematics and the world when people, 

rather than representing data about themselves using their own bodies, use points or 

bars instead: the item in question is “not situated as a link in a chain of interaction 

between persons (to be understood and judged in communicative, social, and moral 

contexts)” (Barth, 1995, p. 65). Thus, the intention behind the use of physical 

mathematical representations—in this case a frozen tableau—is to counter a distancing 

tendency in how our social data might be presented or used in the classroom, and 

instead use a representation that aids students’ awareness of their own involvement in 

the data. Another aim is to encourage a shift in students’ perspective of mathematics 

as something with which we feel the world, not just think it, and as socially reciprocal, 

in that one can see others feeling it and know that they can see one feeling it. 

Challenging students to use their bodies and the space between them in a mathematical 

representation parallels the challenge to their awareness of their own role in the social 

situation. Relative to the mathematics as to the social issue, students may shift, from 

submerged, alienated, adapted observers, to more aware, reflexive actors. This means 

that, from perhaps perceiving the data as simply statistics about finance, students could 

shift towards perceiving it as a social issue of concern to and about themselves and 

their peers; in parallel, perceptions of mathematics and of themselves within the 

mathematics classroom could shift towards including their own expression as well as 

investigation of issues that matter to them. Hence, my research questions ask: 

• How does the human graph activity contribute to students’ reflection about 

the social justice issue of wealth inequality?  

• Do students reflect on mathematics and on themselves as mathematics 

students, and if so in what way are those reflections connected to the activity? 

• Does the activity contribute to the emergence of students’ generative themes? 

METHODOLOGY 

Context and Description of the Activity 

This pilot study was conducted in a class from Dr. Chorney’s Simon Fraser University 

course called ‘Shape and Space’, for liberal arts students. In class, the activity took 

approximately 45 minutes, and a questionnaire was given to students afterwards. 

The activity began with a brief introduction that raised the issue of how things are 

distributed among people in Canada, and in particular, of how wealth is distributed. 

Students gave examples of different kinds of assets that could be included in the 
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calculation of a person’s total wealth. I then recounted how I searched Statistics Canada 

for information on wealth distribution and found wealth data for population quintiles, 

in terms of households, that is, persons or groups who share a dwelling, including 

temporarily absent members. The table below was displayed, at first with the actual 

wealth numbers missing so that students could predict the values A-E.  

Canadian households ordered by wealth Average wealth (net worth) 

0 - 20% A = - 2,762 

20 - 40% B = 125,936 

40 - 60% C = 429,271 

60 - 80% D = 946,048 

80 - 100% E = 3,139,492 

Table 1: Distributions of Canadian household economic wealth  

The average Canadian household wealth (measured in 2022) was revealed to be 

$927,597.00 (Statistics Canada). Before the actual values of A-E were revealed, 

students discussed where they would predict that average might fall, with respect to 

the letters A-E. After predictions were discussed, the numeric values A-E were given, 

and reactions and interpretations were shared. For instance, students discussed what a 

negative ‘net worth’ means. Students were then challenged to each take on a role (i.e., 

a wealth category) and form groups so that they could physically graph the data.  

Groups set out to find room, inside or outside the classroom, to represent this situation 

using their own bodies in space, rather than using points or bars on paper or board. 

Students simulated the situation by figuring out the relative distances at which to stand. 

The economic distances between people were symbolized and witnessed as spatial 

distance, and conversations ensued about how it feels, or must feel, to be in a specific 

position in that space of ‘net worths’. Once all the students were back in the classroom, 

one of the groups was invited to show their process and their human graph. The group 

spread out diagonally across the classroom, and the whole class was challenged to 

make sure that the spatial distances between group members really corresponded to the 

numeric gaps in the data. Rounding and estimating were employed, until the class was 

satisfied that the bodies were graphing the data. Students remarked on how far from 

the rest the person playing the role of richest 20% Canadian households stood, while 

the remaining four group members stood comparatively close to each other.  

Data Collection and Analysis 

Here, I analyze the reflective writing of eighteen students (referred to as S1-S18) about 

the human graph activity, described above, responding to the following prompts:  

• What were your impressions, as your group worked to decide how far apart 

to stand in order to represent the differences in wealth? 
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• How would you compare graphing this data on the board/paper to making a 

human graph? What information (if any) is lost/gained in either case? What 

kind of data do you think is suitable for either case? 

• In this activity as a whole, how did you feel, physically and emotionally? 

What (if anything) felt helpful, interesting, unpleasant, or …? 

In the analysis, students’ responses are grouped into four themes corresponding to 

possible shifts in perception as theorized by Freire in the codification/decodification 

pedagogical method, adapted to mathematics education. For each theme, I give 

excerpts of student writing to illustrate the findings. 

Theme: Connections between mathematics, oneself, and the issue(s) of social concern 

Students share their awareness of being in a wealth category and some related feelings:  

S18: I also started to think about where my family and I would land on this graph.  

S2: …a humbling reminder of where I am, and likely will remain for the rest of 

my life. It’s also nice to know that many, many others are there with me.  

S13 I was slightly frustrated on a personal level considering I most likely fall 

within the lower/middle half of group “B”, and how much accumulated 

wealth/assets people have in comparison to others. 

As well, students share how the activity helped their understanding of the social issue: 

S5: It was more surprising to see how A had the wealth of -3k. when thinking 

of the numbers aligning with the placements, I had not considered that a 

group would be in debt as I was thinking of positive numbers, not negative. 

S18: This activity… enable[s] us to think about what determines someone’s 

wealth and what being wealthy really means to everyone. 

Theme: Feelings, beliefs, and physical sensations connected with the activity 

Several students share that they felt “surprised”, “shocked”, “unpleasant”, “disbelief”, 

“envy”, “saddened”, “disturbed”, “heartbroken”, “disappointed”, “jarred”, 

“frustrated”, and “sorrowful”. For these students, the activity stirs feelings towards 

wealth disparity as a social issue of concern, and many share their awareness of its 

inherent contradictions. On the other hand, five of the students state they felt “fine”, 

“neutral”, “no feelings”, or “normal”. Here are some related excerpts: 

S2: It brings out feelings of disbelief and envy. I feel an almost imperceptible 

“rumble” in my stomach area– one that wants to say, “is that even 

possible?!” and “is it possible to get there?!” 

S7: Physically I felt quite far apart from my classmates, emotionally I felt quite 

sad to see the poorest category of 0-20% stand so far away from me. 

S9: I felt very surprised throughout the activity because finding out how 
drastically different the two extremes were (0-20% and 80-100%) is 

heartbreaking to me. 
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S3: It doesn’t seem right as just a small amount of the richest group could be 

spread out to the rest and would even out the poorer groups while the richest 

group would still be up there. 

A longer study would report on further class discussion and investigation, for example 

asking what students mean when they state they feel “neutral” or when they ask, “is it 

possible to get there?!”, continuing the dialogue begun by means of the codification.  

Theme: Changes in feelings or beliefs about mathematics and about oneself as a 

mathematics student 

Only two students make self-aware comments on “doing math” in the context of the 

activity:  

S2:  I definitely have a tendency to zone out and mindlessly do math. In an 

unfamiliar activity like this, that isn’t likely to happen. 

However, some students do take active critical positions with respect to mathematics 

and the activity. One student questions Statistics Canada’s choice of categories: 

S7: We are grouping large amounts of people into a 0-20% or 20-40% slot when 

in reality, the 18% from the first group and 22% from the second group 

could share very similar livelihoods, revenue, or net worth yet this won’t 

be obvious because they will be separated into different categories. 

Also, the reflections show students’ engagement with the tension between privileging 

accuracy or emotional impact, when interacting with this data. I interpret this tension 

as concerning both the students’ evaluations of the activity and their conceptions of 

mathematics: 

S16: It is more time efficient to simply put up a slide of a graph to get your point 

across, but it is more memorable as a human graph. 

S10: Making a human graph…can be a more visceral and impactful way to 

represent data, but it may sacrifice some of the precision and detail that can 

be conveyed through traditional graphs. 

S13:  Emotionally something about being physically present within the content 

material is valuable to one's connection to the material. 

Notably, some students opine that a human graph is more “actual” or even “correct”: 

S3: Graphing on the board/paper may show you the use of real data and 
calculations in numbers which gives you an idea of what the data is but the 

human graph can let you visualize the actual differences. 

S5: It was easier to move each person to their correct placement compared to 

the paper graph. Human graph helped us get closer results to the actual 

wealth numbers. 

It is also noteworthy that students use several words that include not just intellect but 

also emotions and the body, to compare the human graphing with regular graphing. 

According to students, human graphing is or has: 
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• more: tangible, impactful, engagement, tactile feel, realistic, easy to move, 

visual, easy to grasp, perspective, effective, powerful, emotional impact, 

immediacy, visceral, drastic, emotional connection, eye opening, involved, 

thinking required, memorable; and  

• less: objective, precision, overall adaptability, simple to do, accurate, exact, 

complex, detail, useful. 

It would be interesting to have a follow-up class discussion about the meaning and 

relative importance of qualities they named, such as precision, efficiency, tangibility, 

realism, or immediacy, in relation to different choices of graphing for this data. 

Theme: Interest in further investigation (possible generative themes) 

Students’ generative themes are present in their reflections, as in: 

S6: I think that these huge disparities could be easily rectified through 

respective taxing based on income and pre-existing personal funds. I think 
that these disturbing numbers really showed me how much the government 

protects the upper class and disregards the impoverished. 

S7: This put into perspective the unpleasant and frustrated feelings that this 

generation must feel towards the housing crisis and despite their hard work 

in their jobs, they still cannot afford what their parents could at their age. 

S13: I think it would be more interesting to break down the data further, not just 

people across Canada but being more specific with one's socio-economic 

and geopolitical status, SES based upon one's race/place of living/gender… 

One step further would be to see and interview people from the “A” and 

“E” bracket and compare, I think that would cause one to be emotionally 

connected to their data. 

S17: What kind of people will be lost (poorest people who are spending money 

on drugs, alcohols/poorest people who are spending money on their daily 

necessity)?  

Discussion 

The data from these eighteen students suggests that this human graph activity 

functioned as a dramatic Freirean codification/decodification. Firstly, the data may 

indicate a shift in students’ ability to see themselves in the social issue of wealth 

disparity and to perceive it as a contradiction in their lives. Secondly, students’ use of 

language involving feelings and physical sensations in describing their experience in 

the activity may indicate shifts in traditional conceptions of mathematics as neutral, 

context-free and related primarily to thinking. For example, students ponder the 

relative importance of effectiveness and precision, which are traditionally highly linked 

to mathematics, and other potentially desirable qualities, such as “visceral” or 

“memorable”. As one student put it, in comparing regular graphing to the activity:  

S2: It’s like the difference between reading about the height of the Eiffel Tower, 

and standing at the base of it looking up.  
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This points to the start of a critical attitude from students with respect to classroom 

mathematical representations of their own data. Thirdly, because the activity 

challenged students to predict and then to compare their predictions to data from the 

2022 Canadian census, it also helped students gain awareness of their previous 

perceptions and knowledge about the issue of economic disparity. For example, 

S6:  I was surprised when we found out the actual depiction of these numbers 

because the actual spread was way larger (between 60-80% and 80-100%) 

than we had originally predicted.  

Finally, the data shows students’ generative themes, in which students propose a more 

detailed investigation of the data, of the experience of the people behind the data, of 

intersectionality with other social issues, and of policies such as taxation.  

CONCLUSION 

In the human graph activity described here, students took on roles from data categories 

on wealth, and walked away from each other to spatially represent those economic 

gaps. During the activity, mathematical objects were students’ bodies, statistics were 

people's experience, and social concerns were emotions and voices in the classroom. 

The class discussion and written reflections show that students recognized themselves 

as part of this situation and of the disparity therein. Thus, students were aware of the 

mathematics they were doing as relevant to their own existential experience. 

Furthermore, students shared their views of the world and personal generative themes. 

I submit that the activity functioned as a mathematical dramatic Freirean 

codification/decodification, offering opportunities for shifts in students’ perceptions of 

economic inequality, of their own part and position in this disparity, of mathematics as 

a possible way to connect with the issue, and of themselves as subjects who can 

critically analyse mathematical representations and mathematics classroom activities. 
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EARLY DIVISION PRIOR TO FORMAL INSTRUCTION: YOUNG 

CHILDREN EXPLAIN THEIR SOLUTION STRATEGIES 

Luca Wiggelinghoff and Andrea Peter-Koop 

Bielefeld University 

This paper is embedded in a larger international study of young children’s 

understanding of division prior to formal instruction. Real-world related division 

problems typically can be interpreted as either partitive or quotitive division and 

respective solution strategies. However, previous papers have identified children using 

grouping strategies that are typically related to a quotitive context for solving partitive 

division problems. The related drawings and written result do not explain the under-

lying thinking process. Hence, this paper focusses on the results of a qualitative study 

in which children were asked to explain their solution with or without modelling. 

INTRODUCTION 

Mathematics teaching as well as underlying curricula are frequently based on the 

assumption that young children develop a (formal) understanding of division 

predominantly in school. Furthermore, in many countries division is only introduced 

after the children have developed an understanding for addition, subtraction, and 

multiplication. At the same time earlier findings from studies carried out in the 1990s 

(Mulligan, 1992) as well as more recent research projects (Tumusiime et al., 2019; 

Cheeseman et al., 2022; Wiggelinghoff, 2022) suggest that many first and second 

graders can solve real world division problems successfully prior to the formal 

introduction of division in their mathematics classrooms. However, little is yet known 

about young children’s conceputal understanding of division and its development. In 

this context, the two studies published by Tumusiime et al. (2019) and Wiggelinghoff 

(2022) seek to identify children’s respective solution strategies and approaches. In their 

studies Grade 1 and Grade 2 students were asked to solve division problems presented 

through pictures in a paper and pencil test, that involved three partitive division and 

three quotitive division problems (see Fig. 1). The analyses of the drawings the children 

provided to show their answers, suggest that many children chose to solve partitive 

division problems by using a grouping strategy and hence use a strategy that works 

well for solving quotitive division problems. For solving partitive division tasks this 

strategy is far less suitable as information about the number of items per group is not 

available. Why the children chose the grouping strategy for partitive division cannot 

be derived from their written answers and/or drawings. Tumusiime and colleagues 

have raised this question already in their poster presented at PME 43 and called for 

further research. The study reported in this paper takes up on that and seeks to answer 

the following research question based on qualitative interviews: How do children who 

apply a grouping strategy to partitive division tasks find the correct solution, i.e. the 

number of items per group? 
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THEORETICAL BACKGROUND 

When looking for real world related representations of a division problem, e.g. 12 ÷ 3, 

one numerical task can present two completely differently structured situations 

depending on the nature of the problem context and can therefore be illustrated in two 

interpretations of division: partitive and quotitive division. Both represent prototypical 

mental models of the mathematical division concept, that are fundamental for the 

understanding and interpretation of real-word related division problems and hence for 

a comprehensive understanding of division in primary school mathematics. Table 

1illustrates the partitive and the quotitive interpretation of the task 12 ÷ 3: 

Interpretation of division Total number 

of items 

Number of 

groups 

Number of 

items per group 

partitive division 

Twelve children want to split in three 

equal groups. How many children are 

in one group? 

12 children  3 equal groups 

Wanted 

How many 

children in each 

group? 

quotitive division 

Twelve children want to split in 

groups of three. How many groups of 

three can they make? 

12 children  

Wanted 

How many 

groups of three? 

groups of 3 

Table 1: Partitive and quotitive division tasks for 12 ÷ 3 

When comparing the two interpretations of division the total number of items that need 

sharing is the same (12), while they vary in terms of what is wanted: For partitive 

division the number of groups (three equal groups) is known and the number of items 

per group is wanted (How many children in each group?). For quotitive division in 

contrast, the number of items per group is known (groups of three) while the number 

of groups is wanted (How many groups of three?). Depending on the problem context 

the two interpretations vary according to the concrete actions as well as with respect to 

the mathematical structure. Children’s solution strategies depend on their individual 

interpretation of the task as either partitive or quotitive division. For partitive division 

the main strategy is sharing one-by-one, i.e. allocating the items one by one to their 

specific places until the dividend is exceeded (e.g. see Kouba, 1989). In their drawings 

the children draw connecting lines between the single objects and their allocations 

(Wiggelinghoff, 2022). Some children also use estimation strategies. For the strategy 

estimate and share, identified by Axmann & Bönig (1994), the number of items per 

group is estimated, subsequently the remainders are shared. For quotitive division 

children superficially use a grouping strategy. They organise the items into equal 

groups representing the number of items per group given in the problem until the 

dividend is exceeded (Kouba, 1989). The children’s respective drawings show a 

grouping by circling (Wiggelinghoff, 2022). In addition, Mulligan (1992) identified 

three developmental levels of solution strategies for division problems. The strategies 

vary according to the level of abstractness (increasing) and the level of modelling 
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(decreasing). Level 1 comprises strategies based on direct modelling and counting, 

using counters or fingers. That includes sharing one-by-one, estimate and share as well 

as grouping. Level 2 includes strategies based on counting, addition and subtraction 

without direct modelling. Frequently these strategies are similar to the ones in level 1, 

but the children manage to describe their approach and their visualization of the 

problem. Level 3 includes strategies based on known or derived facts (e.g. addition 

facts). As the level increases, the strategies used become more elaborate and can be 

applied more independently of the underlying interpretation of division. 

RESEARCH BACKGROUND 

This paper is embedded in an international research project (participating countries are 

Australia, Chile, China, Germany and Uganda) that aims to explore young children’s 

ideas and understanding of early division prior to school instruction. In this project, 

Grade 1 and Grade 2 students complete a paper and pencil test comprising up to six 

division problems set in a real-world context prior to formal classroom instruction: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Partitive and quotitive division tasks with increasing degree of difficulty 

First results of the national studies have already been presented at preceding PME 

conferences. Tumusiime et al. (2019) conducted a study with 96 Grade 1 and Grade 2 

students (5- to 8-year-olds) in Uganda. They were presented with a paper and pencil 

test containing items P1, P2, Q1 and Q3 (see Fig. 1). These tasks were solved with 

solution rates between 56 and 77 percent. Neither of the two interpretations, quotitive 

or partitive division, was solved more successfully. These overall high success rates 
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indicate an awareness of division prior to instruction in many of these children. In 

addition, the children's diverse drawing solution strategies were examined and 

described. 27 of the 96 children 

in their sample used a grouping 

strategy for item P1 (see Fig. 2). 

The drawing on the right 

corresponds to the expected 

strategy of sharing one-by-one. 

The strategy on the left in 

contrast corresponds to 

grouping by circling. However, 

the number of items per group is 

not included in the task and this 

strategy is therefore not actually applicable. The number of items per group had to be 

determined in a different way that the respective drawings do not reveal. Cheeseman 

et al. (2022) have reported results from their study in Australia. Here, 114 Grade 1 

students (5- to 6-year-olds) solved all six items of the paper and pencil test with success 

rates between 33 and 66 percent. Again, no significant differences between partitioning 

and quotitioning were found in terms of the success rates. Almost three quarters (74%) 

of children could provide a correct solution to at least one division problem and thus 

show some awareness of division prior to instruction. Their results were confirmed by 

the study underlying this paper (see Fig. 1). 74 first graders (6- to 8-year-olds) solved 

between 23 and 71 percent of the division problems correctly irrespective of their 

partitive or quotitive context, while 81 percent could provide a correct solution to at 

least one division problem and show some awareness of division prior to instruction. 

METHOD 

A sample of five children from the German study took part in the qualitative study 

reported here. At the time of data collection, they attended a rural elementary school 

in a small town in western Germany. The children were at the end of their first year of 

elementary school. Division had not been formally taught in their classes. The children 

were selected based on their responses to the paper and pencil test described above. All 

five children had solved at least one of the three 

partitive division problems P1 to P3 with grouping by 

circling. The method of individual clinical interviews 

was chosen to reveal the underlying thought 

processes of the children's solution strategies. For this 

purpose, the children work on a partitive division 

problem with numbers identical to task P1, while the 

context and the presentation of the task are different. 

The children are given a sheet with 3 mats and 12 red 

teddies (see Fig. 3) and are asked to solve the 

following task: “Here are three teddy mats and 12 
Fig. 3: Partitive division task 

presented in the interview 

Fig. 2: Grouping (l.) and sharing one-by-one (r.) 
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teddies. Share the 12 teddies between the three mats, so that there is the same amount 

of teddies on each mat. How many teddies go on each mat? How did you work that 

out?” The material encourages an active approach while allowing multiple solution 

strategies. The children were encouraged to explain their thoughts and procedures 

when finding the solution. All interviews were video-recorded and transcribed 

including the actions performed by the children. The transcripts were then analyzed 

using the qualitative content analysis method (Mayring, 2015). In a first step three main 

categories were defined deductively based on the interview protocol and the existing 

literature, i.e. (1) solution strategy and giving the solution, (2) explanation of the 

solution strategy, and (3) finding alternative solution strategies. All transcript excerpts 

that clearly show a child's approach and solution strategy as well as the nomination of 

the result were assigned to the first category. Explanations/ reasonings of children's 

approaches and solution strategies were assigned to the second category, while 

alternative solution strategies, which the children were explicitly asked for, were 

allocated to the third category.  In a second step the main categories were differentiated 

into subcategories based on the interview data, in order to present and evaluate the 

results in a structured and detailed way. The following example illustrates the coding. 

Adam: takes one teddy at a time and places them in turn on mat 1, mat 2 and mat 3 and 

then starts again at mat 1, the teddies are therefore shared one by one  

The above excerpt from the transcript refers to Adam’s solution of the “teddies on math 

task” and is therefore allocated to category 1. From a research point of view, it is also 

important to analyze which of the numerous strategies was chosen by Adam. These 

strategies represented in subcategories, i.e. (a) sharing one-by-one, (b) grouping, (c) 

estimation, (d) giving the solution without manipulation of materials. In this example, 

Adam's approach corresponds to the sharing one-by-one strategy and is therefore 

classified as (sub-)category 1a. 

FINDINGS 

The qualitative data analyses show three different solution categories and respective 

thinking and argumentation: 

Sharing one by one. Adam (7 years) shares the 12 teddies one by one. This procedure 

is to be expected for partitive division. For a grouping strategy the number of items per 

group would have to be known, which Adam makes clear in the argumentation for his 

approach: “You can't know beforehand that four teddies go on each mat. It is therefore 

better to share them one by one.” While Adam’s solution does not help contribute to 

answering the research question, it does illustrate the underlying research gap from a 

child's line of reasoning. 

Estimation and subsequent rearrangement. Two children, Lara and Luke, apply the 

estimate and share strategy. As outlined above, this is also a common procedure for 

partitive division problems. Lara first places six teddies at once on the first mat and 

then looks at the remaining teddies for a few seconds. This is followed by a purposeful 

re-sorting: Two of the six teddies are moved from the first mat to the second mat. The 
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second mat is filled up to four teddies. Lara then places the remaining four teddies on 

the third, previously empty mat and explains her solution: “I thought there must be six. 

[...]. But then I looked and tried two. And then I knew I had to do four each.” Lara's 

first estimate is that six teddies need to go on each mat. She quickly realizes that there 

are not enough teddies and rearranges two teddies. At this point, she manages to get an 

overview of the task and realizes that exactly four teddies go on each mat. Luke, on the 

other hand, takes a slightly different approach using the same strategy. First, he places 

five teddies at once on the first mat. He then places four teddies on the second mat, 

leaving three teddies in the pile. After briefly reviewing the situation, a teddy from the 

first mat is placed on the third mat and the three remaining teddies are added. He 

explains: “Because I first put five there [points to the first mat]. Then I wanted to put 

five there [points to the second mat]. Then there were three left [points to the pile], and 

then I realized ... that there need to be four each.” Luke therefore initially assumes that 

five teddies go on each mat and recognizes the correct solution in the course if his 

actions. In comparison to Lara, Luke makes a better estimate, whereas Lara recognizes 

the correct solution more quickly. Both children provide useful explanations of their 

solutions in relation to the research question. However, the strategy estimate and share 

does not become obvious in the children’s drawings, as the drawings do not show any 

corrections that would indicate an initial estimate and subsequent (re)distribution. The 

explanations of Luke and Lara show that while their drawings in the paper and pencil 

test look very similar and suggest a grouping strategy, their thinking is different from 

this strategy and also varies slightly between the two children. Furthermore, their 

explanations reveal important prior knowledge in terms of the understanding of part-

whole relationships combined with the ability to make sensible estimates that lead to 

rapid rearrangements. 

Grouping based on preceding calculations. Paul and Pia again 

solve the partitive division problem presented to them in the 

interview by grouping, placing teddies in groups of four 

successively on the three mats. Both then offer valuable 

insights as to how they worked out that four teddies go on each 

mat. Paul argues: “Because four plus four equals eight and eight 

plus four equals twelve.” Apparently, Paul succeeds in making 

a connection to known number facts using only the information 

about the total number of items (12 teddies) and the number of 

groups (3 mats). He uses repeated addition (4 + 4 + 4 = 12) 

utilizing an intermediate result (4 + 4 = 8 and 8 + 4 = 12). He 

obviously has prior knowledge of addition and a part-whole-understanding that he can 

use to determine the number of items per group for the division task 12 ÷ 3. It is 

particularly noteworthy that the link between division and other arithmetic skills and 

prior knowledge is clearly intrinsic in this case. Pia also successfully solves the division 

problem using a grouping strategy. She states the correct result before she places 

groups of four teddies successively on the three mats: “Four! Because I know that six 

plus six is twelve. And four plus 2 ist six and two plus two is four. And then I just put 

Fig. 4: Paul’s 

calculation process 
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the two together and that made four.” She links the information 

about the total number of items (12 teddies) with a known 

number fact: 6 + 6 = 12. Since three equal groups are required, 

she re-groups 12 into three groups of four. Based on her part-

whole understanding she can mentally split both sixes into four 

and two and then adding the two twos to make four. By 

decomposing and adding, she manages to re-group two sixes 

into three fours, which is the correct solution to the task. Again, 

the link between division and other arithmetic skills and prior 

knowledge is clearly intrinsic. While Paul's and Pia's 

approaches are based on fundamentally different ways of thinking, there are obvious 

parallels: Both use prior knowledge for addition in the form of known number facts as 

well as their part-whole understanding, indicating an intrinsic (mental) link between 

division and other arithmetic skills. According to Mulligan (1992), the strategies 1 

(sharing one by one) and 2 (estimation and subsequent rearrangement) can be assigned 

to the lowest level, as direct modeling and solution strategies in the sense of the 

interpretation of division take place. Paul and Pia, on the other hand, are at least at level 

2, as they find solutions based on known number facts and/or number decompositions 

without having to model their solution process with the teddies. Their strategies are 

therefore applicable regardless of the underlying interpretation of division and 

underline Paul’s and Pia’s deeper understanding of division in this respect. 

DISCUSSION AND CONCLUSION 

The qualitative sub-study provides relevant findings with respect to the research 

question. While it was previously not clear how children determine the number of items 

per group when they use a grouping strategy in partitive division problems, the 

qualitative data analyses revealed two pertinent strategies – estimation and subsequent 

rearrangement and grouping based on preceding calculations.  

Two children in the sample apparently used estimation strategies involving their part-

whole understanding and orientation in number space. This enables them to make solid 

estimates followed by quick mental rearrangements.  

Two other children used calculation strategies such as repeated addition and re-

grouping based on previous knowledge of addition and part-whole understanding, 

enabling them to find the solution without having to model their solution with concrete 

material. Particularly important for this approach are known number facts and number 

decompositions. According to Mulligan (1992), such approaches are much more 

elaborate and can therefore be used by the children independently of the underlying 

interpretation of division. It is noteworthy that the children use prior arithmetic 

knowledge to solve division problems without any prompting. This suggests that at 

least some young children already have intrinsic links between division and other 

arithmetic skills that can be activated.  

Fig. 5: Pia’s 

calculation process 
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When linking this realization to current curriculum documents for early primary 

school, it challenges the current approach to focus on teaching addition and subtraction 

(typically taught in Grade 1) a long time before focusing on multiplication and division 

(frequently taught in Grade 2). Especially when interconnections are intrinsic, it is well 

worth building on them systematically in school mathematics. The study by Bicknell 

et al. (2016) has already shown that teaching division from Year 1 to some extent can 

have a positive impact on the development of operational understanding in general. 

Furthermore, in a study of children struggling with their mathematics learning Moser 

Opitz (2007) found that divisional understanding remains a hurdle for many children 

in learning mathematics right through to secondary school, which is another reason 

why changes are being called for in the teaching of division in elementary school. 

However, the sample of this study is rather small and certainly not generalizable. In 

order to gain a better understanding of the extent and depth of children’s prior to school 

knowledge and understanding of division, further research into children’s intrinsic 

strategies with a larger sample is clearly needed. It would be helpful to have data from 

different countries with different curricula and teaching approaches to be able to further 

discuss necessary changes to classroom instruction. 
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PERFORMANCE OF JUNIOR HIGH SCHOOL STUDENTS’ 

COMPUTATIONAL THINKING IN MATHEMATICAL PROCESS 

Lan-Ting Wu and Feng-Jui Hsieh 

National Taiwan Normal University 

This study explores the performance of junior high school students in computational 

thinking within mathematical tasks, which were systematically designed based on 4 

computational thinking elements and 3 PISA mathematical processes. We employed 

inductive analysis to explore types of responses from 60 junior high school students, 

with 30 students from each of the 7th and 9th grades. The results showed that students 

performed well in decomposition and pattern recognition, but performed relatively 

weaker in abstraction. Their algorithm designs could be classified into three major 

types: graph-oriented, direct code-oriented, and pattern code-oriented. The 9th-

graders outperformed 7th-graders in algorithmic design. As long as students could 

design algorithms for simple cases, they had no difficulty with more complex cases. 

INTRODUCTION 

The rapid development of technology has profoundly influenced our living practices 

and ways of thinking. In light of this trend, education must be adequately prepared. 

Scholars have outlined skills deemed essential for the 21st century (Voogt & Pareja, 

2010; Wagner, 2014; OECD, 2021). After Wing (2006) coined the term 

“computational thinking” (CT), scholars also suggest incorporating CT, which 

includes decomposition, pattern recognition, abstraction, and algorithm design, in 

school curriculum (Weintrop et al., 2016; Shute, Sun, & Asbell-Clarke, 2017). The 

latest PISA 2022 mathematics framework (OECD, 2021) recognizes that students 

should possess not only mathematical thinking (MT) but also CT skills. 

Some studies consider problem-solving as one of the commonalities between MT and 

CT (CSTA, 2011; Rambally, 2015). While CT originates from the field of information 

technology and often involves using programming to cultivate CT, it doesn't 

necessarily have to rely on computers (Kaufmann & Stenseth, 2020). Tasks involving 

CT are classified as either plugged or unplugged, depending on whether computers are 

used, while MT can be viewed as tasks for problem-solving within specific 

mathematical content that do not necessarily require the use of computers (Wu & Yang, 

2020). It is crucial for teachers to recognize MT within CT and ensure a simultaneous 

focus on both in planned activities; similarly, the reverse is also essential. 

Understanding students' current computational thinking skills in mathematical can 

greatly assist teachers in developing CT activities in the field of mathematics in the 

future. Therefore, this study focuses on the following research questions: 

1. How do junior high school students perform on CT? 
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2. What are the commonalities and differences of the characteristics exhibited 

by 7th-graders and 9th-graders in CT? 

RESEARCH METHOD 

Research framework and instrument 

The conceptual framework for understanding students' CT skills in mathematical in 

this study included two dimensions which were the 4 elements of CT (decomposition, 

pattern recognition, abstraction, and algorithm design), and the three mathematical 

processes in mathematical reasoning problems (formulate, interpret, and employ) in 

the 2022 PISA mathematical literacy framework (OECD, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The framework of this study 

 

The instrument used in this study included a series of 5 unplugged tasks, each task 

corresponding to the two-dimension framework, as shown in Figure 1. In the 

dimension of mathematical reasoning, each task corresponds to a mathematical process; 

in the dimension of CT, each task adds an additional CT element to the previous task. 

Task 1 corresponds to decomposition, and Task 2 corresponds to decomposition and 

pattern recognition. Both tasks simultaneously correspond to the formulate process. 

Task 3 adds the abstraction element of CT and corresponds to the interpret process. 

While the final tasks, Task 4 and 5, both add the algorithm design element and 

correspond to the employ process. 
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The tasks used are not explicitly included in our mathematics curriculum, rather 

inspired by the PISA released items. The tasks were developed through 8 sections of 

focus group discussion with a math education professor with 40 years of teaching 

experience, a PhD student with 16 years of teaching, and three master students. 

The main theme of the tasks is to manipulate the path of a robot, which can only move 

upwards or to the right. Students are required to identify, judge, or produce paths that 

intersect the diagonals of specified m × n grids the most or least times. Task 1 and task 

2 guide students to start with a 2 × 1 and a 3 × 2 grid respectively. Students have to 

identify and create different patterns of paths to demonstrate their ability in “the 

decomposition, pattern recognition x formulate” dimensions. In Task 3, a path in a 

2 × 9 grid is used to introduce two ways of recording the paths, direct code and pattern 

code (see Figure 2). Students have to then judge and interpret whether and why the 

given path matches another pattern code (see Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Two methods for recording the robot's path 

 

 

 

 

 

 

Figure 3: An alternative correct pattern code to task 3 
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Task 4 involves a 3×4 grid. Students are asked to 

determine whether moving upward-first or rightward-

first can result in the most intersections with the 

diagonal. Additionally, students have to produce a 

path with no intersections with the diagonal and use 

pattern code to record their paths. Task 5 involves a 

complex 14×15 grid (see figure 4). Students are 

required to move along the 8x6 grid to point C and 

then proceeding along the 6x9 grid to point B, and 

record their paths using the way of pattern code. 

 

Participants 

The sample included 60 junior high school students in Taiwan, with 30 seventh graders 

and 30 ninth graders from the same school. Different grades were chosen for 

comparison. The average academic achievements of the students in this school are 

moderate below national average (in terms of national senior high school entrance 

examination).  Approximately 36% (national average 26%) of the students at this 

school are identified as needing improvement in mathematics, while 15% (national 

average 25%) of the students have achieved proficiency in mathematics. These 

students had not studied similar topics in their math classes previously.  

Data collection and analysis 

This study collected students' responses on worksheets, comprising 7 pages with a total 

of 5 tasks. The analysis of students' responses utilized both content analysis and 

inductive analysis, with the goal of exploring the intricate connections between 

students' answers, their reasoning processes, and the various elements of CT. 

Regarding correctness and completeness of students’ responses, we assigned codes of 

1 point (complete and correct), and 0 point (incorrect) to examine potential differences 

in CT skills among students of different grade levels. 

RESEARCH FINDINGS 

The computational thinking performance of students from Task 1 to Task 5 

In this section, all the reported correct percentages were from the last question of each 

task and represented the final correctness status of that task. Students' performances in 

the five tasks dropped significantly starting from Task 3. In the formulate process (Task 

1 and Task 2), students focused on exploring paths within the smaller grids, observing 

whether it was more advantageous to move to the right or upward first. Due to the 

limited number of possible paths and the perceived affordance (Norman, 1999) of the 

worksheets for students to explore practically, the percent corrects were high. Task 3 

required students to determine whether the alternatively given pattern code matched 

the given paths which had originally been recorded using another pattern code. Many 

students believed that the paths should not be the same by simply switching the place 

 

Figure 4: The grid in task 5. 
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of repetition portion of pattern code, which resulted in the percent correct much lower 

than those of the first two tasks (see Table 1). 

 

Percent correct Task1 Task2 Task3 Task4 Task5 

Total (N=60) 77% 81% 57% 48%* (40%) 50%* (25%) 

Note. * represents % of pattern code. The % of using direct code is in parentheses. 

Table 1: Percent corrects for Tasks 1 to 5 

Task 4 required the paths not to intersect with the diagonal lines, and the constraints 

were relatively few, allowing for many possible answers. Students primarily chose to 

repeat two steps, and their response types could be categorized into three major types. 

Type 1: Moved directly upward and then to the right (22%). Type 2: Moved upward 

twice, then to the right, and repeated the sequence of moving upward and to the right 

twice (8%). Type 3: Moved upward twice, then to the right, and repeated the sequence 

one more time, then moved to the right (17%) (see Figure 5). 

 

 

 

 

Figure 5: The students’ major types of pattern codes for Task 4 

Comparing the two algorithms (pattern codes) listed in Task 3 (Figure 2 and Figure 3) 

with the algorithm designed by students in Task 4, it shows that students perform better 

in capturing smaller repeating units during the process of pattern recognition and 

abstraction. This phenomenon is also evidenced in Task 5. 

From students' responses in Task 5, it showed that when facing a large grid, students 

returned to the stages of decomposition and pattern recognition to observe and explore. 

After abstraction, they then formulated their algorithm. In this study, students' 

algorithm designs could be categorized into three major types. The first type, named 

graph-oriented type (12%), involved recognizing small, repeated patterns from the 

drawn paths. The algorithms in this category featured short repeating sequences (two 

steps), sometimes in a right-up loop and other times in an up-right loop. The second 

type, named direct code-oriented type (7%), first transformed the path graph into a 

direct code and then identified only one specific loop (such as a right-up loop) from 

the direct code. As a result, the repeated patterns in the algorithm designs were all the 

same. The third type, named pattern code-oriented type (23%), identified repeated 

patterns in sub-grids and built the pattern code for the whole grid using patterns of the 

sub-grids. This type of algorithm design had a larger number of steps in a loop; steps 

in different loops may differ and no steps were left outside the loops (see Figure 6 and 
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see Figure 7 for an example). However, 25% of students still struggled to generate any 

pattern codes, and instead chose direct code to record paths. 

 

 

 

 

 

 

Figure 6: The three major types of students' answers to Task 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: An example of pattern code-oriented answer in Task 5 

Comparing the percent corrects for Task 4 (48%) and Task 5 (50%), the findings 

suggest that while students can generate pattern codes for moving steps for small grids, 

they have no difficulty generating pattern codes for much larger grids even though 

being given more complex tasks.  

The commonalities and differences in the computational thinking characteristics 

exhibited by 7th-graders and 9th-graders 

The result showed no significant differences in the correctness of answers between 7th-

graders and 9th-graders in the first three tasks. In Task 1 and Task 2, which involved 

decomposition and pattern recognition, the both percent corrects for 7th-graders were 
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78%, while the percent corrects for 9th-graders were 80% and 83%, respectively. In 

Task 3, in which abstraction was introduced, although 9th-graders had a higher percent 

correct (63%) than 7th-graders (50%), the percentages were not significant different 

(see Table 2). 

However, significant differences of percent correct between 7th-graders and 9th-

graders were observed in Task 4 (p < .05) and Task 5 (p < .05), when algorithm design 

(pattern code) was a required element in the measurement. Compared to 7th-graders, 

9th-graders could more comfortably use pattern code to fulfil task requirements. In 

Task 4, about the same percentages (85% and 86%) of students in both grades could 

provide path descriptions. However, only 30% of 7th-graders utilized pattern code, 

compared to 63% of 9th-graders. As shown in Table 2, there were similar results in 

Task 5. This indicated that 9th-graders outperformed 7th-graders in algorithm design 

ability. 

Percent 

correct 
Task1 Task2 Task3 Task4 Task5 

Grade 7 

(N=30) 
78% 78% 50% 30%* (55%) 30%* (40%) 

Grade 9 

(N=30) 
80% 83% 63% 63%* (23%) 66%* (10%) 

Note. * represents % of pattern code. The % of using direct code is in parentheses. 

Table 2: Percent corrects for tasks varied between 7th-grade and 9th-grade students 

CONCLUSION 

Currently, activities designed to cultivate CT skills often focus on elementary school 

students' Scratch, programming or STEM (Weintrop et al., 2016). The 2022 PISA, 

assessing 15-year-old students, explicitly states that “students should possess and be 

able to demonstrate computational thinking skills as they apply to mathematics as part 

of their problem-solving practice”. (OECD, 2021). This means the integration of CT 

in junior high school mathematics classrooms is essential. Based on this claim, this 

study aims to develop and measure CT skills in junior high schools through 

mathematical tasks that can identify mathematical processes. We adopted an 

unplugged approach because it is the dominant approach in Taiwanese mathematics 

classes. 

Although our samples’ mathematical achievement were below Taiwan’s average, they 

demonstrate high levels of CT elements of decomposition and pattern recognition. This 

may result from the fact that our tasks that testing these two elements only used small 

grids, and Taiwanese students are accustomed to approaching difficult tasks through 

understanding simpler examples, which is an approach often used in math problems in 

Taiwan’s national senior high school entrance examination. This phenomenon can be 
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seen for the most complex Task 5, where about half of the students can decompose and 

identify patterns in small units. 

Due to space constraints, this paper does not delve into specific features of students' 

pattern recognition. However, a more comprehensive explanation of students' pattern 

recognition characteristics will be provided in the conference presentation. And given 

that students' performance dropped significantly in both grade levels starting from Task 

3, which specifies abstraction in the interpret process, future classroom instruction 

could benefit from placing greater emphasis on the abstraction element of CT and the 

interpret process. More research is needed to explore strategies for enhancing students' 

abstraction skills. 
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AN INVESTIGATION ON THE MATHEMATICAL CREATIVITY 

OF REGULAR JUNIOR HIGH SCHOOL STUDENTS IN TAIWAN 

Yuan Jung Wu and Feng-Jui Hsieh 

National Taiwan Normal University 

This study explores eighth-grade students’ creative thinking skills in the three 

mathematical processes: formulate, employ, and interpret mathematics in PISA’s 

mathematical literacy framework. Questionnaires capturing the fluency, flexibility, 

and originality indicators of creative thinking were developed and randomly 

distributed to 225 students in four regular schools in Taiwan. Inductive analysis was 

conducted to gain several categories with each several patterns of the responses. 

Coding rubric was developed. The results show that Taiwanese students performed 

well in fluency and flexibility in the formulate process but showed only moderate 

flexibility in the employ process. The research team was surprised as many students' 

creative answers surpassed expectations. 

The 2022 Programme for International Student Assessment (PISA), organized by the 

OECD, for the first time incorporated 21st century skills, including creativity, in the 

mathematics test items (OECD, 2018), primarily because creativity is considered 

crucial for future economic growth and societal development (Binkley et al., 2012) In 

a cross-country standard and textbook analysis study, supported by the OECD Future 

of Education and Skills 2030 project, both the national curriculum standards and the 

higher-order exercises were coded as to whether they included 21st century 

competencies, including creativity (Schmidt et al. 2022). Inspired by these projects, 

this study aims to investigate the capacity of regular students’ creative thinking in the 

three mathematical processes: formulate, employ, and interpret, classified by PISA. 

The purpose of this study is to explore: 

(1) the creative thinking products of students in the formulate process. 

(2) the creative thinking products of students in the employ process. 

(3) the creative thinking products of students in the interpret process. 

LITERATURE REVIEW 

Creativity has been regarded as an indispensable component in 21st century skills. 

Binkley et al. (2012) organized the ten skills they have identified into four groupings, 

the first item in the first grouping “ways of thinking” is creativity and innovation. Many 

organizations also view creativity as a core 21st century skills (Partnership for 21st 

century skills, 2012; NRC, 2012).  It can be seen from this that experts have 

restructured their views of creativity, and think about it more as a core skill to be 

developed for all students rather than as a personality trait exclusive to gifted students 

(Sternberg, Kaufman & Grigorenko, 2008). Cropley (1992) points out that in terms of 
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teaching students in schools, the nature of creativity refers to a special kind of thinking, 

often called divergent thinking rather than the other nature of generating novel or 

creative products. Cropley claims that creativity is "the capacity to get ideas, especially 

original, inventive and novel ideas" in teaching. Creativity in this situation is also called 

creative thinking. 

Researchers considered creative thinking as an important element in mathematics 

classrooms for it is an essential thing to support mathematical thinking and 

communication (Novita & Putra, 2016) and it provides students the opportunity to 

appreciate the beauty of mathematics (Mann, 2006). 

Most researchers believe that mathematical creative thinking is a multi-faceted 

construct, involving both divergent thinking and convergent thinking (Runco, 1993). 

However, when evaluating the products of mathematical creative thinking, divergent 

thinking derived from Guilford (1959) is mainly used (Torrance, 1966). A major 

approach adopted by researchers to evaluate creative thinking is the use of indicators. 

One major approach is to use three indicators: fluency, flexibility, and originality 

(Hollands, 1972; Haylock, 1987; Kim et al., 2003; Lee & Seo, 2003); while another 

major approach is to add an elaboration indicator to the first three indicators. 

The authors believe that preliminary research on regular students' mathematical 

creativity can ignore elaboration to avoid too many students' frustration when 

answering questions. 

When considering creativity in mathematics, scholars and experts agree that giving 

multiple solutions is a manifestation of creativity (Arıkan, 2017; Leikin, 2009). Leikin 

and Lev (2013) used a multiple solution method to explore the relationship between 

creativity and mathematics achievement. Their research results showed that we cannot 

use mathematics achievement to judge the level of students' mathematical creativity. 

In the PISA series of assessments, eight 21st century skills are included in the 

assessment of mathematical literacy for the first time. PISA emphasizes that these 21st 

century skills are both supportive of and developed through mathematical literacy 

(OECD, 2018), one of which is creativity. Although PISA advocates the importance of 

21st century skills, in this PISA2022, items were not deliberately developed to 

incorporate or address 21st century skills. Instead, the identified 21st century skills 

were incorporated in the items. Items in the 2022 PISA mathematics test were assigned 

to either mathematical reasoning or one of three mathematical processes: formulate, 

employ, and interpret mathematics. 

METHODOLOGY 

Conceptual framework of the study 

For creative thinking, we adopted the same construct as Leikin (2009), that creative 

thinking consists of three indicators: fluency, flexibility, and originality. For 

mathematical processes we adopted PISA 2022 framework, which includes formulate, 
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employ, and interpret mathematics (OECD, 2018). The conceptual framework of this 

study is shown in Figure 1. 

 

 

 

 

 

 

Figure 1: Conceptual framework of the study 

Formulate refers to formulating situations mathematically. Employ refers to employing 

mathematical concepts, facts, procedures and reasoning. Interpret refers to interpreting 

or evaluating mathematical outcomes. Fluency, flexibility, and originality are 

classified as generating a variety of ideas, generating different kinds of ideas, and 

generating unique and novel ideas. (the statistical infrequency of the responses in 

relation to the peer group, Haylock, 1997). 

Design and instrument 

This study selected four realistic, authentic, real-world contexts. In each context, nine 

open-ended items were developed to  measure all indicator of creativity in all 

mathematical processes, for a total of thirty-seven items. The four contexts cover at 

least four tasks: working on operations, redefinition and reclassification, pattern 

restructuring, and problem posing. This process was implemented through more than 

ten focus group discussions, which consisted of up to three professors, two PhDs with 

an average teaching experience of more than 20 years, and three Master’s students. The 

items were all pilot tested with more than twenty students to test the feasibility of the 

items and the time required to answer them. Items were remodified accordingly. Based 

on the pilot study, four questionnaires were developed, each covering only one context 

with nine to ten items. 

In this report, we focus on the results of one context, named “Guessing-Key Game” in 

which students’ task is related to working on operations. The context describes that a 

class is playing a game related to guessing the real keys while the students only know 

the public keys obtained by converting the real keys into public keys through a so called 

“black-box action”. The one who develops the most difficult-to-guess “black-box 
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action” wins the game. The ten items, F1a, F2a, …, etc, capture indicators of creativity 

in different mathematical processes are shown in Table 1. 

The prompt for the items specified to formulate process is exemplified as follows: 

“Please design two ‘black-box actions’ that are harder to guess than the one designed 

by Ping. The bigger the difference between your two ‘black-box actions’ the better.” 

(Ping’s design simply adds one to the true keys.) 

This study used purposive sampling. Two schools each from the north and south of 

Taiwan were chosen. The “Guessing-Key Game” questionnaires were randomly 

distributed to a total of 225 eighth-grade students in these four schools. Students could 

respond to the questionnaires for 45 minutes. We obtained 222 valid samples. 

Data analysis 

Six focus group discussions were conducted in two months to generate ways to do 

inductive analysis and to develop coding rubrics for students’ responses. The principle 

of coding was that each response must be given a response type code, which consisted 

of several digits. Each digit place represented a category (e.g., the category of 

converting ways and the category of math ideas used). Different values in a digit place 

represented different patterns in that category (e.g., using absolute values and using 

exponentials are different patterns in the category of math ideas used).  The subject's 

responses were then assessed for fluency according to the number of acceptable 

responses, flexibility according to the number of different patterns of responses, and 

originality according to the infrequency patterns of the responses among the samples. 

Each response was then coded by two coders. The coder reliability for the data reported 

in this article are all higher than 0.9. For codes where consensus was not reached, 

coders held in-person or online meetings to consult with another expert in this study to 

obtain final codes. 

RESULTS 

Due to space limitations, we only provide some examples and a small portion of the 

results relating to formulate and employ processes in this report. More results will be 

given at the conference. 

Fluency in the formulate process 

Questions capturing fluency in the formulate process were answered by as many as 

92% of participants, demonstrating that Taiwanese junior high school students possess 

a high level of fluency in the formulate process. The most frequently observed patterns 

involve using first- or second-degree polynomials in the design of “black-box action” 

(abbreviated as BB action below), accounting for 80% of the cases. The reasons for the 

high occurrence of these patterns may be that in Taiwan, the mathematics content by 

the end of grade 8 covers linear functions with rational coefficients, polynomials 

(mainly 1st and 2nd degree), and their arithmetic actions and factorization. When 

students provided two different polynomials, they are regarded as equipped with 

fluency in creativity, but not flexibility.  
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Flexibility in the formulate process 

One criterion for flexibility is when students’ two BB actions are classified as having 

different patterns in any one of the three categories: converting ways, math ideas used, 

and forms. A total of 60% students meets this criterion. Figure 2 shows examples of 

responses carrying great variation of patterns in converting ways (Student A) and math 

ideas used as well as forms (Student B). 

 

Figure 2: Responses show flexibility in the formulate process. 

The first BB actions of student A is of the type 𝑎𝑥 + 𝑏. Student A described his/her 

second BB action as “Multiply the key by 3 and subtract the ones digit from the result”. 

The patterns of the converting way switched from “function relations” to “restructuring 

or operating on place digits”. The patterns of math idea used for Student B switched 

from “rational function” to “combination of radical expression, fractions, polynomials, 

and prime numbers”.  

Originality in the formulate process  

This study classified responses that were particularly unique and difficult for peers to 

think of (less than 5% occurrences) as possessing originality, specifically, those with 

non-function patterns or very special function relations in converting ways and patterns 

that linked to other subject or unlearned mathematical domains in the category of 

expanding.  

This study classifies as original responses that are particularly unique and difficult for 

peers to come up with (occurrence less than 5%), specifically those that use non-

functional relations or very specific functional relations in the category of converting 

ways, or links to other areas or unstudied math areas in the category of expanding (see 

Figure 3 for examples). 

 

 

 

Figure 3: Responses show originality in the formulate process. 

Fluency in the employ process 

For the employ process, the items provide students with Ping’s teacher’s true key (10) 

and public key (88) and require students to guess the BB actions that the teacher might 
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designed to convert 10 to 88, with no restriction (items E1a & E1b) and with the 

restriction of using squares (E2) and square roots (E3). 

A total of 72% of students give two different appropriate BB actions when no 

restriction is given, showing their fluency capacity. The two BB actions with the 

highest frequency fall in the type of two-term addition 𝑎𝑥 + 𝑏, such as 8𝑥 + 8 and 𝑥 +
78. 

Flexibility in the employ process 

This study classifies switching patterns in any one of the following categories as 

equipping flexibility: expression structure, number system involved, complexity levels, 

and expending. Student A shown in Figure 4 switched patterns from 𝑎𝑥 + 𝑏  to 

including absolute value symbol in the category of expression structure, while student 

B switched patterns from 𝑎𝑥 + 𝑏 to including arithmetic sequence. 

In terms of restricting to inclusion of squares and square roots in BB actions, 69% and 

43% of students were able to provide correct answers that differed from their first two 

BB actions, respectively. These students are considered equipped with flexibility; if 

further extended to use rational or irrational numbers, they are considered to have 

higher flexibility. 

Student C uses a linear function but puts the square on constants, and uses the sum of 

squares of consecutive positive integers. This shows that Student C is proficient in 

number actions and sequence concepts, and meanwhile has flexibility. 

 

 

 

 

 

Figure 4: Responses show flexibility in the employ process. 

Originality in the employ process 

The criterion of less than 5% occurrences is still used to single out originality 

responses. Two examples of originality response are shown in Figure 5. 

 

 

 

Figure 5: Responses show originality in the employ process. 

Student A is able to develop the relationship between squares and square 

roots√(4𝑥)2 × 100 − (2𝑥)2 = 0 , which is quite a unique idea. Most students’ 
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appropriated responses use perfect square numbers and adjust the values with a 

constant or coefficient, such as 22 × √𝑥 + 6 、√𝑥 + 6 + 84、9𝑥 − √4  and 

√𝑥2 + 21 − 33. Student B is able to think of 32 as the power of 2, and then think of 

the relationship between the square root of 10 and employs the concept of exponents. 

CONCLUSION 

In the context relating to mathematical operation, Taiwanese eighth graders show 

moderate (about 50%) to a high degree (about 95%) of fluency and flexibility. Students 

performed better in formulate mathematics than in employ mathematics. It is possible 

that in the employ process, to meet the situations specified in the items restricts the 

possibility of free creation. Comparing the results with the results obtained by the other 

three contexts in the whole study may provide a more precise and evidenced 

conclusion. In terms of originality, the criterion of less than 5% occurrence patterns is 

bound to result in only originality in a few students. Other possible ways should be 

considered to re-examine the criteria for originality. Students’ responses show that 

when constructing actions that convert values, they are not restricted to the learned 

mathematical concepts or expressions; rational functions, expressions with absolute 

value, higher order powers or powers with unknowns, combination of a wide range of 

operations are all possible student responses. The results of this study surprised the 

research team because many students’ creative answers exceeded the team’s 

expectations. 
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This study explores the perceptions of 96 novice mathematics teachers on assessing 

students’ learning of functions via a collaborative task of constructing a specific test 

in China. By analyzing the 23 teacher-constructed tests, the study reveals that these 

teachers demonstrated strong subject knowledge in designing mathematics tests and 

tended to construct more high-level questions with an object-level functional thinking 

focus, multiple steps, and high cognitive loads, aligned to or above the curriculum 

standards and presented in a purely mathematics context using mixed representations. 

The results provide evidence to explain the possible gaps between teachers’ intended 

curriculum and attained curriculum, and also reflect the values of novice mathematics 

teachers in assessing students’ learning of functions. 

INTRODUCTION 

Assessment can effectively serve as a tool to measure students’ learning outcomes, as 

well as to validate the curriculum they have attained (Santos & Cai, 2016). Existing 

research on mathematics assessment usually focused on the assessment task design 

(e.g., Demosthenous et al., 2021), the context of assessment (e.g., Zhang et al., 2021), 

and formative assessment (e.g., Baird, 2010), little is known about how teachers 

construct tests (Becevic, 2023), as well as what teachers perceive in the assessment. 

Teacher-constructed test (TCT), a test created or selected by teachers for assessment 

(Goos, 2020), is a crucial link between learning objectives and assessment of and for 

teaching, which can function as a method to coordinate the intended, implemented, and 

attained curriculum (Becevic, 2023). Teachers largely rely on data from TCT to make 

decisions about students’ knowledge (DiDonato-Barnes et al., 2014). As a component 

of the attained curriculum, TCT can reflect what teachers value in teaching. However, 

researchers reported that TCT was often not well-written and expressed concerns about 

the poor quality of TCT (e.g., Watt, 2005; Wellberg, 2023). 

Previous studies showed several challenges for teachers to construct a test (e.g., 

Wiggins, 1992), and new teachers usually feel not confident in testing (Burke, 2009). 

Therefore, in this study, we aim to examine what Chinese novice mathematics teachers 

perceive in assessing students’ learning of functions. Specifically, the following 

research questions are addressed: (1) How many aspects of students’ learning of 

functions are emphasized by novice teachers? (2) What kinds of assessment problems 

are highlighted by novice teachers? (3) Which principles for assessment design are 

utilized by novice teachers? (4) To what extent does the assessment align with the 

mathematics curriculum standards? 
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RELATED THEORETICAL CONCEPTS AND STUDIES 

Principles for Mathematics Assessment Design 

An effective assessment of students’ learning outcomes requires a thorough and precise 

record of student performance, along with a clear scoring guide to derive criterion 

scores (Medley, 1987). Pathak (2023) identified significant concerns such as the 

overall insufficient emphasis on important aspects, poorly crafted questions, and tests 

that are too predictable and lack clarity. Traditional mathematics tests typically focused 

on the repetition of learned procedures, even though they were capable of assessing a 

wide range of mathematical capabilities if set appropriately (Watt, 2005). Drawing 

from Medley’s (1987) work, the first design principle for constructing an assessment 

is the necessity of precision and clarity.  

The second principle is related to the format of assessment problems. Murphy et al. 

(2023) recommended teachers use a variety of test formats (e.g., cued recall, multiple-

choice, and true/false). A mixture of multiple-choice, fill-in-the-blank, and short-

answer questions is standard in high-stakes exams in China, e.g., the College Entrance 

Examination-Mathematics (CEE-M). As teachers intend to get students familiar with 

the CEE-M, teacher-constructed tests usually follow similar settings. 

The third principle considers the arrangement of assessment problems by difficulty, 

typically sorted as easy-to-hard, hard-to-easy, and random (Brenner, 1964). Research 

on the arrangement is divided; some indicated that starting with easier problems 

improves students’ performance (Hodson, 1984), while other studies found no 

significant effect (Plake, 1981) or even adverse experiences (Bieleke et al., 2021). We 

adopt Brenner’s categorization and evaluate problem difficulty based on the 

competency level outlined in curriculum standards. 

Teacher-constructed Tests in Functions 

The construction of the function concept tends to be more complicated than expected 

with regard to students. Researchers reported that many students have difficulties in 

translating and converting between various representations of functions, manipulating 

symbols, and thinking of functions as objects (e.g., Elia et al., 2007). Even though 

function is emphasized in the curriculum standards, how teachers carry out an 

appropriate assessment in students’ learning of functions is underexplored. 

Reminded by the students’ learning difficulties and teachers’ challenges in designing 

tests in terms of functions, we try to offer a more in-depth analysis on functional 

thinking aspects teachers emphasized to assess students’ learning of functions. 

Therefore, in this study, we adopt Lichti & Roth’s (2019) model of functional thinking, 

which includes three levels: (1) mapping (Complete a pair of values or identify a given 

pair of values using a graph, a table, etc.); (2) covariation (Use the absolute change, 

the slope, or the rate of change; or use only the slope of a graph to solve a task); and 

(3) object (Consider various aspects of a function at the same time to classify and relate 

it to other representation; or connect different representations as a whole, etc.). 
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Gaps between Intended Curriculum and Attained Curriculum 

Schmidt et al. (2005) argued that assessment must align with curriculum standards, 

textbooks, and actual school practice. Inspired by this, we evaluate the alignment 

between the competency level demanded by curriculum standards (knowing, 

understanding, grasping, and applying) and the tests created by novice teachers. The 

curriculum standard alignment is categorized into three levels: below standards, 

meeting standards, and above standards. 

When assessing student’s understanding of school curriculum, textbooks are always 

considered as one of the important resources for teachers (Mullis et al., 2012). To 

reflect textbook-problem relevance, the present study employs Stein et al.’s (2000) 

cognitive load analysis (memorization, procedures without connections, procedures 

with connections, and doing mathematics), and three problem types generated from 

Li’s (2020) textbook-problem analysis, including steps required for a solution (single-

step or multi-step), representations used (text or mixed representation: text & table, 

text & graph, and text & formula), and context (purely mathematics or real-life). 

In summary, the framework for analyzing teacher-constructed tests in this study 

comprises four aspects: (1) principles for assessment design (encompasses the format 

of questions, their arrangements, and the precision and clarity of the questions), (2) 

functional thinking, (3) curriculum standard alignment, and (4) textbook-problem 

relevance (evaluates the context of questions, steps required for a solution, 

representations used, and the level of cognitive load). Unique indicators for each aspect 

establish the criteria for a comprehensive evaluation of the assessment. 

METHODS 

This study was part of a project examining novice secondary mathematics teachers’ 

noticing of students’ functional thinking. Overall, 96 novice teachers from a normal 

university in China attending a training course on mathematics assessment participated 

in this study in August 2023. They voluntarily formed 23 groups: one group with 3 

teachers, 17 groups with 4 teachers each, and 5 groups with 5 teachers each. After 

several sessions on how to evaluate assessment (e.g., difficulty, discrimination, 

reliability, and validity) and principles for assessment design (covering assessment 

purposes, problem types, as well as steps and techniques to develop an exam paper), 

the course instructor assigned an in-class collaborative group task as follows: “Design 

a test comprising 8-10 questions with total 100 points, focusing on functions.” 

We collected back 23 teacher-constructed tests with 231 questions (5 tests have more 

than 10 questions). The majority of the questions covered concepts, properties, and 

applications of function (64.7%), followed by linear function (13.7%), trigonometric 

function (10.0%), logarithmic function (5.4%), inverse proportional function (3.3%), 

power function (2.5%), and exponential function (0.4%). Figure 1 provides an 

overview of four dimensions we used to reveal novice teachers’ perceptions in 

assessing students’ learning of functions. 



Zhang, Li, & Zhang 

  

4 - 228 PME 47 – 2024 

 

Figure 1: Four dimensions to analyze teacher-constructed tests 

For each question, we assigned codes for four dimensions, including functional 

thinking, textbook-problem relevance (context, steps required for a solution, 

representations used, and cognitive load), principles for assessment design (precision 

and clarity, question format, and question arrangement), and curriculum standard 

alignment. Consider the example question: “Which choice is the correct intersection 

coordinate between the linear function y=3x+6 and the x-axis? A. (2,0), B. (6,0), C. (-

2,0), D. (0,6).” The codes would be: Mapping, Purely mathematics, Single-step, Text 

& formula, Procedure without connections, High precision and clarity, Multiple-

choice, Easy, and Below standards. To verify coding reliability, two researchers 

independently coded each question, achieving a 93.52% agreement rate. For data 

analysis, we calculated the quantity and points of questions per exam across nine 

indicators (see Figure 1) to identify trends in teacher-constructed tests for assessing 

students’ functional thinking. 

RESULTS 

Functional thinking: This study adopts three functional thinking levels—mapping, 

covariation, and object—to explore how many aspects of students’ learning of 

functions are emphasized by novice secondary teachers in assessment. Table 1 shows 

the frequency of questions per test and their corresponding points across three levels. 

 Level Number of questions per test Points of questions per test 

 Mapping 

Covariation 

Object 

2.4 (22.9%) 

2.4 (22.9%) 

5.7 (54.2%) 

20.1 (20.1%) 

18.2 (18.2%) 

61.7 (61.7%) 

Table 1: Frequency of questions across three functional thinking levels 

As shown in Table 1, the majority of the questions belong to object level (54.2%), 

followed by the same proportion of questions target mapping and covariation level 

(22.9%; 22.9%). Similar trends exist for the points of questions per test, in which on 

average 61.7 (a total score of 100) assessing object level, followed by 20.1 for mapping 

level and 18.2 for covariation level per test. 
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Textbook-problem relevance: This study analyzes teachers’ preferences for 

assessment problem features: context, representations used, steps required for a 

solution, and cognitive load. Figure 2 highlights notable differences across these four 

features. For context, only 13.3% of the questions relate to real-life scenarios, while 

over 85% are purely mathematical. With regard to representations used, a majority of 

the questions (75.5%) use a combination of text and formula, while a mere 7.5% are 

presented solely in text. Mixed text and graph representations account for 16.0%. 

 

Figure 2: Distributions of questions across textbook-problem relevance & principles 

for assessment design 

For steps required for a solution, the study shows that over 90% of the questions are 

multi-step, suggesting a preference for more complex problem-solving that invokes 

higher cognitive demands. This aligns with the cognitive load analysis results, where 

approximately 68% of the questions are classified as high-level tasks, and a majority 

(62.3%) involve procedures with mathematical connections. 

Principles for assessment design: The study evaluates the design principles employed 

by teachers by examining precision and clarity, question format, and question 

arrangement. According to the data presented in Figure 2, a particularly noteworthy 

outcome is the extreme high level of precision and clarity (99%), signifying that almost 

all the questions proposed are clearly articulated and mathematically precise. 

Regarding the format of questions, inconsistencies between the number of questions 

and the points assigned to questions per exam are evident in Figure 3. Novice teachers 

prefer to design a greater number of multiple-choice questions (41.3%) and a 

comparable number of fill-in-the-blank and short-answer questions (28.8% and 29.8%, 

respectively), yet they allocate more points to short-answer questions (44.2%). In other 

words, these teachers use three formats in a relatively even distribution in their teacher-

constructed tests but tend to assign more points to short-answer questions. Regarding 
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question arrangement, approximately 73.9% of these teachers design tests with an 

easy-to-hard arrangement, in contrast to a hard-to-easy or a random sequence which 

account for 0% and 26.1%, respectively. 

Curriculum standard alignment: This study categorizes questions into three levels–

—below, meeting, and above–—to investigate to what extent the teacher-constructed 

test aligns with the mathematics curriculum standards. Table 2 presents the distribution 

of questions across three levels. 

Level Number of questions per exam Points of questions per exam 

Below 

Meeting 

Above 

1.9 (17.8%) 

5.3 (50.5%) 

3.3 (31.5%) 

13.9 (13.9%) 

51.8 (51.8%) 

34.3 (34.3%) 

Table 2: Frequency of questions across three alignment levels 

From Table 2, about half of the test questions (50.5%) are aligned with the curriculum 

standards. Consistent with the above findings of a large proportion of high cognitive 

load questions, 31.5% of the questions are above the standards, and only 17.8% of the 

total questions are below the standards. Similar trends exist for the assigned points of 

questions across three levels. It implies that novice teachers in our study tend to design 

questions above or the same as curriculum standards. In other words, these teachers 

prefer to construct a challenging test, rather than a standard-aligned one. 

Overall, when assessing students’ learning of functions, novice teachers tend to 

construct a test with: (1) More object-level, less but balanced mapping-level and 

covariation-level questions; (2) More purely mathematics, multi-step, and high 

cognitive loads questions presented in the text and formula representation; (3) Precise 

and clear questions arranged in an easy-to-hard sequence, with slightly more multiple-

choice, less fill-in-the-blank and short-answer questions while more points assigned to 

short-answer questions; (4) More questions meet or above the curriculum standards. 

DISCUSSION AND CONCLUSION 

This study aims to investigate what novice secondary mathematics teachers perceive 

in constructing a test to assess students’ understanding of functions. The most salient 

finding is that these teachers tend to construct tests that favour high-level questions, 

such as those that require object-level functional thinking, multi-step, and high 

cognitive loads, which align with or exceed curriculum standards. These questions are 

often presented in a mixed representation within a purely mathematical context. This 

suggests a discrepancy between the intended curriculum and the curriculum that is 

actually taught and assessed by teachers. 

The research further indicates that teachers possess strong subject matter knowledge, 

as evidenced by the high clarity and mathematical precision of almost all questions in 

their constructed tests. Additionally, they can utilize some principles for assessment 
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design, such as using different formats of questions and following an easy-to-hard 

arrangement. Future investigation could be conducted to explore the rationale behind 

their construction and gain insights on what kind of support or training for in-service 

teachers (especially novice) when designing good-quality tests.  

There are some limitations in research methodology. Instead of counting and 

comparing the number of different formats of questions, an in-depth analysis can be 

conducted for representative questions and tests in the future. Profile analysis could 

also be employed to identify patterns in teacher-constructed tests and determine 

whether there are significant differences between groups of tests. Furthermore, as topic 

differs in mathematics teaching and assessment, future studies could focus on more 

mathematical topics using the theoretical framework proposed in this study, which may 

help to promote teachers’ assessment literacy. 
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HOW DOES MATHEMATICAL CREATIVITY IN ALGEBRA 

CHANGE ACROSS SECONDARY UNDER STUDENT- CENTERED 

AND TEACHER-CENTERED PEDAGOGY? 

Ying Zhang 

University of Cambridge 

This study explores the developmental trajectory of mathematical creativity within 

secondary students, and whether this trajectory differs between pedagogy. A 

comparative case study of two Chinese secondary schools (Grades 7-9) was conducted, 

which in our prior research we found differ significantly in their delivered pedagogy: 

one is more student-centered pedagogy and the other more teacher-centered pedagogy. 

Using cross-sectional data, this study conducted within- and between-school 

comparisons at the beginning of Grade 8 (N=182) and at the end of Grade 9 (N=162). 

Notable findings included significant differences between the creativity of Grade 8 and 

Grade 9 students, with the latter group demonstrating creativity that was twice as high. 

This trend applies for both schools, regardless of the pedagogy students received. 

INTRODUCTION 

Creativity plays a crucial role in the full cycle of advanced mathematical thinking. 

Mere mastery of mathematical material is not a sufficient criterion for mathematical 

giftedness, but needs to be extended to an “independent creative mastery of 

mathematics under the conditions of school instruction” (Krutetskii, 1976, p.68). 

Notably, creativity is not a static entity but develops as people mature, and students’ 

mathematical creativity can vary and develop across grade levels (e.g., Cheung et al., 

2004). Understanding these changes would thus yield significant insights for 

researchers seeking effective ways to foster creativity. Despite decades of studies, there 

is still a lack of clarity regarding the developmental trend of creativity during 

elementary and secondary education. For example, Odelya (2023) reported that as the 

age of students rises, they are less prone to looking for creative solutions and more 

likely to be “held hostage” by their habitual use of algebra. However, Cheung et al. 

(2004) reported secondary students’ creativity rose from Grade 1 to Grade 9. 

On the other hand, regarding ways to foster mathematical creativity, some researchers 

suggested that, in contrast with teacher-centered pedagogy (TCP), student-centered 

pedagogy (SCP) has such a potential (e.g., Torrance, 1966). Yet no significant 

differences were found between the SCP and TCP Grade 9 students when Zhang (2023) 

explored such relationship for a preliminary attempt, which might be attributed to the 

limited tasks or the time-length students have received the pedagogies. Also, it is 

unknown whether the developmental trend of creativity differs between TCP and SCP. 

Hence, the relationship among creativity, pedagogy, and grade levels needs to be 

further investigated. Considering the research gaps mentioned above, this study moves 
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a step towards addressing these needs for research by focusing on the following 

research question: Are there significant differences between the mathematical 

creativity of the younger and older junior secondary students depending on whether 

they experienced SCP and TCP?  

THEORETICAL FRAMEWORK 

Teacher-centered pedagogy (TCP) is often described as being based upon a model of 

an active teacher and a passive student; in contrast, student-centered pedagogy (SCP) 

is based upon the idea of an active student. In mathematics, SCP has been used to 

describe a learning environment where (a) student mathematical thinking is made 

public, (b) students actively engage with each other’s mathematical thinking, and (c) 

student mathematical sense-making, conjecturing, and justifying drive instruction 

(Thanheiser & Melhuish, 2023). 

This study is concerned with the “little-c” creativity, the relative creativity of non-

experts and students as they generate novel mathematical ideas that are new to the 

students’ previous experiences or the performance of other students with similar 

educational history (e.g., Leikin, 2009). Two views of the “little-c” have been provided 

in the literature: The first one considers that creativity includes not only convergent 

thinking, the ability to generate a single correct solution to a problem, but also 

divergent thinking, the thought process used to generate multiple possible solutions to 

a problem (Guilford, 1967). The second view considers creativity based on fluency, 

flexibility, and originality (Torrance, 1966): fluency refers to the continuity of ideas 

and flow of associations; flexibility refers to the variety of approaches to a problem; 

and originality is characterized by a unique way of thinking and respective unique 

products of mental activity. The notion of creativity in our study aligns with both of 

these views whose integration can be found in multiple-solution tasks (MSTs), which 

examine both divergent and convergent thinking as suggested by Guilford (1995) and 

as reflected in problem solving processes and outcomes (Leikin, 2009), and are 

measured via the three components suggested by Torrance (1966).  

METHODOLOGY 

Comparative case study 

Dulangkou Secondary School and School Y (pseudonym) were selected as cases of 

schools implementing primarily SCP and TCP, respectively. The two junior secondary 

schools were selected due to having comparable features but different pedagogical 

approaches. Regarding similarities, firstly, both schools are in rural towns under the 

same county of the same city, so they follow the same educational policies and have 

similar economic conditions. Secondly, both schools randomly divide students into 

classrooms rather than based on achievement. Thirdly, they are the only schools in their 

respective towns, both of which require their school to recruit students only from 

within the district; thus, the two schools have similar student-intake processes.  
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Regarding the differences, School Y is one of the best-performing schools among all 

14 towns that purportedly employs TCP, while Dulangkou is the most popular school 

among all towns due to its reformed SCP (Zhang & Stylianides, 2023), which 

exemplified the result of Chinese compulsory education reform. This study used the 

RTOP observation protocol (Piburn et al., 2000), which was developed to evaluate the 

extent to which a classroom adopts reform-based pedagogy, to investigate and 

ultimately confirm that Dulangkou uses more SCP and School Y more TCP. Four 

Dulangkou (11 lessons) and five School Y mathematics teachers (13 lessons) were 

observed in 2022. The RTOP scale ranges from 0 to 100, where lower scores reflect 

TCP and higher scores reflect SCP. A Mann-Whitney U test showed School Y scored 

significantly lower than Dulangkou on the RTOP scale (Zhang & Stylianides, 2023). 

In light of these findings, this paper uses “SCP school” and “TCP school” to represent 

Dulangkou and School Y, respectively. 

Grade 7 is the first year, and Grade 9 is the last year, of Chinese junior secondary 

education. Within each school, students at the beginning of Grade 8 and the end of 

Grade 9 were selected as cases of grade levels. Consequently, a nearly two-year 

disparity in learning duration exists among the participants from these two grade levels. 

In total, two classrooms of Grade 8 (97 SCP, 85 TCP) and Grade 9 (83 SCP, 79 TCP), 

respectively, from each school were randomly selected to participate.  

Methods 

This study used multiple-solution tasks (MSTs) to indicate mathematical creativity, 

which are open-ended tasks explicitly required students to solve a mathematical 

problem in different ways (Leikin, 2009). The task, described in Table 1, was chosen 

for the following three reasons. Firstly, it is a Grade 7 task appearing often in past 

Chinese examinations, assuring their content validity in terms of problem solving. 

Secondly, this task is at a relatively easy level to prevent students’ divergent thinking 

to be submerged by problem-solving skills. Otherwise, MSTs would be degraded into 

assessing problem-solving competencies rather than creativity (Zhang, 2023). Thirdly, 

the knowledge covered at the task is routine and is emphasized by the high school 

entrance examination, thus students would regularly encounter it through their 

secondary since Grade 7. In light of this, the study satisfies the precondition outlined 

by creativity, that participants have similar background with respect to the task, which 

is not biased towards one school over another or more familiar to a specific grade level.  

Table 1. Multiple-solution task used in this study 

Solve the following problem in as many ways as possible: Guihua city dispatched a 

total of 15 citizens, both male and female, to purchase cement for construction and 

carry them back. It is known that every male citizen carried two bags of cement, 

while two female citizens carried one bag. In total, they have purchased and carried 

15 bags of cement back. How many male and female citizens were dispatched for 

this procurement, respectively?  
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All tests were administrated in person by the author, with students’ desks arranged 

separately during their regular class time. To ensure that students treat the assessment 

seriously, they were informed that the task will be similar to those found on the coming 

High School Entrance Examination, and thus they should view this assessment as an 

opportunity to test their potential.  

Solutions generated by students were first marked based on appropriateness. The 

notion of appropriateness allows evaluating reasonable ways of solving a problem that 

potentially led to the correct solution outcome regardless of the minor mistakes made 

by a solver (Leikin, 2009). The data was then analyzed based on the creativity rubric 

adapted from Leikin (2009), the detailed of which has been described in Zhang (2023). 

Finally, students’ responses were categorized into the Creative Thinking Level (CTL), 

adapted from Siswono (2011), in alignment with Leikin’s (2009) rubrics as described 

in Table 2. The following ordinal logistic regression model was employed to analyze 

the CTL results and to obtain creativity odds ratio: logit (P(Y ≤ k|S))=loge(
P(Y≤k|S)

1−P(Y≤k|S)
). 

Table 2. Creative Thinking Level adapted from Siswono (2011) 

RESULTS 

Fluency 

Table 3 categorizes the fluency score, Flui, generated by students. For example, 16.5% 

SCP Grade 8 scored between 0 and 1 (inclusive). Interestingly, the mean fluency scores 

Level Characteristic of Creative Thinking Level 

Level 0 

(Not Creative) 

Students were not able to show any components of creativity 

(Cr = 0) 

Level 1 

(Almost Not 

Creative) 

Students were able to show fluency with low originality and 

flexibility in solving problem 

(Flui≥1, Flxi≠1< 10 and Orii≤1) 

Level 2 

 

Students were able to show flexibility with low fluency 

 (0 <Flui＜2, Flxi≠1≥5, Orii≤1) 

Level 3 

(Quite Creative) 

Students were fluent and flexible 

(Flui＞1, Flxi≠1=10 and Orii<10) 

Level 4 

 

Students were able to show originality in solving problem with 

low fluency and flexibility 

 (0 <Flui≤1, Flxi≠1<10 and Orii=10) 

Level 5 

(Creative) 

Students were fluent and they demonstrate originality 

(Flui>1, Flxi≠1 < 10 and Orii=10) 

Level 6 

(Very Creative) 

Students satisfied all components of creativity 

(Flui＞1, Flxi≠1=10 and Orii=10) 
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at the two schools are identical for both grade levels (0.68 for Grade 8, 1.42 for Grade 

9). The Grade 9 students at both schools showed higher percentages of students, not 

only in solving the task but also in generating two, three, and four solutions. Via both 

Welch’s T test and Mann-Whitney U test, Grade 9 participants significantly 

outperformed (p<0.05) those in Grade 8 in terms of fluency.  

Table 3. Number of solutions corresponding to percentage of students 

Flui 0 (0, 1] (1,2] (2,3] (3,4] (4,5] Mean Flui 

Grade 8   

SCP 59.8% 16.5% 18.6% 4.1% 1.0% 0% 0.68 

TCP 50.6% 31.8% 15.3% 1.2% 1.2% 0% 0.68 

Grade 9  

SCP 32.5% 19.3% 28.9% 9.6% 8.4% 9.6% 1.42 

TCP 34.2% 19.0% 29.1% 7.6% 6.3% 10.1% 1.42 

Flexibility  

Table 4 shows the percentage of students generating the corresponding strategy within 

their school participants. For example, 1.0% SCP participants and 1.2% TCP 

participants used strategy D. The SCP Grade 8 covered two less categories than the 

ones of the TCP Grade 8, while the SCP Grade 9 covered one more category than the 

ones of the TCP. Both TCP grade levels had higher percentages of students using 

Strategy C and D, whereas both SCP grade levels had more percentages using Strategy 

F. Notably, the Grade 8 students at both schools had Strategy A as the greatest number 

of responses, while the results switched to Strategy B for Grade 9 at both schools. 

Table 4. Distribution of categories of solutions (Grade 8 left, Grade 9 right) 

Grade 8 SCP TCP Orii  Grade 9 SCP TCP Orii 

Strategy A 25.3% 27% 0.1  Strategy A 39.8% 43.0% 1 

Strategy B 6.2% 8.3% 1  Strategy B 56.6% 49.4% 1 

Strategy C 0 1.2% 10  Strategy C 2.4% 8.9% 10 

Strategy D 1.0% 1.2% 10  Strategy D 6.0% 14.0% 10 

Strategy E 9.2% 9.0% 1  Strategy E 7.2% 8.9% 10 

Strategy F 21.6% 16.7% 1  Strategy F 16.9% 6.3% 10 

Strategy G 0 1.2% 10  Strategy G 1.2% 0 10 

Originality 

The corresponding originality values, Orii, for every strategy are presented in Table 4. 

Notably, Strategy A, E, and F received higher originality within Grade 9 than within 

Grade 8. Table 5 lists the percentage of students generating original solutions and the 

mean originality achieved by each group. For example, 17.5% of the Grade 8 SCP 

participants had at least one of their solutions scoring 10.0 originality, the highest one 
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can achieve, and the mean originality achieved by Grade 8 SCP students was 0.83. 

Notably, the Grade 9 students from both schools achieved higher originality scores 

than those of Grade 8; both grade levels of the TCP group achieved higher mean 

originality and had more participants generating original solutions than the ones of the 

SCP group.  

Table 5. Mean originality and percentage of students generating original solutions 

 Grade 8 SCP Grade 8 TCP Grade 9 SCP Grade 9 TCP 

Total Orii 17.5% 18.8% 26.5% 30.4% 

Mean Orii 0.83 1.00 4.40 5.09 

Creativity 

   

Figure 1. Average scores for each cognitive construct across grades 

A Mann-Whitney U test was used to evaluate the hypothesis that Grade 9 from each 

school would score higher, on the average, than Grade 8 on total creativity scores. The 

results were in the expected direction (Figure 1) and significant, p<0.05. Yet no 

significant differences were detected between the creativity of the two schools for any 

grade levels. Remarkably, although the SCP Grade 9 participants had higher mean 

fluency and flexibility, its mean originality and creativity scored lower than the 

respective groups of the TCP. This suggests that originality can be independent from 

fluency and flexibility, and originality plays a dominating role in creativity. 

The CTL results, via logistic regression, suggest that the odds of Grade 9 students 

obtaining a higher CTL on the algebraic task is 2.72 as it is for Grade 8 students, with 

2.76 for the SCP school and 2.67 for the TCP school. The odds of the SCP Grade 8 and 

Grade 9 students, respectively, obtaining a higher CTL on the given task is 0.90 times 

and 0.98 times as large as it is for the TCP Grade 8 and Grade 9 students. The 

differences between grade levels are larger than it between schools, and the creativity 

differences between the two schools were narrowed down marginally in Grade 9. 
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DISCUSSION 

All four constructs including creativity increased significantly from Grade 8 to 9 across 

both schools (Figure 1). This implicates that, at the stage of junior secondary, students’ 

mathematical creativity increases along with their grade levels, regardless of the 

pedagogies received. This trend is consistent with Cheung et al. (2004), who reported 

an increasing creativity from Grade 1 to 9 via Wallach-Kogan Creativity Tests, lending 

credence to the cognitive notion that older children are supposed to perform at a higher 

level of creativity as their social experiences and educational training become broader 

(Cheung et al., 2004). However, this finding contradicts Odelya and Miriam (2023), 

who found that students are less prone to looking for creative solutions as the age rises. 

Their results may be highly influenced by the non-routine nature of the task, within 

which students from different grade levels hardly have a consistent educational 

background and thus the task selected may be more favorable for the younger students. 

This inconsistency also suggests that students’ creativity in routine and non-routine 

tasks could have a different developmental trajectory.  

Both grade levels at the TCP school possessed higher originality and creativity scores 

than the SCP group, indicating that students from teacher-centered environment can 

possess same level of or even higher creativity in algebra. This might seem 

counterintuitive but aligns with the creativity tests results conducted by PISA in 2022 

on 15-year-old students (OECD, 2023), where the top six positions were dominated by 

East Asian regions, which was often presumably to be more teacher-centered. 

Specifically, three of the top six derive from Chinese regions (OECD, 2023).  

Align with Zhang (2023), no significant differences were found between the creativity 

of the two schools on the given algebraic task, suggesting that the role pedagogy plays 

in algebraic creativity might be smaller than it can be detected, and the progress linked 

to grade levels or long-term learning duration may surpass that of pedagogy in terms 

of its impact on creativity development. This implies that creativity may require 

sufficient familiarity with a content and even higher problem-solving competencies, 

and mathematical creativity occurs after the algorithmic fixation in problem solving, 

where fixation is shown in the repeated use of an initially successful algorithm or 

procedure (Krutetskii, 1976).  

This study also found that the most conventional strategy, along with the originality 

values for any strategy, can both vary across grade levels. This could be attributed to 

the increasing problem-solving skills of Grade 9 students, more of whom were able to 

generate the most conventional strategy, not only increasing the fluency scores but also 

making the other non-trivial solutions rarer in terms of the percentage. Given this, the 

relationship between mathematical problem solving and creativity should be further 

investigated by future research.  

Limitations 

The limited number of the MSTs used in the study may not fully capture the entire 

range of students’ mathematical creativity in algebra. Also, although this study 
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endeavored to have pedagogy be the main variable influencing creativity, no causal 

claim can be made between pedagogy and creativity owing to the limitation of 

comparative case studies: the quandary of “many variables, small-N”.  
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The mathematical wellbeing (MWB) of 76 students in a suburban elementary school in 

Chengdu, China were assessed twice, once in 2020 when they were part of a bigger 

Grade 3 participant group, and again in 2023 when they were in Grade 6. The same 

questionnaire was used, with its presentation adjusted to match students’ ages. 

Variable/facet parameters were determined using Many Facet Rasch Measurement, 

and the Rasch-Welch t-test was employed to compare differences between Grades 3 

and 6. Analysis found that the fulfilment of the same values contributed to students’ 

MWB at both grade levels. However, at Grade 6, MWB was associated with more 

experiencing of the valuing of accomplishment and perseverance, less experiencing of 

engagement and bliss, and similar levels of relationship and meaningfulness.   

INTRODUCTION 

Given the enabling effect of general wellbeing on human flourishing (Chaves, 2021), 

the fostering of mathematical wellbeing (MWB) amongst students can promote 

effective mathematics learning while reducing the likelihood of disengagement and 

mathematics anxiety. While MWB (and other affective traits) might be cultivated in 

early and elementary school years, we are concerned that it might be eroded as students 

progress up the grade levels. Especially since MWB is an expression of the extent to 

which relevant values are fulfilled, how might such values fulfilment be affected by 

mathematics topics and/or pedagogies in upper elementary or high school curricula, 

which would in turn impact on MWB? 

This paper reports on a study conducted with a group of Grade 6 students in the Chinese 

city of Chengdu, whose MWB had been assessed in 2020 in a previous study when 

they were in Grade 3, and which was assessed again in their final year of elementary 

schooling (i.e., Grade 6) in 2023. Thus, this study design incorporates the advantage of 

surveying from the same students a few years apart, rather than making inferences from 

surveying students of different grade levels at any one time period.   

MATHEMATICAL WELLBEING (MWB) 

We regard MWB as being “the fulfilment of core values … within the mathematics 

learning experience, accompanied by positive feelings (e.g., enjoyment, pride) and 

functioning (e.g., accomplishment, engagement) in mathematics” (Hill & Seah, 2023, 

p.386). Developing and maintaining positive MWB amongst students is important not 

just because mathematics is one of a few subjects that is studied by all students 
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globally, but also because so many students experience disengagement in – or negative 

attitude to – mathematics lessons, and/or mathematics anxiety. Intervention approaches 

can be costly and yet success is not guaranteed. On the other hand, if we proactively 

develop and maintain students’ MWB, more students around the world can get to learn 

mathematics with positive affect, as well as effectively, to help them navigate the 

complexities and uncertainties of our current world. 

Data collected and analysed in Australia, China and New Zealand had validated a set 

of seven ultimate values the fulfilment of which is needed to achieve MWB (Hill et al., 

2022). These values are accomplishment, cognitions, engagement, meaning, 

perseverance, positive emotions, and relationship. While these ultimate values might 

be the same across cultures, the instrumental values serving them have been found to 

be different (Hill & Seah, 2023).   

THE PREVIOUS STUDY 

The ‘previous study’ mentioned above refers to a similar study (Pan et al., 2022) 

conducted in 2020 when the same student participants were in Grade 3 in the same 

school. In fact, they were part of a larger group of 258 Grade 3 students in six classes 

in the Chengdu suburban school, taught by three mathematics teachers. The teachers 

had nominated 21 classroom learning moments (e.g., ‘when you are given an 

interesting mathematics learning task’, ‘when your mathematics teacher praises you) 

to which students indicated the extent to which they valued each and were able to live 

it. There was also an ‘other’ option for students to indicate classroom learning moments 

associated with positive MWB. Engaging in these learning moments enabled the 

students to fulfil and live some or all of 15 instrumental values (Figure 2). The 

instrumental values together would serve the realisation of a smaller set of 6 terminal 

or ultimate values (Figure 1). For example, the learning moment ‘when you are given 

an interesting mathematics learning task’ was considered to help students fulfil their 

instrumental valuing of interestingness, which was in turn considered to serve the 

ultimate valuing of engagement.   

Three findings were of particular importance in this previous study. Firstly, the 

students’ MWB corresponded to the fulfilment of a set of seven ultimate values which 

are similar to the set that Hill et al. (2021) observed in Australia, namely, relationship, 

engagement, bliss, accomplishment, perseverance, meaningfulness, and learning. 

Secondly, four of these - engagement, relationship, bliss and accomplishment – were 

especially emphasised by the students for positive MWB. Thirdly, teachers’ facilitation 

of these values which fostered positive MWB was generally consistent across different 

teachers and different classes.   

Given that student affect often becomes less positive as they progress through grade 

levels (e.g., Thomson et al., 2020), this current study is interested to find out what the 

MWB of some of these 258 students were like in their final year of elementary 

schooling. In particular, the Research Questions guiding the conduct of this study are: 
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RQ1: What are the ultimate values that need to be fulfilled in order for Grade 6 students 

in Chengdu to experience mathematical wellbeing? How do these compare with the 

ultimate values associated with these students when they were in Grade 3? 

RQ2: For each of the ultimate values associated with Grade 6 students’ mathematical 

wellbeing, how similar or different are the corresponding instrumental values 

compared to the time when the students were in Grade 3? 

METHODOLOGY 

Participants 

The student participants in this study were 76 Grade 6 students in two classes in a 

Chengdu suburban elementary school. They (and their mathematics teacher) were also 

part of the 258 participants who provided data in 2020, when they were in Grade 3. 

They have had the same mathematics teacher throughout the six years of elementary 

education in the same school, but the different mathematics topics and the different 

pedagogies associated should affect individuals’ mathematics learning experience. For 

example, as mathematics topics become more abstract in the upper elementary school 

year levels, and as different teaching approaches need to be introduced, how might 

these affect the extent to which students were able to engage in classroom learning 

moments that reflect the fulfilment of relevant values? How might these affect MWB? 

The Questionnaire Method 

Just like when they were in Grade 3 three years before the current study, the students’ 

MWB was assessed through the questionnaire survey method. Compared to alternative 

methods such as interviews and journals, the questionnaire approach would have 

facilitated efficient collection of data from a large group of participants at the same 

time. In both times, the students completed the questionnaires during mathematics 

lesson time, with the same mathematics teacher administering the exercise. 

The questionnaire (in Chinese) is accessible at https://www.wjx.cn/vm/POhZjXH.aspx. 

While the items are the same as the questionnaire which the student participants 

completed three years prior (see Hill & Seah, 2023), there were necessarily some 

changes in the way it was presented, considering that the students had become older 

and more matured. Firstly, students had indicated in the earlier questionnaire if 21 

given learning moments were associated with positive MWB through a colouring 

exercise. The argument then was that the activity would help maintain the young 

students’ attention span. In the current questionnaire, students only needed to click on 

bullet points adjacent to the 21 learning moments statements to indicate that they were 

still associated with their experiencing of positive MWB. Like the Grade 3 

questionnaire, there was an additional ‘other’ option too. (For a list of the 21 learning 

moments, refer to the English translated version of the questionnaire, accessible at: 

https://melbourneuni.au1.qualtrics.com/jfe/form/SV_doQ5pV3ruEwyZTw) Secondly, 

while the questionnaire was administered in hardcopy version in the earlier exercise in 

2020, it was presented to students as an online survey in the current exercise in 2023.  



Zhong, Akçakın, & Seah 

  

4 - 244 PME 47 – 2024 

The questionnaire responses were exported in the form of a Microsoft Excel 

spreadsheet. The content (i.e., raw data) were cleaned and organized in preparation for 

Many Facet Rasch Measurement [MFRM] analysis. The MFRM is a measurement 

model in the item response theory that extends the Rasch model (Toffoli et al., 2016). 

Thus, the codes were written as guided by the FACET software to facilitate our 

investigation of the interaction between grade level and instrumental / ultimate values. 

With the Research Questions listed above in mind, we focussed on Item 6 of the 

questionnaire. Each student was scored according to whether each of the 21 learning 

moments contributed to their MWB, based on their indications in the Grade 6 

questionnaire. The same question in the Grade 3 questionnaire, however, gave the 

students three choices of which to colour-in one: contributes a lot, contributes, and 

does not contribute. In our analysis, responses to either one of the first two choices 

were counted together. In other words, all student responses were recorded as either 1 

or 0, thus implying that the data were dichotomous.   

In contrast to classical test theory, MFRM allows for the independent and objective 

estimation of facet parameters without being influenced by item, rater, test, and group 

characteristics (Toffoli et al., 2016). In this study, individuals (students), grade level, 

instrumental values, ultimate values, and learning moments were determined as facets. 

MFRM enables the separate estimation of each facet and allows for relevant 

comparison by calibrating and standardizing the facets within a logit scale (Prieto et 

al., 2014), where scores generally fall between -3 and +3. 

Item response theory is relevant in our study as it helps us to examine the relationship 

between the latent MWB and the observable learning moments which made up the item 

responses. With the dichotomous data coded, the Rasch-Welch t-test was performed to 

compare the difference between ultimate values experienced in Grades 3 and 6, 

because this test is more effective in controlling Type 1 error rates when the assumption 

of equal variance is not fulfilled (such as in this study), while maintaining a strong level 

of reliability compared to Student’s t-test if the assumptions are met (Delacre et al., 

2017). 

An informal conversation was also set up with the classroom teacher to share with her 

what the analysed data looked like, to stimulate her thoughts and opinions in response. 

RESULTS 

Point-measure (point-biserial) correlation values of the items for the 21 learning 

moments vary between .43 and .74. Infit MNSQ values range from .82 to 1.23, and 

outfit MNSQ values range from .59 to 1.28 except for one item that is .44. These values 

being between .5 and 1.5 are productive in terms of measurement. Values lower than 

0.5 are not as productive for measurement, but they do not cause degradation. (Linacre, 

2002). These results show that our data fit the Rasch model. 

The interaction of grade level and ultimate values is shown in Figure 1, while the 

interaction of grade level and instrumental values is shown in Figure 2. 
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Figure 1: Interaction of Grade Level and Ultimate Values. 

Rasch-Welch (logistic regression) t-test results show that there are statistically 

significant differences between the Grade3 and Grade 6 students in favour of the Grade 

3 students for the ultimate values of engagement (t(1115)=3.02, p<.05) and bliss 

(t(273)=4.41, p<.05), and in favour of the Grade 6 students for the ultimate values of 

accomplishment (t(882)=-3.62, p<.05) and perseverance (t(347)=-4.20, p<.05). 

 

Figure 2: Interaction of Grade Level and Instrumental Values. 

Rasch-Welch (logistic regression) t-test results show that there are statistically  
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significant differences between the Grade 3 and Grade 6 students in favour of the Grade 

3 students for the instrumental values associated with ‘interesting/hands-on’ 

(t(758)=6.97, p<.05) and ‘relaxed/no pressure’ (t(110)=5.66, p<.05); and in favour of the 

Grade 6 students for the instrumental values associated with ‘focused working’ (t(172)=-

2.52, p<.05), ‘independent/quietness’ (t(166)=-4.09, p<.05), ‘completing tasks’ (t(174)=-

2.58, p<.05), ‘general mastery’(t(162)=-4.78, p<.05), ‘challenge’(t(171)=-3.16, p<.05), 

and ‘working hard/practice’ (t(173)=-2.78, p<.05). 

DISCUSSION 

76 Grade 6 students in a Chengdu suburban elementary school were asked to identify, 

from a teacher-nominated set of learning moments, those which accompany their 

experiencing of MWB. A similar assessment was carried out with this group of 

students three years prior when they were in Grade 3. In responding to Research 

Question 1, it was found that at this upper elementary level, MWB was associated with 

the fulfilment of six of the seven ultimate values identified earlier, that is, without 

learning. This was to be expected, since none of the 21 teacher-nominated learning 

moments reflected the valuing of learning, and the reason why it was an ultimate value 

associated with MWB three years prior was that two students (of the 258) then had 

identified them in the open-ended ‘other’ item. This is not to suggest, however, that 

students’ MWB did not involve experiencing of learning: conversations with the 

mathematics teacher suggest that the students were not short of opportunities to 

experience the valuing of learning. In other words, even though learning moments 

reflecting learning might have been too obvious for the classroom teachers to have 

listed them in the questionnaire, this current study lends further support for the same 

set of seven ultimate values governing MWB as was identified in Hill et al. (2022). 

Specifically, over the three years from Grade 3 to Grade 6, two each of the six ultimate 

values were associated more with MWB and experienced more by students 

(accomplishment, perseverance); less associated and experienced (engagement, bliss); 

and similarly associated and experienced (relationship, meaningfulness).  

Research Question 2 aimed to understand which instrumental values experienced 

changes in fulfilment that led to changes in the fulfilment of the associated ultimate 

values. The statistically significant drop in students’ experiencing of bliss in Grade 6, 

for example, could be the result of a drop in the fulfilment of being relaxed (one of two 

instrumental values assessed), whereas the fulfilment of (listening to) music (the other 

instrumental value assessed) remained the same over the three years. Similarly, the 

increase in students’ fulfilment of accomplishment and perseverance was due to 

changes in two instrument values each: completing tasks and general mastery for the 

former, and working hard and challenge for the latter. Notably, the drop in expression 

of students’ engagement seemed to be caused by all three instrumental values assessed, 

namely, interestingness, focussed work, and independence. 

Despite the changing nature of mathematics topics at upper elementary levels, despite 

the demands and needs of adolescence, the data suggest that the students’ experiencing 
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of their valuing of relationship has not been affected. Perhaps this is because students 

in China have the same teachers and peers throughout their elementary school years. 

Students’ experiencing of meaningfulness has also remained stable. 

It is not surprising that even as bliss continued to be a value underlying MWB, Grade 

6 students were experiencing less of it. Not only have mathematics topics become more 

difficult (and abstract), parental pressure on results, teachers having less opportunities 

for positive reinforcements, and more complex question types all contributed. The 

changing nature of classroom activities away from fun ones such as origami (in Grade 

3) probably also explained the less fulfilment of bliss and engagement at Grade 6.  

The classroom teacher was aware that her students’ opportunities to experience the 

valuing of engagement were being threatened. In response, she introduced group-based 

mathematics projects to her students annually, recognising that these would stimulate 

students’ interest in hands-on tasks, promote focussed working, and provide students 

with the independence they enjoyed in completing the respective projects. These three 

aspects are in fact the instrumental values (see Figure 2) promoting student engagement 

in their mathematics learning. Yet, the projects probably did not exert sufficient 

influences to the students’ engagement. Another point to note is that at the time of 

collecting the Grade 6 data in 2023, the year’s project had not been announced yet. 

The classroom teacher had been surprised that her students were fulfilling 

accomplishment and perseverance more, when she was expecting these to slide in 

Grade 6. According to her, this concern had probably led her to over-compensate, by 

consciously building into her lessons more opportunities for students to exercise 

perseverance, and to feel accomplished. This suggests that intentional teacher actions 

in their professional practice can effectively affect values fulfilment, and thus, MWB. 

The data suggest that as students progress through the elementary school years in 

China, the development / maintenance of their MWB does not require the fulfilment of 

different values. However, the changing nature of the curriculum and the changing 

preferences of growing children have meant that opportunities for relevant 

instrumental values – and thus, the learning moments in class – to be experienced by 

the students are different across grade levels. Teacher awareness of these are important, 

for as the mathematics teacher in this study showed, teachers can use this knowledge 

to orchestrate student experiencing of targeted learning tasks to facilitate the fulfilment 

of particular values. Furthermore, the learning moments are commonly found in 

mathematics classrooms, implying that teachers need not introduce intervention 

activities into their lessons, disrupting established lesson structures.  

CONCLUSION 

This paper reports on the second assessment of students’ MWB for a longitudinal study 

in an elementary school in Chengdu, China. Three years on after the first assessment 

in Grade 3, the Grade 6 students’ MWB were supported by six ultimate values which 

were also documented three years prior, namely, accomplishment, perseverance, 
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meaningfulness, relationship, bliss, and engagement. A seventh value, learning, was 

neither surveyed nor identified by the Grade 6 students, although we were not surprised 

when the classroom teacher believed that students’ experiencing of it would also 

contribute towards their MWB. Amongst the six identified values, the students reported 

experiencing more of the first two ultimate values three years on, equivalent experience 

with the middle two, and less experiencing of the last two. The instrumental values 

underlying these changes were identified, with students experiencing less of all the 

three instrumental values feeding into engagement in particular. 
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